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ABSTRACT

You've collected the data and performed a preliminary analysis with a linear regression. But the residuals have sev-
eral modes, and transformations don’t help. You need a different approach, and that calls for the FMM procedure.
PROC FMM fits finite mixture models, which enable you to describe your data with mixtures of different distributions
S0 you can account for underlying heterogeneity and address overdispersion. PROC FMM offers a wide selection
of continuous and discrete distributions, and it provides automated model selection to help you choose the number
of components. Bayesian techniques are also available for many analyses. This paper provides an overview of the
capabilities of the FMM procedure and illustrates them with applications drawn from a variety of fields.

INTRODUCTION

Most statistical methods assume that you have a sample of observations, all of which come from the same distribution,
and that you are interested in modeling that one distribution. If you actually have data from more than one distribution
with no information to identify which observation goes with which distribution, standard models won’t help you. However,
finite mixture models might come to the rescue. They use a mixture of parametric distributions to model data, estimating
both the parameters for the separate distributions and the probabilities of component membership for each observation.

Finite mixture models provide a flexible framework for analyzing a variety of data. Suppose your objective is to describe
the distribution of a response variable. If the corresponding data are multimodal, skewed, heavy-tailed, or exhibit
kurtosis, they may not be representative of most known distributions. In this case, you often use a nonparametric
method such as kernel density estimation to describe the distribution. A kernel density estimate generates a smoothed,
numerical approximation to the unknown distribution function and estimates the distribution’s percentiles. Although this
approach is useful, it might not be the most concise way to describe an unknown distribution. A finite mixture model
provides a parametric alternative that describes the unknown distribution in terms of mixtures of known distributions.
A finite mixture model also enables you to assess the probabilities of events or simulate draws from the unknown
distribution the same way you do when your data are from a known distribution.

Finite mixture models also provide a parametric modeling approach to one-dimensional cluster analysis. This approach
uses the fitted component distributions and the estimated mixing probabilities to compute a posterior probability of com-
ponent membership. An observation is assigned membership to the component with the maximum posterior probability.
A benefit of using a model-based approach to clustering is that it permits estimation and hypothesis testing within the
framework of standard statistical theory (McLachlan and Basford 1988).

Finally, finite mixture models provide a mechanism that can account for unobserved heterogeneity in the data. Certain
important classifications of the data (such as region, age group, or gender) are not always measured. These latent clas-
sification variables can introduce underdispersion, overdispersion, or heteroscedasticity in a traditional model. Finite
mixture models overcome these problems through their more flexible form.

FINITE MIXTURE MODELS

Consider a data set that is composed of people’s body weights. Figure 1 presents the pooled data. The histogram
indicates an asymmetric distribution with three modes. Figure 2 displays separate histograms for age group and
gender. Each distribution is symmetric, with only one mode.



SAS Global Forum 2012

Figure 1 Pooled Body Weights Figure 2 Body Weights Classified by Age and Gender
8 . __ Children  Adult Females  Adult Males
2 40 |
) d
R 30_
= L _—
S 4 il 3
2 5 20
a
2
10
0 T T T T T T 0 T T T T T | | |
0 25 50 75 100 125 20 60 100 20 60 100 20 60 100
WEIGHT WEIGHT
Kernel Normal

The histograms in Figure 2 explain the structure in Figure 1. This illustrates a problem that arises in many situations:
you might not know important predictors for the response. Without this information, models fit by using traditional
techniques can perform poorly. The finite mixture model can account for these unknown predictors.

The previous example demonstrates how a mixture can arise when you do not observe important predictors. In other
situations, you might have all of the important predictors, but the response does not follow a well-known distribution. The
histogram in Figure 3 demonstrates a case where the response distribution has a strong central mass and heavy tails.
A single Gaussian or ¢ distribution would not provide a satisfactory model for these data. However, you could model
this response with a mixture of one low-variance Gaussian distribution and another high-variance Gaussian distribution,
each with the same mean. Figure 3 displays these separate component densities and the weighted combination that
forms the mixture model. In this case, the finite mixture model provides a more flexible form for the response distribution.

Figure 3 Distribution with Unusual Structure
Distribution and Estimated Density for

INTERDAY
With Estimated Component Densities

30 Mixture
1: Nermal(0,0.01)
40 2: Normal(0,0.25)
S 30
o
1] =
K
10 -
0 ol

-2 -14 -08 -02 04 1 16 22
INTERDAY

The expression for the density or likelihood of a response value y in a general k-component finite mixture model is:

k
SO =) 7j@a)pi(y:X;B;. ;)

Jj=1

In this model, the parametric distributions p; are weighted by the mixing probabilities ;. The component distributions
p;j can depend on regressor variables in X ;, regression parameters g ;, and possibly scale parameters ¢ ;. The mixing
probabilities 7 ;, which sum to 1, can depend on regressor variables z and corresponding parameters « ;. These
probabilities can be modeled using a logit transform if k = 2, and as a generalized logit model if k¢ > 2. The component
distributions p; are indexed by j because the distributions might belong to different families. For example, to manage
overdispersion in a two-component model, you might model one component as a normal (Gaussian) variable and the
second component as a variable with a ¢ distribution with low degrees of freedom.

Statistics and Data Analysis
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BASIC FEATURES OF THE FMM PROCEDURE

The FMM procedure, experimental in SAS/STAT® 9.3, fits finite mixture models to univariate outcomes by both max-
imum likelihood and Bayesian techniques. PROC FMM fits finite mixtures of linear regression models or generalized
linear models, and it models both the component distributions and the mixing probabilities. The procedure’s model-
building syntax includes the CLASS and MODEL statements that are familiar from other SAS/STAT procedures such
as the GLM, GLIMMIX, and MIXED procedures. PROC FMM features a BAYES statement for specifying a Bayesian
analysis, as do the GENMOD, LIFEREG, and PHREG procedures.

In addition, PROC FMM provides the following features:

e many built-in link and distribution functions for modeling, including the beta, shifted ¢, Weibull, beta-binomial, and
generalized Poisson distributions, in addition to many standard members of the exponential family of distributions

e specialized built-in mixture models such as the binomial cluster model and the ability to add zero-inflation to any
model

e ability to build mixture models in which the model effects, distributions, or link functions vary across mixture
components by using multiple MODEL statements

e evaluation of sequences of mixture models when you specify ranges for the number of components
e simple syntax to impose linear equality and inequality constraints among parameters

o ability to model regression and classification effects in the mixing probabilities by using the PROBMODEL state-
ment

o ability to incorporate fully or partially known component membership into the analysis

o ability to produce a SAS data set with important statistics for interpreting mixture models, such as component log
likelihoods and prior and posterior probabilities by using the OUTPUT statement

e output data set with posterior parameter values for the Markov chain

¢ high degree of multithreading for high-performance optimization and Monte Carlo sampling

ESTIMATION METHODS

The FMM procedure provides maximum likelihood estimation for numerous continuous and discrete response distribu-
tions. It uses a dual quasi-Newton optimization algorithm by default, but you can choose from several other optimization
techniques to produce the maximum likelihood estimates.

Bayesian analysis is supported for a smaller set of response distributions. For these distributions, PROC FMM pro-
vides a single parametric form for the prior distributions, but you can adjust the prior parameters to reflect specific
prior information. The Bayesian methods in PROC FMM use a data augmentation scheme for improved MCMC per-
formance. Gibbs sampling is used by default; but when this is not possible, PROC FMM uses a Metropolis-Hastings
algorithm originally proposed by Gamerman (1997). Both methods produce a posterior sample that provides the basis
for inference.

Example 1: Accounting for Excess Zeros

This example applies several alternative mixture models to illustrate the use of PROC FMM where a mixture distribution
provides improvement over a standard Poisson regression for count data.

Greene (1995) presents data for a set of 1,319 individuals drawn at random from the applicant pool for a credit card. A
major derogatory report (MDR) is an event such as a foreclosure, a collection action, or an account that is delinquent
for 120 days or more. The researchers were interested in modeling MDR counts as a function of other variables—in
particular, the age of the applicant (Age), their income in units of $10,000 (Income), their average monthly credit card
expenditure (Avgexp), and their homeowner status (Ownrent).

The first step in an analysis is to look at the data graphically. The following DATA step creates the data set CREDRPT,
and the SGPLOT procedure creates a histogram that provides an overall impression of the distribution of MDR counts.

data credrpt;
input MDR Age Income Avgexp Ownrent;
datalines;

0 37.6667 4.5200 124.9833 1
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.4200 9.8542 0

.5000 15.0000 1
.5400 137.8692 0
.7867 546.5033 1
.5000 91.9967 0

NONMB_DN

. more lines ...

0 40.5833 4.6000 101.2983 1
0 32.8333 3.7000 26.9967 0
0 48.2500 3.7000 344.1575 1

proc sgplot data=credrpt;
histogram mdr / showbins;
run;

Figure 4 presents the resulting histogram; 80.4% of the applicants had no MDRs.

Figure 4 Histogram of MDR Counts
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You might decide to perform a Poisson regression that models MDR count as a function of the applicant’s age, income,
and average monthly credit card spending. Poisson regression is a standard technique for analyzing count data; it
assumes that the mean and the variance are equal. The GENMOD procedure is the standard SAS/STAT tool for
performing Poisson regression, but you can fit a Poisson regression with PROC FMM too as a mixture model with just
one component. You specify the model in PROC FMM the same way as you would in PROC GENMOD; the log link
is applied by default with the DIST=POISSON option. The following SAS statements produce the Poisson regression
analysis:
proc fmm data=credrpt;
model mdr = age income avgexp / dist=poisson;

run;

Output 1 summarizes information about this model and its fit statistics.

Output 1 Poisson Model

Poisson Model

The FMM Procedure

Model Information

Data Set WORK .CREDRPT

Response Variable MDR

Type of Model Generalized Linear (GLM)
Distribution Poisson

Components 1

Link Function Log

Estimation Method Maximum Likelihood
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Output 1 continued

Number of Observations Read 1319
Number of Observations Used 1319

Fit Statistics

-2 Log Likelihood 2793.4
AIC (smaller is better) 2801.4
AICC (smaller is better) 2801.5
BIC (smaller is better) 2822.2
Pearson Statistic 9362.5

The value of the Pearson statistic is 9362.5. Its value should approach the sample size of 1,319 if the underlying
assumptions are satisfied. The large value of 9362.5 indicates that the model fit is questionable, and it suggests that
the variance exceeds the mean. When this happens, the model is said to exhibit overdispersion. So the Poisson model
does not appear to describe these data well.

Consider Figure 4 again. Another way to view these data is as a mixture of a constant distribution (which always
generates zero counts) and a truncated Poisson distribution (which always generates nonzero counts). The mixing
probabilities estimate the corresponding probabilities that an observation is drawn from one of the two distributions.
This is called a hurdle model (Mullahy 1986).

You fit a hurdle model in PROC FMM by using two MODEL statements. One MODEL statement specifies a truncated
Poisson distribution for the nonzero MDR group. The other MODEL statement specifies a constant distribution with all
mass at zero for the zero MDR group. The truncated Poisson MODEL statement includes covariates, but the MODEL
statement for the constant distribution does not. Finally, you can make the mixing probabilities themselves depend on
the covariates by including them in the PROBMODEL statement.

proc fmm data=credrpt;
model mdr = age income avgexp / dist=tpoisson;
model mdr = / dist=constant;
probmodel age income ownrent;

run;

Output 2 displays the model information and fit statistics for the Poisson hurdle model. The Pearson statistic of 1747.7
indicates a better fit than the original Poisson regression model.

Output 2 Poisson Hurdle Model

Poisson Hurdle Model

The FMM Procedure

Model Information

Data Set WORK .CREDRPT
Response Variable MDR

Type of Model Poisson Hurdle
Components 2

Estimation Method Maximum Likelihood

Fit Statistics

-2 Log Likelihood 2177.1
AIC (smaller is better) 2193.1
AICC (smaller is better) 2193.2
BIC (smaller is better) 2234.6
Pearson Statistic 1747.7
Effective Parameters 8
Effective Components 2

The concept of the hurdle model is that the data are separated into one group of people who will have at least one
MDR and another group of people who will have no MDRs. But it might be more reasonable to model the groups as
people who might have a MDR and people who will never have an MDR. In other words, people in the first group are
at risk for a MDR but might not experience one, and people in the second group are at no risk for a MDR and will
never experience one. You can address this scenario with the zero-inflated Poisson (ZIP) model (Lambert 1992). The
ZIP model uses a Poisson distribution in place of the truncated Poisson distribution used by the hurdle model. So,
while the hurdle model restricts the zeros to one component, the ZIP model permits the zero counts to come from both
components in the model.
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You fit the ZIP model by specifying DIST=POISSON in the first MODEL statement; the rest of the PROC FMM state-
ments remain the same:

proc fmm data=credrpt gconv=0;
model mdr = age income avgexp / dist=poisson;
model mdr = / dist=constant;
probmodel age income ownrent;

run;

Output 3 presents the model information and the fit statistics for the ZIP model. The Pearson statistic has the value
2026.4, which is better than the value for the standard Poisson model but worse than the value for the hurdle model.

Output 3 Zero-Inflated Poisson Model

Zero-Inflated Poisson Model

The FMM Procedure

Model Information

Data Set WORK .CREDRPT

Response Variable MDR

Type of Model Zero-inflated Poisson
Components 2

Estimation Method Maximum Likelihood

Fit Statistics

-2 Log Likelihood 2186.1
AIC (smaller is better) 2202.1
AICC (smaller is better) 2202.2
BIC (smaller is better) 2243.5
Pearson Statistic 2026.4
Effective Parameters 8
Effective Components 2

Another alternative is the zero-inflated negative binomial (ZINB) model. The ZINB model permits zero counts to come
from both component distributions (similar to the ZIP model), but it uses a negative binomial distribution instead of a
Poisson distribution. The following statements specify the ZINB model; the DIST=NEGBIN option in the first MODEL
statement requests the negative binomial distribution:

proc fmm data=credrpt;
model mdr = age income avgexp / dist=negbin;
model mdr = / dist=constant;
probmodel age income ownrent;

run;

Output 4 displays the fit statistics for the new model. The Pearson statistic is 1355.3, which indicates the best fit of all
the models.

Output 4 Zero-Inflated Negative Binomial Model

Zero-Inflated Negative Binomial
The FMM Procedure

Model Information

Data Set WORK .CREDRPT

Response Variable MDR

Type of Model Zero-inflated NegBinomial
Components 2

Estimation Method Maximum Likelihood

Fit Statistics

-2 Log Likelihood 2053.5
AIC (smaller is better) 2071.5
AICC (smaller is better) 2071.6
BIC (smaller is better) 2118.2
Pearson Statistic 1355.3
Effective Parameters 9
Effective Components 2
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Output 5 presents the estimates for both the negative binomial component parameters and the mixing probability model
parameters. You can refine this model by removing variables that are not significant from the model for MDR counts or
from the model for the mixing probabilities.

Output 5 Zero-Inflated Negative Binomial Parameter Estimates

Parameter Estimates for 'Negative Binomial' Model
Standard
Component Effect Estimate Error z Value Pr > |z|
1 Intercept 0.2543 0.4712 0.54 0.5895
1 Age -0.01394 0.01013 -1.38 0.1690
1 Income 0.02749 0.05296 0.52 0.6037
1 Avgexp -0.00200 0.000366 -5.47 <.0001
1 Scale Parameter 2.9799 0.6853
Parameter Estimates for Mixing Probabilities
Standard
Effect Estimate Error z Value Pr > |z|
Intercept -3.3052 1.0452 -3.16 0.0016
Age 0.1125 0.04316 2.61 0.0092
Income 0.2611 0.1708 1.53 0.1264
Ownrent -0.8853 0.3890 -2.28 0.0229

Table 1 compares the information criteria for all four models and provides relative rankings for the models by each
criterion. All of the information criteria tell the same story for these data: the ZINB model ranks first by all five criteria,
followed by the Poisson hurdle model, the ZIP model, and the standard Poisson model.

Table 1 Information Criteria Comparisons with Relative Rankings

Model —2LL AIC AICC BIC Pearson

Poisson 2793.4 (4) 2801.4(4) 2801.5(4) 2822.2(4) 9362.5(4)
Poisson hurdle  2177.1 (2) 2193.1 (2) 2193.2(2) 2234.6(2) 1747.7 (2)
ZIP 2186.1 (3) 2202.1 (3) 2202.2(3) 2243.5(3) 2026.4 (3)
ZINB 2053.5 (1) 2071.5(1) 2071.6(1) 2118.2(1) 1355.3 (1)

You can also assess the performance of the different models by computing the predicted probability of different MDR
counts for each observation, averaging those probabilities, and comparing the results to the observed relative frequen-
cies of MDR counts (Long 1997).

Figure 5 displays the difference between the computed MDR count frequencies for each model and the observed
relative frequencies (the SAS statements are not shown).

Figure 5 Model Comparison
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The ZINB model appears to fit the data best, and the Poisson hurdle model is a close second. The standard Poisson
model performed poorly for the most frequent counts. It appears that a split-population model like the hurdle, ZIP, or
ZINB model is useful for describing these data. However, a split of the population into different groups is not necessarily
the true state of nature; the MDR counts might follow a zero-heavy model unlike any you know. A finite mixture
modeling approach enables you to take simple, well-understood models and combine them in a way that provides a
better description of the data than a single-component model provides.

Example 2: Clustering of Rare Events

The FMM procedure also enables you to use a parametric model to perform clustering for univariate data. The finite
mixture model approach to clustering assumes that the observations to be clustered are drawn from a mixture of a
specified number of groups in varying proportions. A distribution is chosen for each group; the distributions can be, but
are not required to be, the same for all of the groups. You fit the finite mixture model to estimate the model parameters
and the posterior probabilities of group membership. Each observation is then assigned membership to the group for
which it has the highest estimated posterior probability of belonging (McLachlan and Basford 1988).

For example, Symons, Grimson, and Yuan (1983) used a finite mixture model to study the incidence of sudden infant
death syndrome (SIDS) in North Carolina; they focus on identifying counties at high risk for SIDS. Table 2 describes
the variables used in the analysis.

Table 2 NCSIDS Data Set
Variable Name Description

County Name of county

Births Number of recorded live births (1974-1978)

SIDS Number of recorded SIDS cases (1974-1978)

Rate Incidence rate (SIDS/Births)

Logrisk Natural logarithm of the size of the at-risk population

An initial approach to analyzing these data for the presence of clusters is to examine a plot of the ordered SIDS
incidence rates. Gaps in the ordered rates might indicate the presence of separate risk groups in the overall population.

The following SAS statements read the data and create the data set NCSIDS. PROC RANK ranks the rates in descend-
ing order and stores the result in the variable Order. The SGPLOT procedure produces a scatter plot of Rate versus
Order and a scatter plot of Rate versus Births.

data ncsids;
input County $ 1-12 Births SIDS;
Rate=SIDS/Births;
Logrisk=log(Births);

datalines;
Alamance 4672 13
Alexander 1333 0
Alleghany 487 0
Anson 1570 15
Ashe 1091 1
Avery 781 0
Beaufort 2692 7

. more lines ...

Wilson 3702 11
Yadkin 1269 1

Yancey 770 0

’

proc rank data=ncsids out=ncsids descending;
var rate;
ranks order;

run;

proc sgplot data=ncsids;
scatter x=order y=rate / markerattrs=(symbol=CircleFilled size=4px);
refline 0.0029 0.0035 / axis=y lineattrs=(pattern=dot);

run;
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proc sgplot data=ncsids;
scatter x=Births y=rate /markerattrs=(symbol=CircleFilled size=4px) ;
yaxis values=(.001 .002 .003 .004 .005 .006 .007 .008 .009 .01);
refline 0.0029 0.0035 / axis=y lineattrs=(pattern=dot);

run;

Figure 6 displays the plot of the ordered incidence rates. There appears to be a gap in the rates around 0.0029-0.0035.
However, Figure 7 shows that the higher SIDS rates appear to be concentrated in counties with a lower number of births.
This means that the higher rates tend to be measured with low precision. So, classifying the counties based solely on
a visual inspection of ordered rate magnitudes can be misleading because the rates are not measured with the same
precision. Fitting a finite mixture model enables you to estimate group membership by taking into account both the
magnitude and the precision of the estimated rates.

Figure 6 Ordered Incidence Rates Figure 7 SIDS Incidence Rates by Births
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Following Symons, Grimson, and Yuan (1983), assume that the counties are a mixture of a normal-risk group and a
high-risk group and that the number of SIDS cases follows different Poisson distributions for each group. When you use
PROC FMM to fit this model, the procedure computes the posterior probabilities of component membership for each
observation as

wipj(y;dy)
Zlf'=1 wipi(yid))

Pr(jlyi) =

where 7 ; is the mixing probability (prior probability) for the jth component and A is the mean for the jth component.
Each observation is then allocated to either the high-risk or normal-risk group according to which group has the largest
posterior probability.

The following SAS statements perform the analysis. By default, PROC FMM uses a log link function when you specify
DIST=POISSON. The KMAX=2 option requests that one- and two- component models be fitted and considered for
selection. The CLASS option in the OUTPUT statement generates a variable named ML in the output data set that
contains the model-based group allocations for each observation.

proc fmm data=ncsids;
model SIDS = / dist=poisson kmax=2 offset=Logrisk;
output out=Max class=ML;

run;

Output 6 presents the details of the model selection; all but one of the criteria favor the two-component model. By
default, PROC FMM uses the —2*log-likelihood criteria for model selection, but you can use the CRITERION= option in
the PROC FMM statement to specify an alternative.
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Output 6 Evaluation of One- and Two-Component Models for SIDS Data

The FMM Procedure

Component Evaluation for Mixture Models

———————— Number of —--————-
Model -Components— -Parameters-— Max
ID Total Eff. Total Eff. -2 Log L AIC AICC BIC Pearson Gradient
1 1 1 1 1 508.75 510.75 510.79 513.36 225.57 1.655E-6
2 2 2 3 3 474.27 480.27 480.52 488.09 113.25 0.000090

The model with 2 components (ID=2) was selected as 'best' based on the -2 log-likelihood
function.

Output 7 displays the parameter estimates for the two-component model. PROC FMM uses the logarithm of the rates
in its modeling, but it presents the parameter estimates on the original scale in the Inverse Linked Estimate column.
The estimated component means are 0.001693 and 0.003805. The estimate of the mixing probability is 0.7969; this is
the weight for the first mixture component.

Output 7 Parameter Estimates for Two-Component Mixture

The FMM Procedure
Parameter Estimates for 'Poisson' Model
Inverse
Standard Linked
Component Parameter Estimate Error z Value Pr > |z| Estimate
1 Intercept -6.3813 0.08813 -72.41 <.0001 0.001693
2 Intercept -5.5715 0.2289 -24.35 <.0001 0.003805
Parameter Estimates for Mixing Probabilities
———————————————— Linked Scale-——————————————
Standard
Parameter Estimate Error z Value Pr > |z| Probability
Probability 1.3668 0.8025 1.70 0.0885 0.7969

Output 8 lists the 19 counties with the highest SIDS incidence rates along with their group allocations. All of the other
counties are allocated to the normal-risk group.

Output 8 Frequentist Analysis

County SIDS Births Rate ML
Anson 15 1570 .00955 High
Northampton 9 1421 .00633 High
Washington 5 990 .00505 High
Halifax 18 3608 .00499 High
Hertford 7 1452 .00482 High
Hoke 7 1494 .00469 High
Greene 4 870 .00460 High
Bertie 6 1324 .00453 High
Bladen 8 1782 .00449 High
Columbus 15 3350 .00448 High
Swain 3 675 .00444 Normal
Warren 4 968 .00413 Normal
Rutherford 12 2992 .00401 High
Robeson 31 7889 .00393 High
Lincoln 8 2216 .00361 High
Rockingham 16 4449 .00360 High
Scotland 8 2255 .00355 High
Pender 4 1228 .00326 Normal
Wilson 11 3702 .00297 Normal

Figure 8 displays a scatter plot of the ordered incidence rates, and Figure 9 displays a scatter plot of the incidence rates
by the number of births. From this visual inspection, you might conclude that Swain and Warren counties, and possibly
Pender and Wilson counties, are high-risk counties. However, these same counties are classified as normal-risk by

10



SAS Global Forum 2012

Statistics and Data Analysis

the finite mixture model. Because Swain, Warren, and Pender counties have low birth numbers, the corresponding
incidence rates have lower precision; the model takes the lower precision into account. Wilson County’s incidence rate
is very close to the edge of the gap seen in Figure 6, and the model indicates a greater affinity for the normal-risk group.

Figure 8 Ordered Incidence Rates Figure 9 Incidence Rates by Births
0.010 — 0.010 —
o] o
0.009 — 0.009 —
0.008 — 0.008 —
0.007 — 0.007 —
£ 0006 2 £ 0006 #
@ 0005 @ 0005 e
%-Ewam o]
0.004 | waren! 0.004 W;,r,e_bo P o
d + il
0.003 - it g 0.003 - Peider 4 44 +
0.002 0.002 w_‘&#w* + 4 F
0.001 . 00014 ¥y ¢ ++ o + 7
0 20 40 60 80 100 0 5000 10000 15000 20000
Rank for Variable Rate Births

Predicted Component © High + Normal Predicted Component © High + Normal

Bayesian Analysis

Some statisticians prefer to use Bayesian methods; they might want to incorporate prior information into the analysis, or
they might prefer the Bayesian framework. PROC FMM enables you to use Bayesian estimation methods by specifying
a BAYES statement, just as you do in the GENMOD, LIFEREG, and PHREG procedures.

The following SAS statements show how to use the MCMC techniques available in PROC FMM to fit the two-component
mixture model. The NBI= option in the BAYES statement specifies to use 5,000 burn-in samples; the NMC= option
specifies to use 50,000 samples after burn-in. The CLASS option in the OUTPUT statement creates a variable that
contains the estimated group membership for each observation.

proc fmm data=ncsids seed=302053336;
model SIDS = / dist=poisson k=2 offset=Logrisk;
bayes nbi=5000 nmc=50000;
output out=Bayesian class=Bayes;

run;

PROC FMM uses a Metropolis-Hastings method to produce a posterior sample. By default, PROC FMM uses a high-
variance normal prior distribution for the log of the component means and an uninformative Dirichlet prior for the mixing
probabilities. Output 9 displays the estimation results.

PROC FMM does not report the inverse linked estimates (incidence rate estimates) when you use Bayesian methods
to fit a model. You can exponentiate the posterior means from the Bayesian analysis to recover the component-specific
incidence rates. For this model, the inverse linked estimates are ¢=%4133 = 0.00164 and ¢~>-%270 = 0.00360. The
posterior mean for the mixing probability is 0.7403.

Output 9 Bayesian Analysis for Two-Component Finite Mixture Model of SIDS Data

The FMM Procedure
Posterior Summaries
Standard Percentiles
Component Parameter N Mean Deviation 50%
1 Intercept 50000 -6.4138 0.0796 -6.4057
2 Intercept 50000 -5.6282 0.1444 -5.6331
1 Probability 50000 0.7393 0.1081 0.7546
Posterior Intervals
Component Parameter Alpha Equal-Tail Interval HPD Interval
1 Intercept 0.050 -6.5910 -6.2828 -6.5704 -6.2702
2 Intercept 0.050 -5.9085 -5.3450 -5.8950 -5.3337
1 Probability 0.050 0.4857 0.9041 0.5230 0.9207

11
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When you use the Bayesian techniques, you must check that the Markov chain that generates the posterior sample
has converged. This means that it really is a representative sample from the joint posterior distribution of the model
parameters. If it has converged, you can be comfortable about using the posterior sample for inference. If it has not
converged, any conclusions you draw will be suspect.

PROC FMM provides the same convergence diagnostics and plots as other SAS procedures that provide Bayesian
analysis. Output 10 displays the Markov Chain diagnostics plots for the first component. The trace plot at the top
shows a relatively constant mean and variance for the posterior distribution, and the plot traverses the posterior space
fairly rapidly. These properties indicate that the chain has good mixing and is likely to be stationary, and that the
burn-in sample is sufficiently large. The autocorrelation plot indicates that highly separated MCMC samples have low
correlation. Finally, the density plot shows a smooth and unimodal density function, indicating that the samples provide
a good representation of the posterior distribution.

Output 10 MCMC Diagnostic Plots

Markov Chain Diagnostics for Intercept, Component 1
With 95% Equal-Tail Limits

10000 20000 30000 40000 50000

Iteration
Autocorrelation Density
2.5% 97.5%

Lag Value

The Bayesian estimates of the component means and the mixing probability are different from those obtained by using
the maximum likelihood method, so the estimates of the posterior probabilities, and thus some of the classifications,
differ. Output 11 shows the counties where the classifications produced by the two estimation methods differ.

Output 11 Frequentist versus Bayesian Classification

County SIDS Births Rate ML Bayes
Warren 4 968 .004132231 Normal High
Wilson 11 3702 .002971367 Normal High
Alamance 13 4672 .002782534 Normal High
Wayne 18 6638 .002711660 Normal High

Figure 10 displays a scatter plot of the ordered incidence rates, and Figure 11 displays a scatter plot of the incidence
rates by the number of births. The markers for the counties are coded according to the Bayesian classifications, and the
four counties whose Bayesian classifications differ from the frequentist classifications are labeled. The classifications
of Alamance and Wayne counties as high-risk are notable; they reflect the Bayesian model’s slightly smaller estimate
of the high-risk group’s incidence rate.

12



SAS Global Forum 2012 Statistics and Data Analysis

Figure 10 Ordered Incidence Rates Figure 11 Incidence Rates by Births
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Example 3: Complex Error Distributions

Linear regression is commonly used to model a variety of data. But when certain assumptions are not met, linear
regression isn’t appropriate. For example, if important predictors for the response are unobserved, the parameter
estimates will be inconsistent. If the residuals for the model do not follow the same distribution, the standard errors of
the parameter estimates will be biased. This example demonstrates how finite mixture models can be used to model
such data.

Stukel (2008) provides a data set from an unpublished study in which the researchers examined the relationship be-
tween the concentration of beta-carotene in blood plasma with certain behavioral and physical predictors. In a previous
study, Nierenberg et al. (1989) found positive associations with female sex, body mass index, dietary beta-carotene,
and frequent vitamin supplement use; there was a negative association with current smoker status; and there were
no significant interactions. This example analyzes the Stukel (2008) data to see if they corroborate the findings in
Nierenberg et al. (1989).

The first step in the analysis is to examine the data graphically. The following DATA step creates the data set
Plasma, which contains 315 observations on variables that record concentrations of beta-carotene in blood plasma
(Betaplasma), Sex, smoker status (Smokstat), dietary beta-carotene consumption (Betadiet), body mass index (BMI),
and vitamin supplement use (Vituse). The SGPLOT procedure then produces a histogram and kernel density estimate
for the variable Betaplasma.

data plasma;
input betaplasma sex smokstat bmi betadiet vituse;

datalines;
200 2 2 21.4838 1945 1
124 2 1 23.87631 2653 1
328 2 2 20.0108 6321 2
153 2 2 25.14062 1061 3
92 2 1 20.98504 2863 1
148 2 2 27.52136 1729 3
258 2 1 22.01154 5371 2
. more lines ...
300 2 1 24.26126 6943 1
121 2 2 23.45255 741 1
233 2 1 26.50808 1242 1
run;
title 'Concentration of Beta-Carotene';

proc sgplot data=plasma;
histogram betaplasma / nbins=20 binstart=0;
density betaplasma / type=kernel;

run;

Figure 12 displays the histogram and kernel density estimate for the concentration of beta-carotene in the study sub-
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jects. You can see a substantial peak at the lower end, a long right tail, and the suggestion of a bump in the middle
range.

Figure 12 Beta-Carotene Data
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You might fit a linear regression model to these data provided that you have all of the relevant predictors and the
variations around the mean all come from the same distribution. You would typically use a procedure such as PROC
GLM, but you can also fit a linear regression with PROC FMM by specifying a single-component model with the default
normal distribution.

The following SAS statements perform the analysis. The OUTPUT statement saves the residuals and the predictions
to a data set named Modelone.

proc fmm data=plasma;
class sex smokstat vituse;
model betaplasma = sex smokstat bmi betadiet vituse;
output out = modelone residual pred;

run;

Output 12 displays the fit statistics for this single-component model. The Pearson statistic is 315.0 (which is equal to
the sample size), so this is not cause for concern given the small number of model parameters.

Output 12 Fit Statistics for Single-Component Normal Model

The FMM Procedure

Fit Statistics

-2 Log Likelihood 4118.8
AIC (smaller is better) 4136.8
AICC (smaller is better) 4137.4
BIC (smaller is better) 4170.6
Pearson Statistic 315.0
Unscaled Pearson Chi-Square 8800259

Output 13 presents the estimates of the model parameters. The effects of BMI, dietary beta-carotene, current smoker
versus never smoker, and no vitamin use versus frequent vitamin use are all significant. Note that the effect of sex is
not significant, unlike the result in Nierenberg et al. (1989).
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Output 13 Parameter Estimates for Single-Component Normal Model

Parameter Estimates for 'Normal' Model
Vitamin Standard
Effect sex Smoker Use Estimate Error z Value Pr > |z|
Intercept 345.07 54.6453 6.31 <.0001
sex F 29.2155 28.4823 1.03 0.3050
sex M 0 . . .
smokstat Current -68.9126 29.5598 -2.33 0.0197
smokstat Former -11.6442 20.9051 -0.56 0.5775
smokstat Never 0 . . .
bmi -6.9304 1.5881 -4.36 <.0001
betadiet 0.02361 0.006494 3.64 0.0003
vituse No -77.2188 22.6016 -3.42 0.0006
vituse Not often -38.2548 24.1448 -1.58 0.1131
vituse Often 0 .
Variance 27938 2226.18

The next step is to examine the distribution of the model residuals. Any variation that remains after you account for the
effect of the predictors should be normally distributed, without any systematic variation.

You use the UNIVARIATE procedure to test the assumption of normality in the residuals and to produce visual assess-
ments of those residuals. The NORMAL option in the PROC UNIVARIATE, HISTOGRAM, and DENSITY statements
requests the comparison of the residual distribution to a normal distribution.

proc univariate data=modelone normal;
var resid;
histogram resid / normal;
qgplot resid / normal;

run;

The tests for normality presented in Output 14 all reject the null hypothesis of normality. Output 15 includes the
estimated skewness and excess kurtosis for the residual distribution; you would expect both of these measurements to
be close to 0 for a normally distributed variable.

Output 14 Tests for Normality of Residuals

Tests for Normality

Test —--Statistic—-—- P Value

Shapiro-Wilk W 0.721622 Pr < W <0.0001
Kolmogorov-Smirnov D 0.151524 Pr > D <0.0100
Cramer-von Mises W-Sq 2.832909 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 17.36396 Pr > A-Sq <0.0050

Output 15 Moments of Residual Distribution

The UNIVARIATE Procedure
Variable: Resid (Residual)
Moments
N 315 Sum Weights 315
Mean 0.01556016 Sum Observations 4.90145117
Std Deviation 167.410582 Variance 28026.303
Skewness 3.24335754 Kurtosis 15.3187885
Uncorrected SS 8800259.2 Corrected SS 8800259.13
Coeff Variation 1075892.25 Std Error Mean 9.43251771

Figure 13 displays a histogram and normal density for the residuals; the skewness and the poor fit of the matched
normal density are apparent. Figure 14 shows a Q-Q plot for the residual distribution versus a normal distribution. The
plot does not exhibit the straight-line form you would expect to see for a normally distributed quantity.
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Figure 13 Histogram of Residuals Figure 14 Q-Q Plot of Residuals
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PROC SGPLOT produces a scatter plot of the residuals versus the predicted value.
proc sgplot data=modelone;

scatter x=pred y=resid / markerattrs=(symbol=CircleFilled size=6px);
refline 0;

run;

Figure 15 displays a plot of the residuals versus the predicted values. The variance of the residuals increases with the
predicted value, thus violating another assumption.

Figure 15 Scatter Plot of Residuals by Prediction for Single-Component Model
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Both the tests and the plots lead to the same conclusion: something is missing from the model. When this happens,
either you need additional data or you need an alternative modeling technique that can accommodate the violations of
the classical linear regression assumptions. A finite mixture model provides such an alternative (Schlattmann 2009).

A multiple-component finite mixture model can be sensitive to different scales in the data. The MEANS procedure
enables you to inspect the range and variance of the continuous response Betaplasma and the continuous predictors
Betadiet and Bmi. The MIN, MAX, and VAR options in the PROC MEANS statement request that the minimum values,
maximum values, and the variances, respectively, of the variables be reported.

proc means data=plasma min max var;
var betaplasma betadiet bmi;
run;

Output 16 presents the minimum, maximum, and estimated variance of each continuous variable. There are notable

differences in the ranges and scales. It is a good idea to put these variables on a common scale before you fit any
mixture models. This reduces the chance of numerical instability during the model fitting.
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Output 16 Range and Scale Information for Continuous Variables

The MEANS Procedure

Variable Label Minimum Maximum Variance
betaplasma Plasma beta-carotene (ng/mL) 0 1415.00 33489.29
betadiet Beta-carotene consumed in daily diet (mcg) 214.0000000 9642.00 2172341.55
bmi Body Mass Index 16.3311400 50.4033300 36.1627884

You can use the STDIZE procedure to center and scale these variables. PROC STDIZE generates new variables
named with a “n” prefix for each of the standardized variables.

proc stdize data=plasma out=plasma sprefix=n oprefix=o;
var betaplasma betadiet bmi;
run;

Now use these rescaled variables and the categorical predictors to fit a finite mixture model as shown in the follow-
ing SAS statements. Use the KMAX= and KRESTART options in the MODEL statement to fit a range of mixture
models. The KRESTART option prevents PROC FMM from using the results of previous models as starting values
for subsequent models. The GCONV=0 setting enables the optimization to continue even when the improvement is
small between iterations. The OUTPUT statement stores the predicted values in the variable Mixpred, the residuals in
Mixresid, and the predicted component memberships in Mixcomp.

proc fmm data=plasma gconv=0;
class sex smokstat vituse;
model nbetaplasma = sex smokstat nbmi nbetadiet vituse / kmax=10 krestart;
output out=modeltwo pred=mixpred resid=mixresid class=mixcomp;
ods output ParameterEstimates=parms;
run;

Output 17 shows the fit statistics for mixture models with up to six components. Notice that models with more than six
components failed to converge. Most of the fit criteria favor the five-component model.

Output 17 Comparison of Fit Statistics for Mixture Models

The FMM Procedure

Component Evaluation for Mixture Models

—————————— Number of --———-———-

Model —-Components-— —-Parameters- Max
D Total Eff. Total Eff. -2 Log L AIC AICC BIC Pearson Gradient
1 1 1 9 9 836.83 854.83 855.42 888.61 315.00 2.962E-6
2 2 2 19 19 547.33 585.33 587.91 656.63 281.85 0.00020
3 3 3 29 29 455.95 513.95 520.06 622.78 305.80 0.00067
4 4 4 39 39 428.40 506.40 517.75 652.75 288.37 0.00046
5 5 5 49 49 255.66 353.66 372.15 537.54 339.91 2.924
6 6 6 59 59 322.26 440.26 468.02 661.66 312.11 0.00027
7 7 7 69 68 6639
8 8 8 79 78 0.792
9 9 9 89 89 112.124
10 10 10 99 99 317181

The model with 5 components (ID=5) was selected as 'best' based on the -2 log-likelihood function. Models that failed
to converge are indicated with blank values for the likelihood-based criteria.

Output 18 displays the parameter estimates for the five-component model. In contrast to the linear regression, female
sex now has a positive effect on plasma beta-carotene in Components 1, 3, and 5. Females are not significant in
Components 2 and 4. The estimated variances for the components are also different, which indicates that the residuals
are not all from the same distribution.

The mixture component weights range from 0.0285 for Component 3 to 0.5487 for Component 5. The mixing weight
for component 5 is not estimated; it is just the complement of the total weight for Components 1 through 4.
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Output 18 Parameter Estimates for Five-Component Model

Parameter Estimates for 'Normal' Model
Vitamin Standard
Component Effect sex Smoker Use Estimate Error z Value Pr > |z]|
1 Intercept 1.5179 0.002790 544.12 <.0001
1 sex F -0.3031 0.002437 -124.37 <.0001
1 sex M 0 . .
1 smokstat Current -0.4513 0.002292 -196.95 <.0001
1 smokstat Former —-0.9485 0.003093 -306.64 <.0001
1 smokstat Never 0 . . .
1 nbmi -0.4736 0.000718 -660.05 <.0001
1 nbetadiet 0.1823 0.000763 239.09 <.0001
1 vituse No -0.8551 0.002567 -333.17 <.0001
1 vituse Not often -0.3649 0.002237 -163.12 <.0001
1 vituse Often 0 .
2 Intercept 0.4519 0.1399 3.23 0.0012
2 sex F 0.1692 0.1330 1.27 0.2033
2 sex M 0 .
2 smokstat Current -0.5869 0.2202 -2.67 0.0077
2 smokstat Former -0.2013 0.1066 -1.89 0.0588
2 smokstat Never 0 .
2 nbmi -0.1868 0.04713 -3.96 <.0001
2 nbetadiet 0.07041 0.04607 1.53 0.1264
2 vituse No -0.5107 0.1326 -3.85 0.0001
2 vituse Not often -0.2991 0.1203 -2.49 0.0129
2 vituse Often 0 . . .
3 Intercept -0.8572 0.000303 -2833.5 <.0001
3 sex F 1.1482 0.000274 4194.40 <.0001
3 sex M 0 .
3 smokstat Current -0.9917 0.000244 -4062.8 <.0001
3 smokstat Former 2.1842 0.000157 13915.4 <.0001
3 smokstat Never 0 .
3 nbmi -1.1448 0.000096 -11972 <.0001
3 nbetadiet 0.4596 0.000068 6776.27 <.0001
3 vituse No -0.4640 0.000178 -2605.6 <.0001
3 vituse Not often 1.5978 0.000176 9080.43 <.0001
3 vituse Often 0 . .
4 Intercept 0.4962 1.6237 0.31 0.7599
4 sex F 2.3190 1.3478 1.72 0.0853
4 sex M 0 . .
4 smokstat Current -0.2032 1.5922 -0.13 0.8984
4 smokstat Former 1.0391 0.7577 1.37 0.1703
4 smokstat Never 0 . . .
4 nbmi -1.0182 0.4843 -2.10 0.0355
4 nbetadiet 1.3341 0.3717 3.59 0.0003
4 vituse No -2.1423 0.7243 -2.96 0.0031
4 vituse Not often -2.3062 0.8492 -2.72 0.0066
4 vituse Often 0 .
5 Intercept -0.5438 0.06727 -8.08 <.0001
5 sex F 0.1411 0.05953 2.37 0.0178
5 sex M 0 .
5 smokstat Current -0.1427 0.06719 -2.12 0.0337
5 smokstat Former -0.02788 0.04408 -0.63 0.5271
5 smokstat Never 0 . . .
5 nbmi -0.07091 0.02154 -3.29 0.0010
5 nbetadiet 0.003761 0.02206 0.17 0.8646
5 vituse No -0.03907 0.04943 -0.79 0.4293
5 vituse Not often 0.05594 0.05286 1.06 0.2900
5 vituse Often 0
1 Variance 8.252E-6 5.286E-6
2 Variance 0.1343 0.03049
3 Variance 3.16E-8 0
4 Variance 0.4318 0.2127
5 Variance 0.04628 0.007075
Parameter Estimates for Mixing Probabilities
—-Linked Scale-—
Standard
Component Effect Estimate Error z Value Pr > |z]| Probability
1 Intercept -2.2647 0.2951 -7.67 <.0001 0.0570
2 Intercept -0.5196 0.2341 -2.22 0.0264 0.3263
3 Intercept -2.9563 0.3504 -8.44 <.0001 0.0285
4 Intercept -2.6310 0.3696 -7.12 <.0001 0.0395

Figure 16 presents a scatter plot of the residual values versus the predicted values for the mixture model. This scatter
plot resembles the corresponding plot for the linear model, but the different symbols identify the estimated component
membership for each observation.
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Figure 16 Scatter Plot of Residuals by Prediction for Five-Component Model
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The motivation for using a mixture model on these data was the poor behavior of the residuals from the linear regression
model. But the residuals from the finite mixture model look similar to the residuals from the original linear regression
(Figure 15), so how can you assess how well the mixture model has accounted for the violations of the linear regression
assumptions?

The finite mixture model results indicate that one or more class variables are missing from the single-component model.
The results also indicate that these five different subpopulations have distinct variances. PROC FMM provided you
with a new variable Mixcomp, which contains the estimated class membership for each observation. It also provided
estimated variances for each component, which are stored in the output data set Parms. Because the model is a
mixture of normal distributions, you can incorporate this information into a new single-component model and use the
residuals from this new model as a diagnostic tool for the finite mixture model. Specifically, if the five-component model
has accounted for the violations of the linear regression assumptions, the residuals from this new single-component
model will be normally distributed.

The first step in this diagnostic process is to generate a new variable Variance that contains the estimated component
variance for each observation. The second step is to generate a new response variable, Rsnbetaplasma, that is equal
to Nbetaplasma divided by the square root of Variance. The third step is to fit a single-component model, regressing
Rsnbetaplasma on Mixcomp and the interaction between Mixcomp and the original covariates Sex, Smokstat, Nbmi,
Nbetadiet, and Vituse. This new single-component model incorporates all of the information from the five-component
model. The final step is to inspect the residuals from this new single-component model to determine whether they are
normally distributed.

The following SAS statements perform the rescaling and fit the model:

data parms;
set parms (where=(Parameter="Variance"));
keep Component Estimate;
rename Component=mixcomp Estimate=Variance;
run;

proc sort data=modeltwo out=modeltwo;
by mixcomp;

run;

proc sort data=parms out=parms;
by mixcomp;

run;

data rescale;

merge modeltwo parms;

by mixcomp;

rsnbetaplasma = nbetaplasma/sqrt (Variance);
run;

proc fmm data=rescale maxiter=1000 gconv=0;
class sex smokstat vituse mixcomp;
model rsnbetaplasma = mixcomp
mixcomp*sex mixcomp*smokstat mixcomp*nbmi
mixcompxnbetadiet mixcomp*vituse;
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output out=modelthree pred residual;
run;

Now use PROC UNIVARIATE to generate tests of normality, a density estimate, and a Q-Q plot for these filtered
residuals. Because you have recast this as a linear regression, these are appropriate tests.

proc univariate data=modelthree normal;
var resid;
histogram resid / normal;
qggplot resid / normal;

run;

Output 19 shows the tests of normality; all fail to reject the null hypothesis of normality for the residuals.

Output 19 Tests for Normality of Residuals

Tests for Normality

Test —-Statistic——- P Value

Shapiro-Wilk W 0.993094 Pr < W 0.1562
Kolmogorov-Smirnov D 0.034022 Pr > D >0.1500
Cramer-von Mises W-Sq 0.076264 Pr > W-Sq 0.2360
Anderson-Darling A-Sq 0.523911 Pr > A-Sq 0.1894

Output 20 shows that the skewness and kurtosis of the residuals are close to 0.

Output 20 Moments of Residual Distribution

The UNIVARIATE Procedure
Variable: Resid (Residual)
Moments
N 315 Sum Weights 315
Mean 9.91864E-9 Sum Observations 3.12437E-6
Std Deviation 0.91426436 Variance 0.83587932
Skewness -0.059249 Kurtosis -0.5484464
Uncorrected SS 262.466107 Corrected SS 262.466107
Coeff Variation 9217641500 Std Error Mean 0.05151296

Figure 17 shows the normal density estimate and histogram for the residuals. The distribution is symmetric, with a
generally normal shape. Figure 18 shows that the Q-Q plot for the residuals has a straight line shape, as expected for
a normally distributed variable.

Figure 17 Histogram of Residuals Figure 18 Q-Q Plot of Residuals
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Figure 19 shows a scatter plot of the residuals versus the predicted value. Because the response variable has been
rescaled, the predicted value now has a large cluster of values that are close to 0 and just a few observations that are
some distance from 0. Therefore, the scale of the predicted value distorts the scatter plot of the residuals, making it

20



SAS Global Forum 2012 Statistics and Data Analysis

impossible to visually detect any patterns. To remedy this problem, you can use PROC RANK to generate a variable to
contain the rank of the prediction and then plot the residuals versus the rank of the prediction as in Figure 20. There
are no obvious patterns in the residuals that indicate heteroscedasticity.

proc sgplot data=modelthree;
scatter x=pred y=resid / markerattrs=(symbol=CircleFilled size=6px);
refline O;

run;

proc rank data=modelthree out=modelthree;
var pred;
ranks predrank;

run;

proc sgplot data=modelthree;
scatter x=predrank y=resid / markerattrs=(symbol=CircleFilled size=6px);
refline O;

run;
Figure 19 Residuals by Prediction Figure 20 Residuals by Rank of Prediction
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These results and plots indicate that the five-component mixture model adequately accounts for the violations of the
linear regression assumptions. When the assumptions of the linear model do not seem justified, you can use a finite
mixture model as an alternative technique.

CONCLUSION

A single response distribution is often all you need to describe your data. However, sometimes you encounter data
that challenge the underlying assumptions of a single-component model. When this happens, a finite mixture model
and PROC FMM provide an alternative modeling technique that can accommodate a wide variety of distributional
assumptions.
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