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ABSTRACT  

Measures of effect size are recommended to communicate information on the strength of relationships. Such 
information supplements the reject/fail-to-reject decision obtained in statistical hypothesis testing. Because sample 
effect sizes are subject to sampling error, as is any sample statistic, computing confidence intervals for these 
statistics is a useful strategy to represent the magnitude of uncertainty about the corresponding population effect 
sizes. This paper provides a SAS

 
macro that uses bootstrapping to compute confidence intervals for an effect size 

associated with mediation analysis models. Using SAS/IML, the macro produces point and interval estimates of an R-
squared effect size that represents the proportion of variance accounted for by the mediated effect. This paper 
provides the macro programming language, as well as an example of the macro call and output. Finally, the results 
from a simulation study investigating the accuracy and precision of the estimates are presented.  
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INTRODUCTION  

Gone are the days when social and behavioral science researchers should simply report obtained test statistics (e.g.,
2, ,t F  ) and their corresponding p-values. Over the years, interpreting the importance of scientific research based on 

the dichotomous reject or fail-to-reject decision resulting from hypothesis tests has become less popular among some 
disciplines such as psychology and education. Instead, researchers are encouraged to supplement hypothesis test 
results with measures of effect magnitude. In fact, according to Thompson (2007), 24 peer-reviewed journals had 
explicit editorial policies that required authors to include effect sizes or other measures of effect magnitude. A large 
part of this change began over a decade ago when the APA Task Force on Statistical Inference issued their 
statement that researchers should regularly report effect sizes, calculate confidence intervals, and use graphics to 
better communicate the nature of their findings for all primary outcomes (Wilkinson & APA Task Force on Statistical 
Inference, 1999). Unlike p-values that are used to determine if an observed effect or relationship may be accounted 
for by sampling error alone, effect sizes are used to estimate how large the effect or relationship is. Thus, when used 
together, not only can researchers make statements about the statistical significance of their findings, they also can 
report on the practical significance of their findings.  

More recently, the scholarly discussion around effect sizes has evolved to also include recommendations and 
formulas for calculating and reporting confidence intervals around effect sizes (Cumming & Finch, 2001; Fidler & 
Thompson, 2001; Finch & French, 2010; Smithson, 2001; Thompson, 2002). The use of confidence intervals around 
effect sizes is particularly fruitful for meta-analytic research. For example, just as a confidence interval calculated 
around a sample mean can generate plausible values for the population mean, a confidence interval calculated 

around a sample effect size such as Cohen’s d, r, or 
2  can describe plausible values for the population effect size.  

Effect sizes for mediation analysis have been under investigation for many years. A promising approach was 
suggested by Fairchild, MacKinnon, Taborga, and Taylor (2009) that constructs an R

2
 type of statistic to represent 

the proportion of variance accounted for by the mediated effect. 

MEDIATION MODELS 

The simplest mediation models require information on three variables: an independent variable, a dependent 
variable, and a mediating variable (see Figure 1). The role of the mediating variable is to transmit some or all of the 
effect of the independent variable on the dependent variable. Mediation models have gained importance in recent 
years as researchers investigate hypothesized causal mechanisms for observed effects. 

The parameter estimates needed to obtain the estimated mediated effect in this model are obtained from two 
standardized regression equations (MacKinnon & Dwyer, 1993): 

Statistics and Data AnalysisSAS Global Forum 2012

 
 



2 

M̂ aX  

Ŷ bM cX   

 
The coefficient c represents the direct effect of X on Y while controlling for M, and b represents the effect of M on Y 
while controlling for X. Finally, a is the effect of X on M. The total effect of X on Y is the sum of the direct effect (c) 
and the indirect, or mediated, effect (ab). 

 

 
 
 

 

 

 

 

 

Figure 1. Simple mediation model with variables X = independent, Y = dependent, and M = mediating  

EFFECT SIZES SUGGESTED FOR MEDIATION MODELS 

Attempts to develop interpretable indices of effect size for mediation models have a history spanning several 
decades. Sobel (1982) suggested the use of ratios constructed from the indirect effect, direct effect, and total effect. 
For example, the ratio of the indirect effect to the total effect (ab/[ab+c]) is interpreted as the proportion of the total 
effect that is mediated. Hayes (2009) criticized this index because it is not bounded and because it can be negative 
(unlike proportions). Further, as the total effect (ab + c) approaches zero, this index rapidly approaches infinity. 
Taking the absolute values of both ab and c has been suggested as a variation of this index (Alwin & Hauser, 1975), 
but little work has been pursued in this direction (MacKinnon, Fairchild, & Fritz, 2007).A similar index is the ratio of 
the indirect effect to the direct effect (ab/c) but this index has the same limitations as the proportion mediated. 
MacKinnon, Warsi, and Dwyer (1995) investigated the sampling properties of these effect sizes for mediation using 
Monte Carlo methods. Their results suggested that sample sizes of at least 500 were needed for both point estimates 
and estimates of the sampling variability of the proportion mediated, and sample sizes of at least 2,000 were needed 
in some cases for the accurate estimation of the ratio of the indirect to the direct effect. 

In addition to these ratio indices, effect size indices represented by partial r2 values and standardized regression 
slopes have been suggested. These indices, however, are inherently unsatisfactory because they represent only 
components of the mediation model rather than the model as an entirety (Fairchild, MacKinnon, Taborga, & Taylor, 
2009). 

Fairchild et al. (2009) suggested an effect size based on proportions of variance obtained from the multiple 
regression of Y on X and M, and related bivariate correlations: 

 2 2 2 2

med MY Y MX XYR r R r    

 
Using simulation methods, these authors demonstrated that this effect size estimate is an unbiased and consistent 
estimator of the corresponding population parameter. However, methods for the estimation of confidence intervals for 
this effect size were not provided. The SAS macro, CI_MEDIATE, provides a simple method for researchers to obtain 
these intervals. 

MACRO CI_MEDIATE   

The macro CI_MEDIATE uses bootstrap sampling (that is, sampling with replacement from the original, observed set 
of observations) to estimate confidence intervals for the effect size of the mediated effect. Arguments to the macro 
include the name of the SAS data set that contains the sample of observations; the names of the variables in the SAS 
data set corresponding to the independent, dependent, and moderating variables; the number of bootstrap samples 

c 

b a 

M 

X Y 

Statistics and Data AnalysisSAS Global Forum 2012

 
 



3 

to generate; and the level of confidence required for the intervals. The macro output is a simple table that provides 
the sample estimate of the effect size and the endpoints of the requested confidence interval. The macro is written in 
SAS/IML to provide rapid execution. The macro CI_MEDIATE was developed based on an earlier macro (Preacher & 
Hayes, 2004) that provided bootstrap confidence intervals for the indirect effect in mediation models. CI_MEDIATE 
provides confidence intervals for the effect size rather than the indirect effect itself and incorporates a more efficient 
bootstrap algorithm based on the RANK function in PROC IML. 

Users should first execute the macro command set that is provided below or reference the macro from an external file 
with the %include command. This will activate a command called %CI_MEDIATE with syntax:  

%macro CI_MEDIATE(dataset=_last_,y=dv,x=iv,m=mv,nboot=5000, C_I = 95); 

Where “_last_” is the name of an SAS dataset containing the data to be analyzed. If users don’t specify the dataset 
name, this macro will automatically use the data set that was most recently created. “dv” is the name of the 
dependent variable in the dataset, “iv” is the name of the independent variable, and “mv” is the name of mediator. 
This macro is set up to run 5000 bootstrap samples as a default but users can specify the number of bootstrap 
samples by changing the number that follows the “nboot=” option. If the specified number of bootstrap samples is 
less than 1000, the macro will increase it to 1000. The default confidence interval is set up at 95%. In order to change 
the desired confidence interval, users will change the number that follows the “C_I=” option. This number can be any 
value between 1 and 99 to provide levels of confidence from 1% to 99%. If the input number is greater than 99 or 
smaller than 1, the macro will set up the level of confidence for the confidence interval to be 95%. 

The macro will delete all cases from the analysis that are missing any of the three variables, where missing is defined 
as the default SAS missing value for numeric variables (“.”). The macro also checks the correlation matrix of the 
independent, dependent, and mediating variables. If this matrix is singular, the macro will exit and provide users a 
message informing them about the singular matrix problem.  

The SAS code for the macro is provided as the following. 

%macro CI_MEDIATE(dataset=_last_,y=dv,x=iv,m=mv,nboot=5000, C_I = 95); 

Title " "; 

Proc iml; 

 

/* Read SAS dataset into the matrix DATA */ 

use &dataset where (&y ^= . & &x ^= . & &m ^= .);    

read all var {&y &x &m} into data;  

 

/* Compute the sample size */ 

n=nrow(data;  

 

/* Initialize vector BOOT_RES to hold bootstrap values */ 

btn = &nboot; 

if btn < 1000 then btn = 1000; /* minimum number of bootstrap samples */ 

boot_res=j(btn,1,0);  

 

/* Initialize matrix BOOT_DATA to hold bootstrap sample */ 

boot_data = data; 

 

/* Initialize indicator of singular correlation matrix */ 

sample_rii_singular = 0;  

 

/* Begin loop for bootstrap sampling */ 

do btni = 1 to btn; 

 if (btni > 1) then do; 

   do ni = 1 to n; 

    v = int(uniform(0)*n)+1; 

    boot_data[ni,1:3]=data[v,1:3]; 

   end; 

 end; 

 

/* Reset the effect size for each loop*/ 

 effect_size = 0;  

 

 /* Compute sample correlation matrix */ 

 xt=boot_data-j(n,1)*boot_data[:,]; 

cv=(xt`*xt)/(n-1); 
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 sd=sqrt(diag(cv)); 

 detsd=det(sd); 

 

 /* If all variances are greater than zero proceed with calculation */ 

 if detsd ^= 0 then do; 

   r=inv(sd)*cv*inv(sd); 

   rii = r[2:3,2:3];  

   ryi = r[2:3,1];  

   detrii = det(rii);  

 

   /* If R matrix is non-singular, compute effect size */ 

   if detrii ^= 0 then do; 

     coefi = inv(rii)*ryi;  

     Rsquare = coefi`*ryi;  

     rmy = r[3,1]; 

     rxy = r[2,1]; 

     effect_size = rmy##2 - rsquare + rxy##2;  

 

     /* Store effect size in BOOT_RES */ 

     boot_res[btni,1] = effect_size;  

   end; 

 

   /* If bootstrap R matrix is singular, draw another sample */ 

   else if btni > 1 then btni = btni - 1;  

 

   /* If observed R matrix is singular, exit */ 

else do;  

btni = btn;  

sample_rii_singular = 1;  

end; 

  end; 

 else if btni > 1 then btni = btni - 1; 

 

/* End loop for bootstrap sampling */ 

end;  

 

 

/* If sample matrix was singular print message and exit */ 

if sample_rii_singular = 1 then do; 

   file print; 

     put @35 "Correlation Error!!"; 

     put @30 ""// 

    @30 "The variables in the sample data are linearly dependent."/ 

         @30 "The effect size and confidence interval cannot be estimated."/; 

end; 

 

/* If sample matrix was non-singular then proceed */ 

else do; 

  Seffect_size = boot_res[1,1];  

  c_i = &c_i; 

 

/* Reset level of confidence if out of range */ 

  if c_i > 99 | c_i <1 then c_i = 95; 

 

/* Find interval endpoints */ 

  c_i_s = (100-c_i)/200; 

  pctLO = round(btn#c_i_s);  

  pctHI = round(btn#(1-c_i_s));  

  r_vec = rank(boot_res);  

  do btni = 1 to btn; 

   if r_vec[btni] = pctLO then low_limit = boot_res[btni,1]; 

   if r_vec[btni] = pctHI then high_limit = boot_res[btni,1]; 

  end; 

 

/* Print table with results */ 

  file print; 
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  put @35 "Effect Size Measures for Mediation Analysis "///; 

      put @30 "Independent Variable: " @75 "&x "/ 

       @30 "Dependent variable: "   @75 "&y "/ 

      @30 "Mediator variable: "    @75 "&m "//; 

   

      put @30 "Sample Size: "         @78 n 6. / 

      @30 "Confidence Level: "    @75 c_i / 

      @30 "Number of Bootstrap Samples: "  @78 btn 6. / 

      @30 "Sample Effect Size: "   @78 Seffect_size 6.4 / 

                @30 "Lower Limit: "    @78 low_limit 6.4 / 

      @30 "Upper Limit: "    @78 high_limit 6.4 /; 

end; 

quit; 

%MEND CI_MEDIATE; 

EXAMPLE OF MACRO CI_MEDIATE  
 
An example of a call to the macro in a SAS job stream and the resulting output is provided in this section.  The 
following data step creates a SAS data set called ‘example’ containing 12 observations with a single predictor 
variable (predictor), a mediating variable (mediator), and an outcome variable (outcome). 

 
data example; 

input predictor mediator outcome; 

cards; 

1 2 3 

2 1 2 

3 3 1 

4 5 4 

5 4 8 

6 9 9 

7 8 7 

8 7 6 

9 6 5 

10 2 3 

11 1 2 

12 3 1 

; 

 
To estimate the effect size associated with the mediation analysis and to compute a confidence interval around the 
effect size.  The following statement will execute the macro: 
 

%CI_MEDIATE (dataset = example, y = outcome, x = predictor, nboot = 10000,m = 

mediator, c_i = 99);  

 

The macro arguments provide the name of the SAS data set containing the data (example) and the SAS names of 
the predictor, mediator, and outcome variables. In this example, it was not necessary to specify the name of the SAS 
data set because the default value (_LAST_) would have referenced the data set example. The number of bootstrap 

samples, called nboot, is set to ten thousand in this example. A 99% confidence interval, called c_i, is calculated 

around the effect size of the example.  
   
Figure 2 shows the output from CI_MEDIATE for the example data. The names of the variables analyzed (labeled 
Independent Variable, Dependent Variable, and Mediator Variable) are provided on the output page (predictor, 
outcome, and mediator, respectively). The number of observations in the sample is reported, followed by the 
requested level of confidence and the number of bootstrap samples used in the estimation of the confidence interval. 
The sample effect size associated with the mediation analysis of the example data, -.0105, indicates that only 
approximately 1% of the variance in the outcome is attributable to the indirect effect of the predictor through the 
mediator. The lower and upper limits of the 99% confidence interval ( -.1479 and 0.6458, respectively) indicate that 
the researcher may be 99% confident that the population effect size for the mediation effect is between these two 
values. The relatively broad confidence interval results from having only 12 observations in the sample. 
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                             Effect Size Measures for Mediation Analysis 

 

 

 

                        Independent Variable:                        predictor 

                        Dependent variable:                          outcome 

                        Mediator variable:                           mediator 

 

 

                        Sample Size:                                        12 

                        Confidence Level:                                   99 

                        Number of Bootstrap Samples:                     10000 

                        Sample Effect Size:                             -.0105 

                        Lower Limit:                                    -.1479 

                        Upper Limit:                                    0.6358 

 

 

Figure 2. Output from CI_MEDIATE  

 

 

SIMULATION WORK 
 
To investigate the accuracy and precision of the effect size index and the bootstrap confidence intervals, Monte Carlo 
methods were used in a study conducted Baek, Petit-Bois, Pham, and Kromrey (2012). The use of simulation 
methods allowed for the control and manipulation of research design factors and the incorporation of sampling error 
into the analyses. Population correlation matrices providing population effect sizes ranging from -.72 to .77 were 
investigated and sample sizes ranging from 50 to 500 were simulated. For each sample generated, the sample 
estimate of effect size was calculated and a percentile bootstrap was used to estimate the endpoints of a 95% 
confidence interval (Efron & Gong, 1983; Efron & Tibshirani, 1986; Stine, 1990).  The outcomes examined included 
the statistical bias and RMSE of the point estimates of effect size, and the estimated coverage probabilities and 
interval widths of the bootstrap confidence intervals. For each condition examined in the Monte Carlo study, 5,000 
samples were simulated. Study results indicated that the point estimates of effect size present very little statistical 
bias across the conditions examined and the interval estimates maintain near nominal coverage probabilities, 
although both indices improve with larger samples (see Figures 3 and 4). Interval widths and RMSE, however, 
suggest that substantial sampling error is evident with the smallest samples (see Figures 5 and 6). 

 
STATISTICAL BIAS  
 
As expected, the sample size was the factor most strongly associated with variation in bias (η

2
 = .23). Study results 

indicate that the point estimates of effect size present very little statistical bias across the conditions examined. The 
distributions of statistical bias by sample size are presented in Figure 3. Evident in this figure is the reduction in 
statistical bias as sample size increased. In addition, the variability in the bias estimates was notably smaller in the 
larger samples. For example, when the sample size is 500, the bias is approximately 0, with very little variability 
across conditions examined at this sample size. 
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Figure 3. Distributions of Estimated Bias in Point Estimates of Effect Size 

 

 
The distributions of statistical bias by population effect size are presented in Figure 4. As is illustrated by the figure, 
the more negative effect sizes had more positive statistical bias. The inverse was also true; the moderately positive 
effect sizes had negative bias, but the negative bias is less extreme than the positive bias for the negative effect 
sizes. The variability was greatest for the moderate negative effect sizes, while the positive effect sizes tended to 
have less variability. The statistical bias approached 0 for effect size of 0.2. 

 

 

Figure 4. Distributions of Bias by Population Effect Size 
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CONFIDENCE INTERVAL COVERAGE 
 
The sample size was the factor most strongly associated with variation in interval coverage as expected. The 
distributions of interval coverage by sample size are presented in Figure 5. Evident in this figure is the increase in 
mean probability of confidence interval coverage as sample size increased. In addition, the variability in the coverage 
of the intervals was notably smaller in the larger samples. 
 
The distributions of confidence interval coverage by population effect size are presented in Figure 6. The highest 
coverage probabilities on average were obtained with a population effect size of zero. However, the average 
coverage and variability were maintained consistently near nominal coverage probability across various population 
effect sizes. A notably large dispersion in coverage probabilities was observed with a population of effect size of zero. 
 

 

 
 
Figure 5. Distributions of Estimated Confidence Interval Coverage 
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Figure 6. Distributions of Estimated Confidence Interval Coverage by Population Effect Size 
 
The average confidence interval coverage probabilities were also associated with the magnitude of each of the 
population correlations used in the simulation (with η

2
 ranging from .09 to .13). Because the pattern was similar 

across correlation coefficients, only the correlation between the independent variable and the moderating variable 
(rmx) is displayed in Figure 7. The average interval coverage probabilities were all near the nominal confidence 
interval level (95%).  The highest coverage was obtained with a population correlation of zero and the dispersion 
increased as correlation departed from zero.  

 

 

 
Figure 7. Distributions of Estimated Confidence Interval Coverage by Population Correlation (MX) 
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In order to further investigate the dispersion observed with a population effect size of zero, the accuracy of 
confidence interval coverage by three factors (sample size, population correlation, and population effect size) were 
computed. The accuracy of confidence interval coverage was assessed by using Bradley’s (1978) liberal robustness 
criterion. By his method, the proportion of time the parameter was contained within the confidence intervals was 
compared with the nominal proportion (.95). It assesses if the proportions deviated significantly from the expected 
proportion. Proportions were considered robust if they fell within the range (1-α) ± α/2. For example, for 95% 
confidence intervals, a robust confidence interval method should contain the parameter between 92.5% and 97.5% of 
the time.  

 
Table 1 illustrates the proportion of conditions that meets Bradley’s liberal criterion by sample size.  As seen in the 
Table 1, when sample size increased, the proportion that meets the criterion is increased. With a sample size of 500, 
98.5% of the conditions provided accurate confidence intervals (in contrast with 77.5% of the conditions with a 

sample size of 50). This result is consistent with Figure 6. 

 
         Table 1 
         Confidence interval coverage proportions by sample size with Bradley Liberal Criterion  

 

Sample size N of Out range (%) N of Criteria range (%) Total (%) 

50 1022(22.5) 3523(77.5) 4545 (25.0) 

100 407 (9.0) 4124 (91.0) 4531 (25.0) 

200 260 (5.8) 4258 (94.2) 4518 (25.0) 

500 67 (1.5) 4444 (98.5) 4511 (25.0) 

Total (%) 1756 (9.7) 16349 (90.3) 18105 (100) 

 
 
Table 2 presents the proportion of conditions with confidence interval coverage that meet Bradley’s liberal criterion by 
population effect size.  The accuracy of confidence interval coverage was high and consistent across various 
population effect size values (ranging from 82.9 to 100), except the population effect size of zero. This effect size has 
the smallest percentage of conditions with accurate intervals (79.7%) and it has the largest number of conditions 
(N=6985) among various population effect sizes.    

 

 
Table 2 
Confidence interval coverage proportions by population effect size with Bradley Liberal Criterion  
 

Population effect size N of Out range (%) N of Criteria range 
(%) 

Total (%) 

-.7 27 (17.1) 131 (82.9) 158 (0.9) 

-.6 14 (11.1) 112 (88.9) 126 (0.7) 

-.5 18 (8.8) 187 (91.2) 205 (1.1) 

-.4 19 (4.9) 368 (95.1) 387 (2.1) 

-.3 24 (3.2) 718 (96.8) 742 (4.1) 

-.2 59 (4.1) 1389 (95.9) 1448 (8.0) 

-.1 153 (5.9) 2451 (94.1) 2604 (14.4) 

0 1416 (20.27) 5569 (79.7) 6985 (38.6) 

.1 23 (0.9) 1509 (99.1) 2532 (99.1) 

.2 2 (0.1) 1486 (99.9) 1488 (99.9) 

.3 0 (0.0) 483 (100) 483 (100) 

.4 0 (0.0) 436 (100) 436 (100) 

.5 0 (0.0) 319 (100) 319 (100) 

.6 0 (0.0) 134 (100) 134 (100) 

.7 0 (0.0) 38 (100) 38 (100) 

.8 0 (0.0) 19 (100) 19 (100) 

Total (%) 1755 (9.7) 16349 (90.3) 18104 (100) 
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Table 3 presents the proportion of conditions with confidence interval coverage that meet Bradley’s liberal criterion by 
population correlation (XM).  Consistent with Figure 8, the accuracy of confidence interval coverage was similar 
across various population correlation values and the smallest percentage of conditions with accurate intervals (66%) 
occurs with a population correlation of zero. 
 
 
Table 3 
Confidence interval coverage proportions by population correlation (XM) with Bradley Liberal Criterion  
 

Population 
Correlation 

N of Out range (%) N of Criteria range 
(%) 

Total (%) 

-.9 21(3.9) 515 (96.1) 536 (3.0) 

-.8 32 (4.5) 683 (95.5) 715 (4.0) 

-.7 38 (4.5) 808 (95.5) 846 (4.7) 

-.6 42 (4.6) 881 (95.4) 923 (5.1) 

-.5 54 (5.4) 951 (94.6) 1005 (5.6) 

-.4 74 (7.0) 987 (93.0) 1061 (5.9) 

-.3 96 (8.5) 1038 (91.5) 1134 (6.3) 

-.2 142 (12.2) 1021 (87.8) 1163 (6.4) 

-.1 248 (21.0) 935 (79.0) 1183 (6.5) 

0 276 (34.0) 535 (66.0) 811 (4.5) 

.1 234 (19.8) 949 (80.2) 1183 (6.5) 

.2 140 (11.8) 1045 (88.2) 1185 (6.6) 

.3 97 (8.4) 1053 (91.6) 1150 (6.4) 

.4 72 (6.6) 1024 (93.4) 1096 (6.1) 

.5 50 (4.9) 977 (95.1) 1027 (5.7) 

.6 49 (5.2) 903 (94.8) 952 (5.3) 

.7 34 (3.9) 833 (96.1) 867 (4.8) 

.8 34 (4.6) 701 (95.4) 735 (4.1) 

.9 22 (4.1) 510 (95.9) 532 (3.0) 

Total (%) 1755 (9.7) 16349 (90.3) 18104 (100) 

 

 
 
CONCLUSION 
 
Effect sizes are used to describe the strength of a relationship. When researchers use effect sizes together with the 
results of hypothesis tests, they can make statements about the statistical significance as well as the practical 
significance of their findings. Effect sizes for mediation analysis have been investigated for many years. Fairchild et 
al. (2009) suggested an approach to estimate the effect sizes for mediation analysis and presented a SAS macro to 
estimate these effect sizes. However, a method to estimate confidence intervals for these effect sizes was not 
developed. The CI_MEDIATE macro provides a helpful tool for researchers to estimate confidence intervals for the 
effect size of the mediated effect. By using both R

2
med and a confidence interval, not only can researchers report on 

the practical significance of their findings, they also can describe plausible values for the population effect size. The 
macro may be modified easily to provide additional information. For example, the set of effect sizes from the 
bootstrap samples may be output for further analysis or for graphical display. 

Simulation work demonstrated sample size was most strongly associated with both of the outcomes ( statistical bias 
and confidence interval coverage). As sample size increased, the parameter estimates converged to the parameter 
values and the variability of the estimates tended to decrease. The variability tended to increase as the effect size 
moved away from zero for  confidence interval coverage.. However, for statistical bias, the variability increased as 
population effect size became more extreme and negative and decreased as the effect size became more positive. 
The confidence interval coverage probabilities were near the nominal level for the majority of conditions examined. 
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