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Abstract 

 

We propose simulating large sets of statistical power calculations and selecting from a 

long list of study designs those with appropriate power.   Typical commercial programs 

fill in all but one parameter and solve for the remaining parameter.   We avoid solving 

equations and thereby obtain power for atypical designs.   First, for simplicity, we 

compute the power for the test comparing two proportions without assuming either 

approximate normality or a common variance.   Then, we extend the log-rank test power 

calculation to account for various patterns of on-study censoring, study duration, and 

patient recruitment period.   We generate a new approximation for the censoring 

adjustment.   Insodoing, we set out a easy way for others to modify our program for other 

related power calculations. 

 

 

1.  Background 

 

Many standard power calculation formulas simplify calculations, for example, the two-

sample test comparing proportions that assumes a common variance and approximate 

normality.  This paper formalizes a simulation approach for obtaining more exact results.   

For the log-rank test it facilitates calculations that account for various censoring patterns, 

study durations, and enrollment periods.   Many statisticians simulate power as we do, so 

that our method is not new.   However, elaborating a simple but general programming 

structure for such calculations may facilitate the calculation of power in atypical settings. 

  

Older textbooks on the analysis of variance [1] contain graphs of power functions.   One 

interpolates within a region of the graph to obtain an approximate power.   Conceptually 

our approach is the same.   We simulate a large dataset of power calculations or power 

profiles and select a subset to close in on the desired parameter values.   Rather than 

interpolate, we rerun the program with a finer grid of values within the region of interest 

as if magnifying this region of the graph. 

 

Unlike a graph, the number of parameters can be large; as in the setting of survival 

analysis; two hazard rates, two sample sizes, types I and II error, and length of the patient 

recruitment period.  We require knowing the explicit power formula.  The SAS® 

examples are nested do-loops.  This facilitates adaptation of our program logic into 
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another programming language.   The datasets of interest can be sorted and displayed in a 

user-chosen format such as a graph. 

 

Our approach complements commercial packages by narrowing vague requests. For 

example, consider calculating power for a case-control study where the requested odds 

ratio is 2.0.  By generating a large set of possible designs with pairs of proportions and 

sample sizes associated with odds ratios near 2.0, investigators can narrow the choices.   

The large set indicates the robustness of the narrower design. 

 

The paper has five sections.  Section 2 treats the problem of the difference between 

proportions to show the approach in a simple familiar setting.   Section 3 discusses life 

table power calculations and addresses adjustment for on-study censoring. For this 

problem we consider approximations that either minimize or add flexibility to parametric 

assumptions.  Section 4 provides some rationale for the approximations.   Section 5 is 

discussion.    

 

 

2.  Comparing Means and Proportions 

 

2.1  Basic Framework and Notation 

 

For normally distributed data the null hypothesis of no difference (H0) opposes the one-

sided alternative hypothesis (HA) of a pre-specified difference d > 0.  Let  denote the 

random variable ‘difference’.  Under H0 let P(   c) = .  Under HA let P(  c) = .   

The critical value, c, lies between 0 and d.   For the difference, , assume the variance is 


2
 under both H0 and HA.  This implies that d - c =  z and c =  z and hence the 

power equation is d =  (z + z). 

 

For binomial data let the two groups have probabilities of success, p under H0 and p+d 

under HA.  For one observation per group the difference between proportions, , has 

variance 0
2
 = 2p(1-p) under H0 and variance A

2
 = p(1-p) + (p+d)(1 - p -d) under HA.  

(The chi-square-test formulation differs in that p + d/2 replaces p under H0).  

 

 The power equation is then: 

 

d = A z + 0 z.   

 

With unequal sample sizes, n and m;  

 

0
2
  =  p(1-p)/n + p(1-p)/m    and    A

2
  =  p(1-p)/n + (p+d)(1-p-d)/m, 

 

A program that solves for d, given A
2
, must solve a quadratic equation.  To avoid any 

type of non-linear equation we always solve for z.   To illustrate, we fix all parameters 

except p, d, and z: 
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Data powerprofiles; 

 
Z_alpha = 1.96;   n = 200;  m = 400;  *two-sided test at 5%; 

Do ip = 1 to 10;   

    p = 0.10 + 0.05*ip; 

    Do id = 1 to 5; 

        d = 0.04 + 0.04*id; 

        var0 = p*(1-p)/n + p*(1-p)/m; 

        varA = p*(1-p)/n + (p+d)*(1-p-d)/m; 

 

        Z_beta = ( d – z_alpha*sqrt(var0) )/ sqrt(varA); 

        Output; 

    End;  

End 

 

 

Generalizing, with loops for all parameters except Z-beta, the program would then 

produce a large dataset.   In SAS, to select a subset with Z_beta ~ 1.645 (for example), 

we code as follows: 

 

Data  powerprofile_1.645;   set  powerprofiles;  if  z_beta > 1.6 and z_beta < 1.7;  

 

Poor choice for the ranges for the loops might result in an empty dataset, easily resolved 

by widening these ranges.   Otherwise, the empty set connotes an infeasible design. 

 

2.2 Binomial Data:  More Precise Calculations     

 

Fisher's exact test is often used when the normal approximation to the binomial 

distribution is a poor fit.   Thus, the exact binomial solution that follows merely illustrates 

some general issues.   When  is a discrete random variable then the equation, P(  c) = 

,  may not hold without a randomized critical region [2].  Our approach only yields 

exact binomial probabilities close to α.  When generating the power equation from the 

equations, d - c = A z and c = 0 z, proves awkward, then we also simulate a range of 

values of c. 

 

The calculation of P(  c) dictates the loop structure.   Fixing the parameter values for 

the outer loops, then, given d, we explore values of the critical value, c, between 0 and d.     

 
m =  6;  n = 7;  p  = 0.2;  d = 0.6; 

Do ic = 1 to 9;   

    c = ic*d/10; 

    calculate one-sided type I error 

    calculate power 

    Output; 

End 
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Discrete variables introduce issues.  With two independent binomial variables, x and y, 

the difference could be defined as an integer  = x – y.   The formal task is to find c for 

which the type I error is P(   c) =  under H0 and the power P(   c) = 1 -  under 

HA.   By choosing a non-integer critical value, c, we need not distinguish between the 

potentially inconsistent equations, P(  > c) =  and P(    c) = .    We choose to study 

the difference-between-proportions case by defining  = y/n – x/m.  In this case, if the 

product, mnc, is non-integer, we can safely set P(   c) = P( my – nx    mnc ). 

 

To find the type I error given c, let the difference between proportions, , satisfy  = y/n 

– x/m, where y and x are binomial distributions; specifically, under H0, y is Bin(p, n) and 

x is Bin(p, m).     Thus, 

 

  1 -  P(   c)  =   P( y/n  - x/m  < c )  = Ex (  P(y  <  nc  +  nx/m  ) ) 

 

 where Ex is the expected value over the range of x from 0 to m. 

 

Given x = k,   P(y  <  nc  + nk/m  ) = P(  y    G(k)) ,  

 

where G(k) = Greatest integer in (nc  + nk/m) ).  

 

Thus, 

 

   1 –   =  P( < c)  =    P( y  G(k) | n, p)  P(x =k | m p)  where k = 0, 1, … , m. 

 

Finally, consider the type II error = 1 - power.  Under HA, y is Binomial( p+d, n).  Thus, 

the complement of the power equals 

  

P( < c)  =    P( y  G(k) | n, p + d )  P(x =k | m, p)   where k = 0, 1, … , m.  

 

Appendix A provides a SAS program and results. 

 

Asymmetric distributions and two-sided hypotheses complicate matters.  Thus, we 

consider only one-sided tests and simple alternatives, consistent with a 'simple vs. simple' 

hypothesis test that compares results assuming that the distribution of  is symmetric and 

either centered at 0 under H0 or at d > 0 under HA.  To calculate the power for a two-

sided test we typically need to specify the value for   under HA as either d or -d.  A two-

sided test posits choices of   = d and of   = -d.  Without symmetry an extra logical 

principle may be needed to decide which choice determines the power. 

 

 

3. Life Table Power Calculation With Censoring During the Study Period 

 

3.1 Background 

 

Statistics and Data AnalysisSAS Global Forum 2012

 
 



 

5 

 

Losses to follow-up during a study can reach levels of 20% or more, as in a 5-year study 

of elderly subjects with non-melanoma skin cancer.  We could either follow fewer 

patients for a longer time or more patients for a shorter time.  Besides the administrative 

censoring that occurs when a study ends, we needed to compare the efficiency and costs 

of these designs in terms of the on-study censoring.  This clinical trial had ‘rolling’ 

enrollment; that is, enrollment of subjects for several years.  Hence, in a 5-year study 

with 2 years of enrollment the first subject to enroll would have up to 5 years of follow-

up and the last subject to enroll would have up to 3 year of follow-up.  

 

For time-to-event models let Y denote an outcome event and C denote a censoring event.  

Assume that C is independent of Y.   Dependence between Y and C or non-random 

censoring calls for sensitivity analyses to model the distribution of the unobserved 

missing data[3, 4]. Our approach makes it easy to add do-loops and explore missing value 

patterns using a few simple explicit discrete, subjectively chosen models for missing data. 

 

This section presents a simplified formula for the probability that an outcome is observed.    

 

 (                     )   ∑  (                                  )

      

 

 

The sum is over all times t where 0 < t    T(i) where T(i) is the maximal time-on-study  

for subject i, as opposed to the study duration, S.   Assume 1 ≤ T(i) ≤ S. Then if the times, 

T(i), are symmetrically distributed about a midpoint, m, then the mean and median time-

on-study is m = (S +1)/2.   For asymmetric distributions, choose m as the mean of median 

time, as appropriate. 

 

For each subject a heuristic approximation is: 

 

P(Outcome Y is observed | T(i) )       

 

  P(Outcome Y occurs before T(i) )*( P( C >  mean time to a Y-event | T(i) ) . 

 

The mean time to a Y-event refers only to subjects who have Y-events while on study, a 

conditional mean excluding all those who finish the study event-free.  Hence, this mean 

time is less than T(i). 

 

Section 4 develops a simple approximation for the entire sample, not just one subject, 

detailing the simplifications in the exact formula.  This facilitates creations of new 

approximations appropriate to more complex situations, such as C dependent on Y. 

 

The approximation is thus a ‘rule of thumb’: 

 

 (         )   (     (   ))  (  
  

 
)           (1) 
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where m is the mean or median time on study, the rate, a, is the annual proportion of 

censored events, and the hazard rate,  , is the hazard rate in an exponential distribution.    

One could replace the exponential distribution with a more realistic distribution. 

 

3.2 Power for the Log-rank Test 

 

We first assume underlying exponential distributions for the power formula[5-7]  for the 

two-sample log-rank test and ignore on-study censoring.   Appendix B contains a fuller 

program. 

 
Data powerprofiles; 

Z_alpha = 0.05; ny = 50; nx = 50; 

 

 do ix = 0 to 50;    lamda_x = 0.005  + 0.001*ix; 

     do iy = 1 to 50;  lamda_y =  lamda_x + 0.001*iy; 

 

  haz_ratio =    lamda_y/lamda_x; *Force lamda_y > lamda_x; 

        

       py =  1 - exp(-lamda_y);          *One year death rates; 

       px =  1 - exp(-lamda_x); 

       differ = py -px; 

 

  *Compute Z_beta; 

  output;  

  end; 

 end; 

 

data slice; 

set powerprofiles; if haz_ratio >1.5 and haz_ratio <2.5; 

proc means n min max; var lamda_x lamda_y px py differ power; 

 

Note that the suffixes ‘y’ and ‘x’ mark the two samples, ‘lamda’ denotes the hazard rate, 

and ‘px’ and ‘py’ denote the one-year death rates assuming ‘year’ is the unit of time.  In 

the last line, the ‘proc means’ statement provides a summary of the profiles in the subset. 

The proportions help those unfamiliar with hazard rates to evaluate the designs. 

 

To compute Z_beta we insert in the innermost loop the additional lines: 

 
dx = nx*px;    * deaths among nx subjects in arm x; 

dy = ny*py;    * deaths among ny subjects in arm y; 

dxy = sqrt( dx*dy/(dx + dy)); 

z_beta = log(haz_ratio)*dxy - z_alpha; 

 power = probnorm(z_beta);    * P( Z < Z_beta); 

power = round( 100*power );  *power as percentage; 
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We add another loop to account for on-study censoring.  Suppose the maximum follow-

up time is one year (T = 1) and we specify P(Censored before time T ) = 20% in the first 

line as ‘p_censor  = 0.2;’. 

 

Now, with changes within in boldface, the innermost loop might become: 

  
Do icensor = 1 to 9; 

  pc_meantime = icensor*P_censor/10; q = 1 – pc_meantime; 

 

  dx = nx*px*q;    * deaths observed among nx subjects in arm x; 

  dy = ny*py*q;    * deaths observed among ny subjects in arm y; 

dxy = sqrt( dx*dy/(dx + dy)); 

z_beta = log(haz_ratio)*dxy - z_alpha; 

 power = probnorm(z_beta);    * P( Z < Z_beta); 

power = round( 100*power );  *power as percentage; 

output; 

end; 

 

This last loop merely takes a robust look at the rule of thumb in approximation (1) by 

varying pc_meantime around 0.5 from 0.1 to 0.9.   Note that the adjustment for censoring 

does not depend on distributional assumptions or on secondary analyses of existing data 

other than setting a value for p_censor. 

 

In this case, variations in on-study censoring matter.  Under the rule of thumb the 

proportion censored before the mean time to an event should be 10% = p_censor*0.5 = 

20%*0.5.  The program in Appendix B slices the large dataset to find N = 24 power 

profiles with 90% power and differences between proportions of 8%.   The values of the 

proportions px and py are close to zero.   The program in Appendix B that produces the 

table of means below shows that we can only allow about a 5% rate of events censored 

on-study, not the rule-of-thumb 10% rate.    
 

Output From the SAS MEANS Procedure (Proc Means) 
 

Variable        N         Minimum         Maximum            Mean 

----------------------------------------------------------------- 

haz_ratio      24       2.6400000       2.8400000       2.7462500 

pc_meantime    24       0.0200000       0.1000000       0.0491667 

px             24       0.0478189       0.0535149       0.0503134 

py             24       0.1297720       0.1349777       0.1320518 

differ         24       0.0800000       0.0800000       0.0800000 

power          24      90.0000000      90.0000000      90.0000000 

----------------------------------------------------------------- 

 

The rule of thumb does better with larger sample sizes and proportions px and py further 

away from zero; in other words, the mean of the variable pc_meantime is much closer to 

10%.    
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3.3  Varying the Length of the Study and of the Recruitment Period 

 

In a proposed 5-year study of the incidence of non-melanoma skin cancer in a high-risk 

population, we considered varying both the length of the study and the length of the 

recruitment period.    For example, consider uniform rates of recruitment for two years 

(Rtime) and follow up of all patients until the study ends at S = 5 years.  The first patient 

entered would then have up to S years of follow-up and the last patient entered would 

have S – Rtime years of follow-up.    On average patients would then have up to S – 

(Rtime/2) years of follow-up.   For the proposed study with S = 5 and Rtime = 2, this 

average was 4. 

 

Varying S and Rtime within practical limits indicates which time-to-event designs with 

90% power might minimize cost.   We chose the limits 4  S  6 and 1  Rtime  3.    We 

assumed an underlying exponential distribution for the incidence of non-melanoma skin 

and a cumulative incidence of 30% at 5 years.  

 

This adds two loops to the example of a program for survival analysis power in section 

3.5, an S-loop and an Rtime-loop.  With average follow-up time, avefup =  S – Rtime/2, 

the major change in the SAS code is: 

 
py =  1 - exp(-lamda_y*avefup); *rates at mean follow-up time; 

px =  1 - exp(-lamda_x*avefup); 

 

For the planned study expected on-study 5-year losses to follow-up were about 10%.   

We needed to enroll a total of about 900 patients to obtain 800 evaluable patients.  For a 

6-year study we needed to enroll about 700 patients to obtain about 600 evaluable 

patients.  We chose Rtime = 2 because the power was insensitive to this parameter.    

Data from a previous study indicated that we could enroll about 50 patients per year at a 

typical site and 100 patients in two years.    Thus, we compared the costs of a 6-year 7-

site study to a 5-year 9-site study.  

 

 

4. Rationale for approximations 
 

4.1 Probability of observing an event 

 

The number of observed events (as opposed to the number of subjects enrolled) drives the 

power calculation for the log-rank test. 

 

Let Y denote the outcome event and C denote the censoring event.  Assume that C is 

independent of Y.  Let ‘E’ denote ‘expected value’.  Then, 

 

 (               )     (  (                       )). 
 

With rolling enrollment, each subject has a maximum follow-up period or a time-on-

study, T(i).   Hence, we fix the subject and suppress the index ‘i’ for now.  Then, 
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 (         ( ) |  ( ))     (           |  ). 
 

 By independence, for each subject 

 

 (          |  )    ∫  (   )  ( )   
 

 
 =  ∫ (    ( )

 

 
)  ( )   

 

 

 where   ( ) is the probability density function of a Y-event at time t 

 

 and   ( ) is the cumulative probability of a censoring event on or before time t. 

 

 

Let   ( )   (    )    ∫   ( )
 

 
    and define   (  | )  

  ( )

  ( )
  

 

Thus, 

 

 (          | )      ( ) (       | (  ( ) )  

 

 

where   | (  ( ) ) is the conditional expectation of   ( ) over the distribution of Y-

event times during the  interval, [0,T], with density function,   (  | ).  Let  ( ) be the 

mean time to a Y-event for this density function on the interval, [0, T].   Note that 

 ( )         If Y-events are uniform on [0, T] then  ( )         If exponential with 

hazard rate,  , then  ( )      because the density function is a strictly decreasing 

function. 

 

Assume   | (  ( ) )          (   | ( ) )   =    ( ( ))  

 

In other words,   (          | )  
 

   (                        | ) *  (                             ( ) | ) . 
 

The approximation is exact if   ( ) is linear in t on the interval, [0, T].   

 

4.2  Convenient Assumptions 

 

Assume, for convenience, that Y-events follow an exponential distribution with hazard 

rate,  .   Also, assume that,  ( )      , a conservative assumption with respect to the 

exponential distribution.  Then, 

 

 (          | )  
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   (                        | ) *  (                                | )  
 

 (     (   ))  (  
  

 
) 

 

where   is the annual rate of censored events during the study and the term,     , 

approximates the probability of censoring before time T/2.   The choice of the 

exponential assumption merely simplifies the next step, the aggregation over the subjects. 

 

Consider a uniform distribution of rolling enrollment times for which the on-study 

follow-up times, T, range from a minimum of 1 to a maximum of S.   To obtain the 

expected value over the uniform distribution, first integrate the expression above from 1 

to S and then divide by (S-1).  The integral is:  

 

(   ) (  
 (   )

 
)  

        

 
   

 

 
(
         

 
 )  

 

 
 ( 
        

  
 ). 

 
The median and mean value of T is m = (S +1)/2.   By the mean value theorem, the 

integral above is approximately the range of the integral multiplied by the integrand 

evaluated at the midpoint.  

 

(   )(     (  (   )  ))  (  
 (   )

 
). 

 

We computed the exact integral and the approximate integral for values S = 2, 3, and 4, 

for a = 0.12 to 0.20 by 0.02, and for   = 0.2 to 2.0 by 0.2.   The approximation was an 

upper bound for the exact integral and the maximum relative error, defined as (exact – 

approximate)/exact, was 0.063. 

 

 With m = (S +1)/2, we obtain the approximation (1) in section 3.1: 

 

 (         )    (     (   ))  (  
  

 
)    (     (   ))  (  

  

 
). 

 

Here, m is the mean or median time-on-study, the rate, a, is the expected annual 

proportion of censoring events, and the hazard rate,  , is the hazard rate in an exponential 

distribution.   If the minimal and maximal times-on-study were s and S then m = (s +S)/2.   

Thus, the choice of m automatically scales the times. 

 

To illustrate let the annual rate of censored events is 20%, the median time-on-study is 

2.0 years, and 40% of subjects have an event within one year.   Then a = 0.20, m = 2.0, 

and        (obtained by solving:     (  )     ).  Then,  (         )    

(     (         ))  (      
   

 
)                        

 

 

5. Discussion 
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Our approach provides an organized review of many possible choices for designs.   The 

precise power formulas matter less than the review.   However, the user must know the 

formulas rather than rely on a package to use a correct formula. 

  

Fluency with many statistical packages and computer languages might easily provide an 

adequate review.   Resources include NQERY, PASS, PROC POWER in SAS version 9, 

the library of power calculations associated with package/languages such as STATA, 

STATISTICA, S-PLUS, and R, and much online software distributed by industry and 

academia.  Less fluent statisticians might prefer our approach.  Complex settings 

engender more complex formulas not easily found in these packages.  Menu-driven 

software may disappoint the user who fills in all but one parameter in the formula and 

then expects the package to solve for the remaining one.    

 

Tabulation with loop-friendly discrete distributions avoids solving non-linear equations.   

One can also make notes in the program giving the formula in Arabic and Greek letters, 

citing the source, and showing the correspondence between the Greek variable names in a 

formula and the Arabic variable names in the program code.    

 

The detailed steps in approximating the probability of observing an outcome facilitates 

improved approximations.  For example, in discussing on-study censoring, we noted the 

ease of extending from the exponential to another distribution such as the Weibull 

distribution[8].   Also, we can use do-loops to explore simple discrete distributions of 

events when no obvious parametric family of distributions comes to mind.  In contrast to 

an exponential distribution for which 30% of patients have an event in year one, one 

might consider a discrete distribution that had no events at baseline (time 0) and 10% of 

events at 4, 8, and 12 months after baseline.  The loop could cycle through a variety of 

distributions on the time-grid of 0, 4, 8, and 12 months.  

 

Our approach does not help to choose the right formula.  Jung and Hu assert that a better 

formula is needed for survival analysis power calculations for three or more groups.    

Power calculations can incorporate covariate effects[9].   Group sequential designs are far 

more complex[10].   Right-censored events require special methods[11]. 

 

In summary we have presented a simple programming approach to making atypical 

power calculations, applied the approach to adjustment for on-study censoring in survival 

analysis, and put forth an approximation and rule of thumb to simplify the adjustment.  
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APPENDIX A: Exact Binomial Tails 

 

The power calculation for binomial data, x and y, with respective sample sizes, m and n, 

evaluates the random variable,  = y/n – x/m.  The expression, P(   c) = P( my – nx    

mnc ) will have the non-integer advantage provided the product,  mnc, is not an integer.  

Thus, the user selects a range of values for c. The program adds to each value of c a tiny 

increment such as eps = sqrt(2)/10000mn. 

 

Let G(U) denote the greatest integer, I, such that I ≤ U.   In SAS the function, FLOOR(U) 

yields G(U). 

 

Let P(k | n p ) denote P(k successes in n trials | n and P(success) = p), the binomial 

density function. 

  

The SAS system function PROBBNML calculates cumulative binomial probabilities.   

Hence, P(k | n p) is the difference between successive values of  PROBBNML.   

PROBBNML returns a missing value if k < 0 or k > n.  To remedy this one adds code 

such as: 

 
bp = PROBBBNML(p,n,k) ;  if k < 0 then bp = 0;  if k > n then bp = 1; 

 

 One-Sided Type I Error,   

 

Let the difference between proportions, d, satisfy d = y/n – x/m, where y and x are 

binomial distributions; specifically, under H0, y is Bin(p, n) and x is Bin(p, m).  

Since, 1 -  P(  c)  = P( < c), we evaluate   

 

P( < c)  =    P( y/n  - x/m  < c )  = Ex (  P(y  < nc  + nx/m  ) ) 

 

where Ex is the expected value over the range of x from 0 to m. 

 

Let x = k and consider the expression, P(y  < nc  + nk/m  ).   By choice of a non-integer 

value for cmn  

 

P(y  < nc  + nk/m  ) = P(  y  G(k) ) where G(k) is greatest integer in nc + nk/m. 

 

Thus, the complement of the type I error, 1 – , equals 

  

P( < c)  =    P( y  G(k) | n, p)  P(x =k | m p)  where k = 0, 1, … , m. 

  

 Power, 1 -  

 

Under HA, the only difference (in boldface) between this and the preceding calculation is 

that now the binomial variable y is Bin(p+d, n).  Thus, the complement of the power, , 

equals 
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P( < c)  =    P( y  G(k) | n, p + d )  P(x =k | m, p)  where k = 0, 1, … , m.  

 

 
*Variable x is Bin(m,p) and y is Bin(n,p+d) with sample 

sizes m < n; 

   

Data powerprofiles; 

 do m  = 6 to 8; 

 do in = 1 to 5; n = m + in;                       * n > m; 

                 eps = sqrt(2)/10000*n*m; 

 do ip = 0 to 6; p = 0.1 + 0.05*ip; 

 do id = 0 to 4; d = 0.5 + 0.05*id; if p+d >= 1 then d = 0.5; 

  

   do ic = 1 to 9;    c = ic*d/10 + eps;  *non-integer; 

 

  *Calculate one-sided type I error and power; 

     sum_alpha  = 0; sum_power = 0; 

    

     do x = 0 to m; 

        pcumx = probbnml(p,m,x);         

        if x = 0 then px = pcumx; 

        if x > 0 then px = pcumx - probbnml(p,m,x-1); 

 

    k  = floor( c*n + (x*n/m)); 

 

    *NULL;     

       if k >= 0 and k <= n then pcumy = probbnml(p,n,k); 

       if k > n then pcumy = 1; if k < 0 then pcumy = 0; 

 

    sum_alpha = sum_alpha + pcumy*px; 

     *ALTERNATIVE Hypothesis; 

    if k >= 0 and k <= n then pcumy = probbnml(p+d,n,k);   

 if k > n then pcumy = 1; if k < 0 then pcumy = 0; 

 

    sum_power = sum_power + pcumy*px; 

     end; 

 

   alpha = 1 - sum_alpha;   

   power = 1 - sum_power; 

   Output;   

   end;  * ic-loop; 

end;     * id-loop; 

end;     * ip-loop; 

end;     * in-loop; 

end;     * m –loop; 

 

data slice; set powerprofiles; 

if alpha <= 0.054 and alpha >= 0.046 and power > 0.895 and power 

< 0.905; 
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proc print noobs; var m n p d c alpha power; 

 

Output from SAS Print Procedure (Proc Print) 

 
m     n      p       d       c        alpha      power 

 

6     7    0.20    0.60    0.300    0.053096    0.90087 

6     8    0.15    0.55    0.275    0.048711    0.90196 

6     8    0.15    0.60    0.300    0.048251    0.89930 

6    11    0.10    0.50    0.250    0.048574    0.90156 

8    10    0.15    0.55    0.275    0.053133    0.90207 

8    10    0.30    0.60    0.360    0.053464    0.90072 

 

 

APPENDIX B: Program for Power Analysis Accounting for On-Study Censoring 

 

The program below requires the hazard rate lamda_y to exceed the hazard rate lamda_x.  

The ‘proc means’ statements produce the correlation and the table of output in section 

3.2. 

 
*Assume exponential distribution. Time in years; 

*Then  P(die before time t)  =   1 -  exp(-lamda*t);    

*Assume 20% of patients censored on-study - p_censor = 0.2; 

 

Data powerprofiles; 

Z_alpha = 0.05; ny = 50; nx = 50; p_censor = 0.2; 

 

  do ix = 0 to 50;   lamda_x   = 0.005   + 0.001*ix; 

  do iy = 1 to 50;   lamda_y   = lamda_x + 0.01*iy; 

 

   haz_ratio = lamda_y/lamda_x;   *Force lamda_y > lamda_x; 

   py =  1 - exp(-lamda_y);      *One year death rates; 

   px =  1 - exp(-lamda_x); 

   differ = py -px; 

 

  *Compute Z_beta; 

   Do icensor = 1 to 9; 

   pc_meantime = icensor*P_censor/10; q = 1 - pc_meantime; 

 

   dx = nx*px*q;    * deaths among nx subjects in arm x; 

   dy = ny*py*q;    * deaths among ny subjects in arm y; 

     dxy = sqrt( dx*dy/(dx + dy)); 

     z_beta = log(haz_ratio)*dxy - z_alpha; 

     power = probnorm(z_beta);    * P( Z < Z_beta); 

     power = round( 100*power );  *power as percentage; 

     output; 

    end; 

  end; 

  end; 
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data slice; set powerprofiles; 

if haz_ratio > 2 and haz_ratio < 3.2 and power > 89 and power < 91 and 

differ > 0.078 and differ < 0.082; 

 

haz_ratio = 0.01*round(100*haz_ratio); 

differ = 0.01*round(100*differ); 

 

proc sort; by haz_ratio; 

proc means n min max mean; 

    var haz_ratio pc_meantime px py differ power; 
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