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Abstract

Interaction methods for effect modification and confounding with the O and Oc statistics that are
asymptotic chi-square and a PROC IML algorithm with PROC MIXED Agravat (2011) combined with
survival and probability analysis for head neck cancer are demonstrated. In support of these new in-
teraction analysis methods are C stat, and power. A new hazard logit for survival statistics for head
neck cancer due to nonsmoking by race including distribution analysis, hazard ratios, and calculations
of probability are shown. Statistics based on probability, independence, and algorithms are important
when data are non-normal, linearity is not present, homogeneity assumption for standard error is not
met, and when no time point are given. New methods for Z scores and risks based on logits are introduced.
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1 Introduction

The interaction, probability, and hazard ratios of head and neck cancer epidemiology from the INHANCE
study are analyzed for statistics such as effect modification p values,confounding p values, including and
distribution analysis of no smokers vs. no drinking by race for head neck cancer. Normally, (SAS)r

software automatically produces output intended for large samples and fixed effects data that may apply
to this study. In this case, the data is non-normal for cases of head neck cancer due to non-smoking
by level of race because the Shapiro-Wilks P < 0.0003 indicates non-normality for cases of head neck
cancer. The confounding issue also is normally resolved by analyzing if there is a difference of 10 percent
or more among strata for beta estimates or risk estimates, however in this analysis a new parametric
technique with PROC IML and PROC MIXEDAgravat (2011) Verbeke and Molenbergs (2000) with an
asymptotic chi-square calculated by the new O statistics, and including the F-statistics and p value, that
is utilized, for multivariate analysis, is demonstrated and the possible synergistic interaction between
effect modification and confounding is demonstrated. The novel use of a survival function is implemented
to obtain beta estimates.

Hazard ratios also require a proportional hazards model and assumptions require
linearity and homogeneous standard error.The new hazard ratio method can produce statistics for situ-
ations when the beta estimates are obtained from a new parametric technique. The subsequent hazard
ratio is also derived showing the involvement of the independence assumption and a proof Agravat (2011)
as well as new formulae. This method also shows that corresponding probability distribution values are
not limited by the condition when there is no probability available where values are undefined. Since
errors exist, and probability distributions exist, and also the independence assumption is satisfied, one
can be more confident of the related outcome survival statistic. Probability and conditional probability
of event with time is derived showing that the conditional probability algorithm has significance.A new
measure of heterogeneity is introduced where the negative of the hazard ratio vs probability and survival
shows the difference for strata of risk.

Derivations of probability of event given time are shown with related proofs on mutu-
ally exclusive and independent events.In addition , the author proves that the probability of two mutually
exclusive events equals 1 not 0.Then a method of risks for bivariate variables is shown based on derived
probability proofs. Subsequently, a new method for Z scores is shown based on Agravat’s distribution
and probability mass function. Comments are made to include corollaries to Heisenberg’s uncertainty
principle because of its relation to probabilities of events given time. Plots displaying the properties
using SAS and MSExcel will be given.Derivations and graphs related to special relativity corrections of
the author will be rendered that includes inferences regarding atomic particles.
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2 Methods

To start this procedure the interaction analysis, 2x2 by 2x3 matrices are multiplied as shown in ”Formu-
las Calculating Risk Estimates and Testing for Effect Modification and Confounding ” Agravat (2011).
The means are also calculated in the same way for tables of observed and mean values. Next using the
formulas of the Ô statistic, calculate the output, through the PROC IML code, calculate the ”AEM”
variable for the SAS algorithm intended for evaluating confounding with PROC MIXED for effect mod-
ification of the head neck cancer data of INHANCE data. The program and algorithm for PROC IML
(SAS) is from the author Agravat (2011), and if ”AEM” is significant one may conclude that the the null
of homogeneous null is rejected concluding effect modification exists. The matrix formulas are shown
here in the PROC IML code as well as the O statistics. In the ”New Effect Modification P Value Test
Demonstrated ” Agravat (2009), the cases variable is used in 1,0 1, 0 sequence likewise for cases or
outcome in this study. This algorithm for effect modification has ”fit” set to 1,1,0, and 0. In the effect
modification algorithm, the technique using O statistics and matrices utilize the observed products from
matrix multiplications and mean matrices and the same method of count data transformation Agravat
(2011). (The procedure for effect modification using PROC IML and PROC MIXED and O statistics is
fromAgravat (2011)).

For confounding the procedure involves PROC IML and PROC MIXED as well as
Oc statistics. The procedure is to alternate the first two entries where normally one follows the ”0” for
adjusting data to adjusting the alternate pairs of data entries without regards to the ca variable with
the beta transformation (Agravat (2009)or Agravat (2011)). Data transformation is done for the next
two pair of data and alternated with non adjusted data without regards to ”ca”. The ”acov” (Agravat’s
confounding variable)variable comes from the PROC IML code for ”cag”. ”1” is put for the first posi-
tion of ”acov” followed by substitution of values from the PROC IML algorithm of ”cag”(confounding
Agravat’s) coming form the PROC IML algorithm.

2.1 Matrices for Effect Modification and Confounding with O Statistics
Formula 1 1

0 1


×
(

1 0 795
0 0 2586

)
=

(
2 0 1590
1 1 2586

)
 1 0

0 1


×
(

1 1 795
0 0 2586

)
=

(
2 2 1590
1 1 2586

)
2.2 New Method for Confounding with Oc Statistics and Matrices

Matrix mathematics continues for this operation and all the following count values are input. The purpose
of this operation is calculating the hypothetical ”acov” variable after adjusting for the algorithm with
PROC MIXED. The algorithm follows the pattern with cases as the first variable having 1, 0, 1, and
0. Then the hypothetical ”ca” variable is alternated in 0, 1, 1, and 0’s, follows next. zxy and xzy are
created in the manner previously published with observed(count)/ | βzx∗βz | and observed(count)/|βyz |
Agravat(2011),Agravat (2009),Agravat (2008). In the PROC IML algorithm, begin with outcome and
”ca” variable. Next, pair adjusted data together with corresponding count values. Pairs of the zxy and
xzy are adjusted according to the beta transformation method given, in this case irrespective of the
”ca”. The hypothetical ”acov” variable is calculated through the matrix mathematics and Oc or use of
PROC IML code provided and placed into the SAS algorithm to be analyzed with PROC MIXED. The
observed values from count data is input into the PROC IML code and is followed with the calculated

2
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PROC MIXED AND EFFECT MODIFICATION

data nonsmokeraem;
input cases fit zxy xzy aem count;
datalines;
1 1 1 1 2208.8 795
0 1 1 1 1 2586
1 0 301 634.2 1 763
0 0 1735.2 3655 1 4397
1 1 1 1 230.56 111
0 1 1 1 1 233
1 0 24.4 51.5 1 62
0 0 93.9 197.8 1 238
1 1 1 1 250.52 40
0 1 1 1 1 152
1 0 17.7 37.4 1 45
0 0 67.1 141.3 1 170
;
run;
proc mixed data=nonsmokeraem;
weight count;
class zxy ;
model cases= zxy aem /solution ddfm=satterth covb chisq ;
run;

PROC MIXED AND CONFOUNDING

data nonsmokernew;
input cases ca zxy xzy acov count;
datalines;
1 0 1 1 1 795
0 1 1 1 583.66 2586
1 1 301.1 634.2 1 763
0 0 1735.2 3655 583.66 4397
1 0 1 1 1 111
0 1 1 1 583.66 233
1 1 24.4 51.5 1 62
0 0 93.9 197.8 583.66 238
1 0 1 1 1 40
0 1 1 1 130 152
1 1 17.7 37.4 1 45
0 0 67.1 141.3 190.2 170
;
run;

proc mixed data=nonsmokernew;
class ca ;
weight count;
model cases= acov zxy /solution ddfm=satterth covb chisq htype=2,3 ;
random int / type=un subject=cases;
run;

Figure 1: Agravat’s Method Code for Effect Modification and Confounding

3
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means from matrix mathematics for the mean matrix to be involved in calculations of ”cag” variable
renamed ”acov”. Matrices are multiplied by the existing code of transformed data where as demonstrated
in ”A New Effect Modification P Value Test Demonstrated” Agravat (2009). Then the observed and the
means values are calculated in the matrices and substituted into the PROC IML algorithm where stated.
Determinants are used and the formula for Oc statistics are followed to allow calculations necessary for
the ”acv” variable. The use of PROC MIXED allows for lower -2LL that implies better model fit and
allows for random effects not just fixed effects data as may be the case for standard regression methods.

Effect Modification O Statistics

Ô=(O − Ō)2 ÷O (1)

Confounding Oc Statistics

Oc=(Ō −O)2 ÷O (2)

2.3 SAS Algorithm with PROC IML for Confounding

An inference that can be made from the PROC IML algorithm is that differences in the final CAG
values will most likely reflect in the P value resulting in significance overall if there are large differences.

proc iml;

* Read data into IML ;

use nonsmoker;

read all ;

* combine x0 x1 x2 into a matrix X ;

var = zxy || xzy||n;

var2 = cases || fit ;

newvar=var*var2;

varB1={

1 0,

0 1};

varB2={

1 1,

0 0};

varB3={

1 0,

0 1};

varB4={

1 1,

0 0};

varB5={

1 0,

0 1};

varB6={

1 1,

0 0};

varC1={

1 1 795,

1 1 2586};

varC2={

301.1 634.2 763,

1735.2 3655 4397};

varC3={

1 1 111,

1 1 233};

varC4={

24.4 51.5 62,

93.9 197.8 238};

varC5={

4
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1 1 40,

1 1 152};

varC6={

17.7 37.4 45,

67.1 141.3 170};

V1={

0.24 0.24 187.68,

.76 .76 1978.62};

O1={

1 1 910,

1 1 2117};

deter1=(V1);

print deter1;

deterO1=(O1);

D1=(deter1-deterO1)#(deter1-deterO1)#1/deterO1;

print D1;

D1new={

0.5776 0.5776 573.34745,

0.0576 0.0576 9.0453587

};

ars=D1new[,+];

print ars;

print D1;

cag1=ars[+,];

print cag1;

cag1=

583.66321;

/******/

print varA2;

V2={

344 576 110,

0 0 0

};

O2={

602.2 1268.4 1526,

0 0 0

};

deter2=(V2);

print deter2;

deterO2=(O2);

D2=(deter2-deterO2)#(deter2-deterO2)#1/deterO2;

print D2;

D2new={

344 576 110,

0 0 0};

cag2=D2new[,+];

print cag2;

print D2;

cag2=ars[+,];

print cag2;

cag2= 1030;

/***********/

print varA3;

V3={

5
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.32 .32 35.63,

.68 .68 160.9};

O3={

1 1 111

1 1 233

};

deter3=(V3);

print deter3;

deterO3=(O3);

D3=(deter3-deterO3)#(deter3-deterO3)#1/deterO3;

print D3;

D3new={

0.5776 0.5776 573.34745,

0.0576 0.0576 9.0453587

};

ars=D3new[,+];

print ars;

print D3;

cag3=ars[+,];

print cag3;

cag3= 583.66321;

/***************/

print varA4;

V4={

48.8 103 124,

0 0 0

};

O4={

48.8 103 124,

0 0 0

};

deter4=(V4);

print deter4;

deterO4=(O4);

D4=(deter4-deterO4)#(deter4-deterO4)#1/deterO4;

print D4;

D4new={

0.5776 0.5776 573.34745,

0.0576 0.0576 9.0453587

};

ars=D4new[,+];

print ars;

print D4;

cag4=ars[+,];

print cag4;

cag4=583.66321;

V5={

.22 .22 8.57,

.78 .78 119.42};

O5={

1 1 40

1 1 152

};

deter5=(V5);

print deter5;

deterO5=(O5);

6
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D5=(deter5-deterO5)#(deter5-deterO5)#1/deterO5;

print D5;

D5new={

0.22 0.22 8.57,

0.78 0.78 119.42

};

ars=D5new[,+];

print ars;

print D5;

cag5=ars[+,];

print cag5;

cag5= 129.99;

/***************/

print varA6;

V6={

35.4 64.8 90,

0 0 0

};

O6={

35.4 64.8 90,

0 0 0

};

deter6=(V6);

print deter6;

deterO6=(O6);

D6=(deter6-deterO6)#(deter6-deterO6)#1/deterO6;

print D6;

D6new={

35.4 64.8 90,

0 0 0

};

ars=D6new[,+];

print ars;

print D6;

cag6=ars[+,];

print cag6;

cag6=190.2;

Ot=sum(cag1+cag2 +cag3+cag4+cag5+cag6);

print Ot;

proc iml;

P=PROBCHI( 3101.76, 8, 0)=.95 ;

print P;

P<0.0;

2.4 Limits and Hazard Ratio Analysis vs Probability

By definition of odds OR1 = P1/(1 − P1) and odds 2 or OR2 = P2/(1 − P2) so the ratio of OR1
and OR2 gives an odds ratio. However this works well for binomial covariates based on the binomial
distribution. This data for head neck cancer is analyzed with the Weibull distribution to obtain the beta
estimates for analysis. The proportional hazards model assumption requires homogeneous variance for
model fit. If there were random effects and random variables that are not effectively analyzed or handled
without assuming normality in generalized linear models and large populations, then new methods for

7
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analysis such as by the author may be utilized. For hazard ratios, dealing with the baseline hazard and
the chief covariate over time, there may be a distribution more relevant than binomial and there may
not be confidence in the results due to the lack of an appropriate distribution to deal with heterogeneous
covariates that are not normal for the outcome and can be chosen during the Novel R code procedure
with survreg. The most appropriate distribution can be chosen any time to obtain the best results in
the author’s parametric method. Even the cumulative distribution function follows laws where F(x)
is between [0, 1] for x approaching - infinity and + infinity for their limits.When F(z) approaches 1
or S(z) approaches 0 the problem of undefined denominator exists and is critical because hazard risk
estimates are not easily obtained for nonnormal data. Often where low or high probability values of the
denominator may be required to conclude on the effects and magnitude to of the risk statistics hence
the significance.

One may want to avoid having a cumulative distribution to observe the patterns of relationships
of values where multi-nomial distribution is used for risk statistics. Normally, the Pr(X = x) =
F (x0) − F (x0 − x) which is the basis of the limit as y approaches x0 without affecting the distribu-
tion. Hence the odds ratios and hazard ratios are appropriate, but not for the case of hazard ratio when
F(x) is divided by Pr(X=x) and x0-x approaches 0 and is undefined because the author uses probability
algorithm derived previously Agravat (2011). What will be appropriate for this distribution in the case of
variables where probability is not binomial or extreme values of probability is the case that may often be
the case for non-normal data? Agravat’s probability formula, P (z)new can handle three level of variables
plus the possibility of interaction. The probability equation of the author, for three level of confounder,
is appropriate for hazard ratios and related survival calculations. In these risk statistics calculations,
there are also no restrictions on prevalence being 10 percent or less or linearity. The formulae follow the
independence assumption Agravat (2011) proved previously or the need for time points where a survival
study has not been performed.

2.5 Hazard Ratios, and Distribution Analysis

The new probability density function (p .d. f.) is normally: h(t)=d(-log(S(t))/dt=f(t)/S(t) with S(t) ;
however, with respect to the variable z, the new derivation is as follows using equations from the author
Agravat (2011). Substituting the standard definition of probability instead of P(z)new in this case gives
equation (6). In the formula no time point is required and the distribution functions are obtained for
the calculation of the hazard function including cumulative distribution function and baseline hazard
function.

HAZARD RATIO AND DISTRIBUTION ANALYSIS

HR(z)=
1

(P (znew)) ∗ (1− odds(y)) + odds(y)
(3)

∂

∂z
(−HR(z)new)=−HR′(z) (4)

−∂
∂z

((1)÷ ((Pz)inew ∗ (1− odds(y)) + odds(ŷ))= (5)

∂

∂z
(−1)÷ (

(z)

(1 + z)
∗ (1− y) + y)= (6)

∂

∂z

(−1) ∗ (1 + z)

(z) ∗ (1− y) + y ∗ (1 + z)
= (7)

∂

∂z
− (1 + z)

(z + y)
= (8)

−(z + y) ∗ (1)− (1 + z) ∗ (1 + y)

(y + z)2
=−HR′(z) (9)

−HR′(z)=(−y ∗ z − 1)

(y + z)2
(10)

S(z)=exp−HR(z) (11)

8

Statistics and Data AnalysisSAS Global Forum 2012

 
 



λ(z)=− log(S(z)) (12)

hz=− S′(z)

S(z)
(13)

hz=
HRz

exp−HR(z)
(14)

exp−HR(z)=S(z) (15)

ln(exp−HR(z))=ln(S(z)) (16)

ln(exp−HR(z))=ln(S(z)) (17)

I(z)=ln(S(z)) (18)

I ′(z)=
1

z
(19)

λ(z)=
1

(z ∗ S(z))
(20)

λ=
1

(z ∗ S(z))
(21)

S(HRznew)=exp−HRznew (22)

is the formula for corresponding survival time or probability. This statistic derived for the hazard of z (h
(z)) or hazard function is obtained by a new method the d/dz (-HR (z)new) to obtain the hazard function
hz instead of the d/dt(-log(S(t)) that depends on time points. The survival time can be provided given
that the probability or survival time is not undefined, or the missing time and the interaction with time
is a higher power,that is quadratic or cubic. Calculating survival statistics from the hazard ratio for
hazard function provides statistics using the formulae with probability for the confounder (equation 3).
The new technique gives explicit answers for hazard ratios based on independence and the probability
(P (z)new) equation of the author and hazard ratio of z or HR (z)new for −3 ≤ Bz ≤ 3 for all the survival
statistics demonstrated here with all combinations of possible by values which may be able to account
for enormous hazard ratios (except greater than 20) that may normally not be the case with various
probability methods that satisfy independence. Stratified levels are also possible by multiplying the coef-
ficient’s level in the regression equation. All possible survival distribution analysis methods are possible
at all levels between these levels.This new method has the advantage of being appropriate for three level
variables, beyond bivariate analysis or fixed effects or proportionate hazards model.There is no need to
assume standard errors are homogeneous for proportional hazards to be constant for this approach using
independence assumption using the proof of the author Agravat (2011)that the function and its hazard
ratio exist.The non-normal data is more easily analyzed with this assumption of independence because
the standard error with assumption of Beta=0 does not need to be repeated when estimating the beta
for other covariates for random data.

-HAZARD RATIO-

HR(z)=
1

(P (znew)) ∗ (1− odds(y)) + odds(y)
(23)

-BASELINE HAZARD FUNCTION I-

hz0=
hz

HR(z)
(24)

hz=(hz0) ∗HR(z) (25)

9
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Fit Statistics
-2 Res Log Likelihood 21.5
AIC (smaller is better) 23.5
AICC (smaller is better)25.5
BIC (smaller is better) 22.9

Solution for Fixed Effects
Effect zxy EstimateStandard ErrorDFt Value Pr > |t|
Intercept -0.00044 0.08109 4 -0.01 0.9959
zxy 1 0.03892 0.1262 4 0.31 0.7732
zxy 17.7 1.0000 0.8056 4 1.24 0.2823
zxy 24.4 1.0000 0.6877 4 1.45 0.2196
zxy 67.1 6.07E-17 0.4203 4 0.00 1.0000
zxy 93.9 -277E-19 0.3578 4 -0.00 1.0000
zxy 301 1.0000 0.2109 4 4.74 0.0090
zxy 1735.2 0 . . . .
aem 0.000443 0.000097 4 4.56 0.0103

Type 3 Tests of Fixed Effects
EffectNum DFDen DFChi-SquareF ValuePr > ChiSq Pr > F
zxy 6 4 26.38 4.40 0.0002 0.0866
aem 1 4 20.82 20.82 <.0001 0.0103

Power of nonsmoker count data of INHANCE

ObsSourceDF ChiSqProbChiSq Method test power

1 zxy 1 681.31 <.0001 LR 3.84146 1
2 aem 1 575.61 <.0001 LR 3.84146 1

Figure 2: Agravat’s Method Output for Effect Modification

Fit Statistics
-2 Res Log Likelihood 35.8
AIC (smaller is better) 37.8

AICC (smaller is better)38.3
BIC (smaller is better) 38.3

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSq
0 0.00 1.0000

Solution for Fixed Effects
Effect EstimateStandard ErrorDFt ValuePr > |t|

Intercept 0.9152 0.09306 9 9.84 <.0001
acov -0.00160 0.000201 9 -7.97 <.0001
zxy 0.000013 0.000056 9 0.24 0.8184

Covariance Matrix for Fixed Effects
Row Effect Col1 Col2 Col3

1 Intercept0.008660-0.00001 -2.72E-7
2 acov -0.000014.057E-8-5.03E-9
3 zxy -2.72E-7 -5.03E-93.133E-9

Type 2 Tests of Fixed Effects
EffectNum DFDen DFChi-SquareF ValuePr > ChiSq Pr > F
acov 1 9 63.46 63.46 <.0001 <.0001
zxy 1 9 0.06 0.06 0.8131 0.8184

Type 3 Tests of Fixed Effects
EffectNum DFDen DFChi-SquareF ValuePr > ChiSq Pr > F
acov 1 9 63.46 63.46 <.0001 <.0001
zxy 1 9 0.06 0.06 0.8131 0.8184

Power of nonsmoker count data of INHANCE

ObsSourceDF ChiSqProbChiSqMethod test power

1 zxy 1 .00000 0.9998 LR 3.84146 0.05000
2 acov 1 7.6163 0.0058 LR 3.84146 0.78809

Figure 3: Agravat’s Method Output for Confounding

10
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Figure 4: Agravat’s Method Code for Confounding ROC curve

-BASELINE HAZARD FUNCTION II-

(hz0)=
λ(z)

HR(z)
(26)

-CUMULATIVE DISTRIBUTION FUNCTION-

F (z)=1− S(z) (27)

-95 CONFIDENCE INTERVAL for HAZARD RATIOS with Agravat’s Z SCORE-

95CIHR(z)=exp
(ln(HR(z)))±1.96∗(

√√√√s.e.(y)

n
)

(28)

−HR′(z)=−y ∗ z − 1

(y + z)2
(29)

−1− y2 = z2 + z ∗ y (30)

−1− y2 = z2 + z ∗ y (31)

z=
(−1− y2)

(z + y)
(32)

∂

∂z
=

(0 ∗ (y + z)− (−1− y2) ∗ 1)

(y + z)2
(33)

zn=
(1 + y2)

(y + z)2
(34)
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zn=
(1)

P (z) ∗ (1− y) + y
(35)

zn − 1=
(1)

P (z) ∗ (1− y) + y
− 1 (36)

P (z)=
(1)

(zn) ∗ (1− y) + y
(37)

P (z)=1 (38)

Normalization of Hazard Ratio,Probability and Hazard Function variant of the hazard ratio.
The partial derivative of the new equation solved with quotient rule gives a new function of the haz-
ard ratio. The inverse of that equation solved for the probability yields a value of 1 for current data
of INHANCE for nosmoking no drinking. zn a new measure of hazards is 5.41 and P (zn)=1. For no
drinking no smoking, the zn is 3.54 giving a P (zn) of .33 after inverse equations. The inverse of zn yields
a value similar to HR so that using the equation of hazard function(eq. 14), the hazard function equals
the hazard ratio. The baseline hazard function is thus 1 using equation (24).This process is similar to
normalization for hazard ratios and functions of nonormal data. For head neck cancer nonsmoking no
drinking and white race and the survival time is .83;the Cumulative Distribution Function is .16; the
baseline hazard function is 25.11 from eq. (24) and from zn 5.57 from eq. (34) a difference of 3 percent;
hazard function is .257 from equation (14). These calculations differ from the proportional hazard mod-
els for calculations shown in table 11 for baseline hazard function by about 3 percent and do not require
assumptions of proportional hazards or equal standard errors or linearity but independence assumption
is required as proved by the author in Agravat (2011) for common conditional odds ratio being 1.

2.6 Interaction between Effect Modification and Confounding Analysis of
INHANCE for Nondrinkers and Nonsmokers

The author has developed a new method to compare and measure the risks for effect modification and
confounding when the exposure can be reversed using O statistics to determine if there is a cumulative
effect of the two statistics. First the same measures of the transformed data are utilized. Make a table
of the zero cell values from the matrix math. Sum the rows and columns. Measure the proportion of
the total row value by the cell value for each row. Take the averages of the columns. Calculate the
column average.Use the O statistics with the transformed data for calculating values for each level or
row as in table 2. Square the answer and sum for each row as calculated. Square that value and divide
by the number of zero cells squared gives a P value measure. This same procedure can be repeated for
the confounding or ”acov” variable as for ”aem”adjusted for the exposure but the result is the same
despite which O statistic formulas used. The outcome suggests that for non-drinking vs. nonsmoking
the exposure has P < 0.0107 (see table 3). P < 0.0107 means that the exposure of non alcohol drinking
is not significant at alpha .05 level for the possible additive interaction between effect modification and
confounding. For the exposure nonsmoking the situation is different. The exposure has P < 0.019 for
interaction due to nonsmoking vs. non-drinking. The y for non-drinking is -.9865 and z is -1.5699 yield
a low and negative P(z)new of -.27 for strata 1, -.5255 for strata 2, and -.5802 for strata 3 that is non-
normal and may not work according to proportional hazard model requires probability being between
0 and 1. The interaction P < 0.0107 being significant statistically at alpha of .05 and probabilities
being non-normal imply that there may be an important chance for negative effects of no drinking vs
no smoking for head neck cancer because there is more heterogeneity hence one may need to analyze
this effect more in details. Certainly since P < 0.019 for the interaction of nonsmoking vs. non-drinking
requires significant analysis for the outcome head neck cancer and by different races with smoking being
the primary exposure since the probability of events are greater than 1 indicating non-normal data
based on probability. The F-statistics fails to reject for the exposure non-drinking vs. non-smoking
for confounding by P < 0.1081 for nonsmoking as exposure. The new interaction p value P < 0.0107
supports the fact that while effect modification is significant, and confounding is significant for the
exposure non-drinking and overall significance still exists.

Ocinf=[(Ō −O)2 ÷O2]
2

(39)
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Table 1: Inference Statistic for Comparing Interaction of NonSmoking
Zero Cell Col1 Col2 Col3 Col4

2 664 1138 1526 3328
4 64 92 260 316
6 40 68 90 198

Table 2: Inference Statistic for Comparing Interaction of Nonsmoking
Zero Cell Col1 Col2 Col3

2 5.00 2.92 2.18
4 5.00 2.93 2.17
6 4.95 2.91 2.20

Average 4.98 2.92 2.18

∑
Ocinf

2
÷ n2 (40)

y

1− y
≈ P (z)− 1÷ z

1− y
(41)

y

1− y
=5.78− 5.90 ≈ −.123 (42)

exp

y

1− y=.88 (43)

[exp

y

1− y ]2=.78 (44)

[exp

y

1− y ]2 ÷ n=.065 (45)

2.7 New Algorithm for Hazard Ratios and Logits

The results of the new logits model indicate risks for the overall model are not significant based
on confidence intervals containing one shown below (table 4). The risks for the overall strata for race
are greater than 1.45 to x .79 where there are no statistically significant confidence intervals for the
overall models reflecting nonsmoking vs. non-drinking and race as confounder for head neck cancer.
The risks are actually lower slightly for Hispanic race. Y is roughly proportionate to outcome of the
equation of new logits for new hazard ratio. P is the value of probability for regression variable normally
called Y or the outcome estimate.After calculating the first strata the next strata’s are done as shown
differently. The new logit utilized for linear logits give P < 0.065 for strata 1 alone, the white race, for
head neck cancer and the race is not enough to explain that the exposure nosmoking no drinking is not
statistically significant to explain the outcome that is cancer of the head and neck Agravat (2011) for
this nonormal data (Shapiro-Wilks P < 0.0003). There is evidence that the risk from exposures and
nonsmoking nondrinking does show differences of risk among races that has increased risks by hazard
ratios of: 21.6 percent, 4.6 percent,and .01 percent for the races being white, black, and Hispanic for
the INHANCE study because the confidence intervals are statistically significant (see section discussion).

Table 3: Inferences Statistic for Comparing NonDrinking and Nonsmoking Interaction
Statistic Nondrinking Nonsmoking

Additive Interaction P < .0107 P < .019
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Table 4: Probability, Hazard Ratios and New Logit Model Analysis for INHANCE and Non-smokers
Strata P(z) HR(p) P Y 95 CI (HR(p))

(1)White 5.78 1.22 .75 .88 (1.83,.81)
(2)Black 27.91 1.45 .74 .37 (1.84,.81)

(3)Hispanic 130.2 .79 1.33 .29 (1.25,.52)

P (z)=P (hz) (46)

P (hz)=5.78 (47)

lnP (hz)=ln(5.78)=1.754 (48)

ln(
−2(1− y)

y
)=− 1.326 (49)

exp

2(1− y)

y =.2654 (50)

HR=.88 (51)

expy=.2644 (52)

.2644=(
2(1− p)

p
) (53)

P=.75 (54)

HR(p)=
1

(P ) ∗ (1− odds(y)) + odds(y)
(55)

HR(p)=1.22 (56)

3.32=
2(1− y)

y
(57)

5.32y=2 (58)

y=.37 (59)

P (n|i)=(nCi) ∗ [
(π)

(2)
]
2

∗ (1− π)n−i (60)
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Figure 5: Agravat’s Method for Z Scores

data AgZscore;
input z n i pi Pni;
datalines;

1.968 10 9 .9 .202500
1.968 10 8 .9 .091125
1.968 10 7 .9 .0243
1.968 10 6 .9 .0042525
1.968 10 5 .9 .0005103
1.968 10 4 .9 .000042525
1.968 10 3 .9 2.43E-6
1.968 10 2 .9 9.1125E-9
1.96 10 1 .9 2.025E-9
1.63 10 8 .8 .288
1.63 10 7 .8 .1536
1.63 10 6 .8 .05376
1.63 10 5 .8 .0102902
1.63 10 4 .8 .0021504
1.63 10 3 .8 .00001843
1.63 10 2 .8 8.192-7
1.346 10 7 .7 .3969
1.346 10 6 .7 .2083725
1.346 10 5 .7 .0750141
1.346 10 4 .7 .018753525
1.346 10 3 .7 3.21489E-3
1.346 10 2 .7 3.61675125
1.346 10 1 .7 2.4111675E-5
1.204 10 6 .6 .48384
1.204 10 5 .6 .2232432
1.204 10 4 .6 .0774144
1.204 10 3 .6 .01769472
1.204 10 2 .6 2.654208E-3
1.204 10 1 .6 2.359296E-4
;
run;

proc genmod data=AgZscore descending ;
title2 'Power of Agravat Z score';

model pni = n i pi pni z/ link=log dist=normal type3 ;
ods output type3=tests;

run;

Power of Agravat Z score

Prob
Obs Source DF ChiSq ChiSq Method test power

1 n 0 0.0000 . LR 3.84146 0.05000
2 i 1 103.13 <.0001 LR 3.84146 1.00000
3 pi 1 15.654 <.0001 LR 3.84146 0.97706
4 Pni 1 199.86 <.0001 LR 3.84146 1.00000
5 z 1 5.1463 0.0233 LR 3.84146 0.62120

Figure 6: Agravat’s Z Score and Power
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2.8 New Z Score Method

The Agravat’s distribution is capable of calculating the z table for a new distribution that is chi
square and incorporated throughout this analysis. The proportion used begins with π = .9 for instance
for the 90 th percentile value for 1 − .9 = .1 divided by 2 gives .05 and a two sided test alpha will be
.025. The calculations give values for the subsequent conditional probabilities calculated using Agravat’s
algorithm and from 10|9 to 10|1 the probabilities are calculated and summed. Then 1- sum is done
finally to be exponentiated giving the z score for alpha = .05 of 1.968 because for 1− π(= .9) is .1 and
divided by 2 for a two sided or is the alpha = .05 level . The next level will be calculated by giving
π = .8 and progressively for each level of alpha desired or 1− π(= .8) = .2 divided by 2 is .1 and a two
sided alpha is .0516 with z score or value on algorithm and Agravat’s distribution value of 1.63. The
advantage of this new Z score method is that it is based on a conditional probability algorithm of the
author that can be more than binomial.This new z score also functions according to the previous z score.
The new Z score method has more of 97 percent for π and 100 percent for P (n|i) and i. The percent
of area covered under 3 standard deviations away from the mean with sample size 10 of 81.4 percent or
1/9 for the probability of the score falling in this region when π = .6 (see figures 12 and 13). The power
of the new Z-score is about 100 percent (see figure 6) (and this new method is utilized throughout to
calculate 95 percent confidence intervals).

2.9 Agravat’s Proof of Mutually Exclusive Events and New Risks

P=
(odds)

(1 + odds)
(61)

Q=1− P (62)

Q=1− (odds)

(1 + odds)
(63)

Q=
(1)

(1 + odds)
(64)

P (P ∩Q)=P (P ) ∗ P (Q) (65)

P (P ∩Q)=
(odds)

(1 + odds)
∗ (1)

(1 + odds)
(66)

P (P ∩Q)=
(odds)

(1 + odds)2
(67)

P (z)=
(odds(z))

(1 + odds(z))2
(68)

P (P ∪Q)=P (P ) + P (Q) (69)

P (P ∪Q)=
(odds)

(1 + odds)
+

(1)

(1 + odds)
(70)

P (P ∪Q)=1 (71)

P (y)=
exp(P (P )+P (Q))

1 + exp(P (P )+P (Q))
(72)

logP (y)=log(
exp(P (P )+P (Q))

1 + exp(P (P )+P (Q))
) (73)
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New Probability of Mutually Exclusive, Independent Events, and New Risks The new
proof of the author for probability of events according to the standard definition of probability is shown
next.The standard mutually exclusive event probability is expected to be”0” but in this case it is demon-
strated to be ”1” that makes a significant impact to calculations involving models for regression analysis
in logits because risks will not calculated properly. Bayesian inferences may not be correct as a result
that stated that the probability of two mutually exclusive events equal 0. If The probability of mutually
exclusive events is made to be equal to independence of two events or one when the independence is
one for the product of two events. P (z ∩ t)=P (z).These estimates may be used to calculate risks. The
Agravat’s algorithm Agravat (2011) is used to calculate P (x|z) when combined with P(z) for P (x ∩ z)
and set equal to P (x ∪ z) later defined as mutually exclusive to calculate the P(x). Then the log of
P(y) then exponentiated gives the risk for the outcome of about .87. P (z)=.146 using equation of logits
shown by the author. If the P(z) and P(x) are mutually exclusive then P (x) = P (x ∪ z) − P (z). If
P (x ∪ z)=P (x ∩ z) then P (x)= − (P (z))/(1 − P (z))= − .1709. The exponential of P (x)is .8428 with
βx= − 33.307 and exponentiation of P (z) ' =.146. P (y)=.728 and log(P (y))= − .137 so the risk of
P (y) = .87 by ideal conditions not one or 0. The author also shows conclusive that under this assump-
tion, the equations of logits of the author does validate the assumption of possible equality of mutually
exclusive and independent events. The author suggests that one must exponentiate the resultant of P(y)
based on the equality proof of the author which gives for these beta estimates a value of 1.638 of risk for
exposure no smoking no drinking and race based on these new logits or strata 1 or non-central European.
The ln(P (y))= − .702 and expln(P (y)) ' HR. The natural log of P(y) exponentiated gives the hazard
ratio .49 from the authors method for head neck cancer in INHANCE for the exposure no-smoking vs.
no drinking by race, compared to PROC PHREG (SAS) that gives HR = .46. The death rate according
to the new method is 3 percent higher for head neck cancer for the new logit.

P (x ∪ z)=P (x) ∗ P (z)=(−.1709) ∗ (.146) ≈ −.025 (74)

P (x ∩ z)=P (x) + P (z)=(−.1709) + (.146) ≈ −.025 (75)

P (x) ∗ P (z)=P (x) + P (z) (76)

P (x ∪ z)=P (x ∩ z) (77)

P (x)=− (
P (z)

1− P (z)
) (78)

expP (x)= ' S(z) (79)

P (x)=− (
P (z)

1− P (z)
) (80)

P (z)=
z

1 + z
=

1

P (z)newi
(81)

ln(P (y)) = HR(Logit(Ynew)) (82)

expln(P (y))=HR (83)

2.10 Results: Effect Modification of INHANCE for Nonsmokers

Effect Modification analysis of this study, with PROC IML, shows significant P < 0 with alpha=.05
hence, the null of homogeneous odds is rejected and calculates values needed for the PROC MIXED al-
gorithm in SAS. PROC MIXED for effect modification Agravat (2011) has P < 0.0001 for chi-square and
P < 0.01 for F-statistic (a multivariate statistic) for ”aem” indicating that the null is rejected and effect
modification exists which is a benefit over other statistical regression methods not meant for random
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effects. One may conclude that there are different risks for head neck cancer for exposure nonsmoking
according to levels of race. Since -2LL is 21.5 there is a good model fit with the ”aem” method using O
statistics and matrices Agravat (2011). The conclusion is that according to level of race (non-Hispanic,
black, and Hispanic), the result is different risks exist for nonsmoking vs. nondrinkers by race for head
neck cancer hence the homogeneous odds null is rejected and effect modification exists. In support of
this new effect modification method is the power of ”aem” which is 100 percent by exposure non-smoking
(see figure 2).

The Breslow Day test has P < 0.06 and fails to reject the homogeneous odds ratio null. The conclu-
sion is there is no effect modification compared to the author’s P < 0.0001 at alpha=.05 or reject the
homogeneous null stating that there is effect modification with this study question of effect modification
by non-smoking vs. non-drinking. The Hispanic race or strata 3 has chi-square P < 0.98 or fails to be
independent an assumption of the logistic model for regression and other fixed effects methods disqualify
these tests that are standard. Cancers of the oral cavity are the more serious in terms of relative risk
, .19, in the never smoking never drinkers population adjusted for age, race, education, center, years of
smoking cigars or pipes; followed by relative risk of .066 for oropharynx/hypropahrynx (not including
central Europe); relative risk of .05 for oral cavity and pharynx; and .022 relative risk for larynx cancer
in a random effects model Hashibe et. al.(2007) all show risks greater than 10 percent variation for the
different types of cancers involved in this study. Cancer rates are different for race, however race is also a
factor that may compound the seriousness of race as a risk factor for head neck cancer and the exposure
nonsmoking vs. nondrinking.

2.11 Confounding Analysis of INHANCE for Nonsmokers

The new formula of Oc statistics for confounding followed by the PROC IML CODE explaining the
procedure in the INHANCE dataset for nonsmokers (International Head Neck Cancer Epidemiology)
supplemented by the new SAS algorithm using PROC MIXED is meant for confounding analysis of this
trial on the outcome head neck cancer for the exposure no smoking by race being non-Hispanic, black,
and Hispanic. The results indicate that since both the ”acov” variable P < 0.0001 for type 2 and 3
tests effect and zxy has P < 0.0001 are significant (in figure 3), hence one may conclude that for fixed
effects there is confounding by race. There is also confounding between outcome head neck cancer, and
confounding variable race for type 3 effects for fixed effects with coefficients set to 0,which may let one
conclude variability may exist between all parameters when different from 0 due to P < 0.0001 of the
chi-square, and F-statistic’s P < 0.0001 making the need of accurate x-rays or other laboratory reports
more significant. If there was an error in this study, despite randomization, which was expected to be
avoided normally then there may be confounding Szklo, Nieto (2007). One does not normally expect
that races will show differences for head neck cancer rate as is found due to non-smoking. Confound-
ing in the INHANCE indicates that for head neck cancer as outcome, the exposure of nonsmoking vs.
non-drinking are significantly different showing risk variations due to the potential confounder by more
than 10 percent with significant 95 CI. Race will confound the exposure of non-smoking for head neck
cancer. An inference regarding the exposure related to one may infer a time correlation for this effect
resulting in head neck cancer. Hazard analysis is shown that strata 1 of non-Hispanic has greater risk of
cancer by 25 percent, vs. 4.6 percent over a period of time, in the question of whether the exposure of
nonsmoking vs. non-drinking causes increase of head neck cancer for black race, and 1 percent increased
risk for Hispanic race. There is confounding hence the study shows confounding by race. The ”acov”
variable P value criteria may be useful in the future for testing for confounding in mixed, random, or
fixed effects with good fit because of its statistical value. In this study, the Null Model Likelihood Ratio
Test shows that P < 1, therefore the null of homogeneous variance is not rejected for this new procedure
for confounding with PROC MIXED and is important when there is risk. The ROC curve shows that
the confidence in the test is good because the sensitivity is at 100 percent and C statistics is 1 which
is excellent after data transformation method of the author. The power for the ”acov” variable is 78
percent using PROC GENMOD (SAS)r using link log and the distribution is geometric.

proc genmod data=nonsmokernew descending ;

weight count;

class ca;

title2 ’Power of nonsmoker count data of INHANCE’;
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model cases= zxy acov / link=log dist=geometric type3 ;

ods output type3=tests;

run;

data power; set tests;

format chisq 6.5;

test = cinv(0.95,1);

power = 1-probchi(test,1, chisq);

proc print data=power;

run;

Criteria for Confounding:

1) The strength of association of risks across strata have

to be different by 10 percent or more.

2)The risks have to be consistently different across strata

different by 10 percent or more.

3)The confidence intervals have to be statistically significant.

4)"acov" has P<alpha for either chisquare or F-statistic significant

2.12 Comparison of Effect Modification and Confounding Analysis of
INHANCE for Nondrinkers and Nonsmokers

Analysis of the effect modification and confounding of nondrinkers vs. nonsmokers as exposure the
conclusion is that while there is effect modification P < 0.0001 and P < 0.0091 for ”acov” Agravat
(2011), there is confounding by no alcohol drinking vs non smoking P < 0.0391 chi-square P < 0.1081
for F-statistic for ”acov” variable for type 1 and type 2 effects (see figure 7) that is not significant at
alpha = .05. The chi-square statistics are significant for both effect modification and confounding. For
the exposure no smoking vs no drinking, the strength of the P value is more significant in terms of effect
modification and confounding. The respective P values are: P < 0.0001 and P < 0.01 for chi-square and
F-statistic for ”aem”. For confounding, the P < 0.0001 P < 0.0001 for chi-square and F -statistic for
”acov”. This presents a very important situation for the problem of exposures of drinking and smoking
for head neck cancer because both may be risk factors since the question of the effect of actually drinking
and actually smoking and combined may be worse for the outcome head neck cancer by exposure by race
which i the multivariate statistic for nondrinking and is not significant for the exposure of nondrinkers
and head neck cancer. Perhaps the exposure is not independent of the outcome that is head neck cancer
a as supported by the lack of significance of the confounding variable since P < 0.1081 for nondrinkers
and confounding.

Comparisons of Standard Methods vs. New Method Agravat’s Method may show promise
for small, moderate samples, and for larger samples, non-normal/normal distributions with advantages
demonstrated by higher power, better C statistics, and moderate -2LL. Breslow Day and other methods
are not meant at all for small sample sizes and especially for distributions like hypergeometric, which
involve accounting for time, despite relying on count datasets that are similar to Agravat’s method. The
common error for Breslow Day for non-normal/normal, hyper-geometric distributions is ”data are too
sparse” or simply do not work except for fixed effects that have large sample size. Agravat’s method

Table 5: INHANCE Comparison of Effect Modification and Confounding
Exposure Chi-square(EM) Chi-square(C) F-Statistic(EM) F-Statistic(C)

( No) Drinking / Smoking P < .0001 P < .0391 P < .0091 P < .1081
( No) Smoking/ Drinking P < .0001 P < .01 P < .0001 P < .0001
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data nondrinkeracov;
input cases ca zxy xzy acov count;
datalines;
1 0 1 1 1 795
0 1 1 1 609.61 2586
1 1 332 569 1 763
0 0 1913 3279 0 4397
1 0 1 1 1 111
0 1 1 1 195.38 233
1 1 27 46 1 62
0 0 104 178 0 238
1 0 1 1 1 40
0 1 1 1 128.81 152
1 1 20 34 1 45
0 0 74 127 0 170
;
run;

proc mixed data=nondrinkeracov;
class ca zxy;
weight count;
model cases=acov zxy/solution ddfm=satterth covb chisq htype=1,2;
random int/type=un subject=cases;run;

Type 1 Tests of Fixed Effects

Num Den

Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

acov 1 4 0.96 0.96 0.3264 0.3820

zxy 6 4 9.15 1.53 0.1651 0.3555

Type 2 Tests of Fixed Effects

Num Den

Effect DF DF Chi-Square F Value Pr > ChiSq Pr > F

acov 1 4 4.26 4.26 0.0391 0.1081

zxy 6 4 9.15 1.53 0.1651 0.3555

Figure 7: Inhance Confounding for No
Drinking vs. no Smoking
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allows for inference of the study question when looking at the parameter that may involve the exposure
and interaction term for variables when evaluating the risk from perspectives for the outcome, because
the existing technique, Breslow Day test, does not work for these conditions leaving the statistician
in the dark regarding causal inferences of heterogeneity, random effects and risk statistics, allowed in
mixed effects or random effects analysis. Many risk estimates don’t allow time inferences for case control
studies. However causality can be inferred through generalized random effects inferences.

The question of risk can be addressed for non-normal data where cases with Agravat’s method are
analyzed better for regression, due to low -2LL. The author uses a survival function in a novel way
for estimates of beta when beta can obviously be nonzero and censored events will be accounted for,
hence regression other than linear and logistic models are possible more effective for unbiased risk statis-
tics. ”Acov” is supported by the ROC curves demonstrating that the area under the curve gives the
evidence that the power, and C statistic are more in favor of the new method because they are well
above Breslow Day’s (C-statistics .5 for the count data), and sensitive to standard errors (Agravat
(2009)). Confidence of the the author’s new method may follow due to better sensitivity, due to better
C-statistic) of the Agravat’s method that works consistently for the non-normal distributions, but data
could apply to linear data pending on Shapiro-Wilks statistics and other statistics, allowing inferences
to be made regarding interaction and effect modification based on power and C-statistics. The Proc
Mixed application, produces significant results that are accurate and reliable with more confidence from
better results that may be potentially significant for future applications in studies and lower -2LL for
this new method. The fact that Agravat’s method works well and provides results for various distribu-
tions means that a broad use of this method is warranted if the need for random effects analysis is needed.

2.13 Comments on Matrices, Probability, and Concentric Circles

Agravat Series, Matrices, and Concentric Rings For a square matrix, which is also possible, for
the matrices the commutative property of multiplication shows that if E1 or E2 are singular when 0
is a possible determinant when dealing with the O statistics determinants of certain elements, then if
E1 and E2 are singular then concentric rings are possible which may be related to how the matrices
shown demonstrates the involvement of complex and real numbers which shows properties of being both
nonsingular and singular because of nonzero values and being square having 0 values Agravat (2011) (see
figure 8 for similar results with π(t) ) with the conditional probability algorithm . One ”n” represents
conditional probability algorithm of Agravat, and one for the n exponent. The matrices produce and
work that include probability formula that are significant for inferences.The new P(t) allows calculations
of floors and enclosure in a plane.The Probability or Pi using this P(t) theorem also produces a concentric
circle (see figure 8, and 9).The outside ring represents P(t), (probability of time) and the inside P(z),
(probability of event).The literature review of topics included ” Ideals Containing Monics” Nashier et.
al. (1987) and a ”Note on Perfect Rings” Nashier et. al. (1991).

New Probability Algorithm and Distribution for Time and Event z The plot of time and
probability of event for conditional probability algorithm of the author shows that times and slopes can
be calculated for an event for instance at times given. The slope for a n = 9 and the i’s will be shown
in the plot for i from 5 -9. One can see for the probability algorithm given that conditional probability
events can be seen. The changes can be seen as well. Tests can potentially be run for three body
problems since the probability Pz is for three levels relating to Poincairè conjecture. The Agravat’s
algorithm can be for any levels Agravat (2011) and involve more than bivariate end point with infinite
levels of conditional probability!

P (n|i)=(n− i) ∗ (n− i)
(n− i)n

(84)

P (n ∩ i)=P (i) ∗ P (n|i) (85)

P (n ∩ i)=P (i) ∗ (n− i) ∗ (n− i)÷ (n− i)n (86)
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Figure 8: Agravat’s Concentric
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Figure 9: Time,Probability,and
Concentric Circles

Comments on New Probability Algorithm and Distribution: Agravats New Probability
Mass Function

The new probability algorithm and distribution in Agravat (2011), allows the visualization of the
probability mass function.The equations can be made for calculation of the probability mass function
important in statistical physics for giving probabilities. Since the capacity of the new probability distri-
bution and algorithm is very significant and far reaching, the new probability mass function may have
significance also. The PMF can be used to describe the function that a particular value can be found for
discrete probabilities if using bivariate distribution. Below is the conditional probability algorithm of the
author that calculates the probability of event z given i Agravat(2011). The Agravat distribution can be
used to show the probability mass function depicted in MSEXCEL. Agravats distribution is also included
for comparison of PMFs. Agravats distribution can be binomial if n = 2. P (z) = (P (z|t)/P (t) − 1)
calculates Probability of event z based on probability of time not the P(t) used with the Agravat distri-
bution for Probability Mass Function. The equation for probability of event given time for probability of
time is thus shown in equations (97 and 132)with equations (97, 141-145, and 146-150). The actual beta
estimates yield an answer of: .641 in terms of probability (eq.100)(at t = 0) which involves equation (97),
and 1.48 for equation (142) (withP (z|t)/P (t)) and is 1.19 from equation (142)at (t = 1 year) which is a
decrease of 19 percent in time for probability of event given time over time of 1 year. For comparing P(t)
from eq. (100) and P (z|t)/P (t) eq. (141) the answer for eq. (142) or P(t) is 5.79 approximately equal
to probability of event for white race (5.78). Plus Bayes proof that a probability of event given another
equals is approximately that the equation for the probability of that event is correct (P (z|t) and P(z))
for Agravat’s conditional algorithm where the natural logs are equated for the previous two conditions
eq.(107). For probability of time,for time at zero and mutually exclusive events,time has a value of .641
at time equaling 0 and 1.28 at time equaling 1 year with equations (97 and 142). With the mutually
exclusive events and independence assumption the value of time is 3.12 years based on equation (120) in
section 3.2. Hence, Agravat’s conditional probability algorithm has values of .64 and 1.28 for respective
times of 0 and 1 and 1.48 years and 1.19 for time equaling 0 and 1 eq.(142). Events are more close to the
probability of race given time over probability of time is the inference regarding head neck cancer and
the exposure nonsmoking vs. no drinking for Agravat’s conditional probability algorithm (time = 1.24)
and time equals 1.19 at time of 1 year for eqs.(142 and 97). For equations(142 and 97) at time 0 and
1, the results are -2.08 and 1 years at times 0 and 1 years while eqs.(142 and 97) yield values of 2.30
and .92 for time equaling 0 and 1 years respectively. Times agree that after one year the methods of
Agravat’s conditional probability and newly derived relation eq.(142) are roughly equivalent at values
of 1 and .92 years for both the Agravat’s conditional probability algorithm for comparing independent
and events given time over probability of time with the latter having a lower value after 1 year with
a difference of 8 percent for head neck cancer for nonsmoking no drinking for white race. Hence the
time mechanism for head neck cancer for nosmoking nodrinking for white race is more independent (at
time = 1) than mutually exclusive though not at time = 0. Plus confounding is known to exist so that
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the race is known to change the risks for head neck cancer independent of exposure with P< 0.0001.

New Corollaries to Heisenberg’s Uncertainty Principle

The author suspects that while the Agravat’s conditional probability algorithm is accurate and reli-
able, that with reference to Heisenberg’s uncertainty principle comment in ”Formulas Calculating Risk
Estimates and Testing for Effect Modification and Confounding”, the author further stipulates: 1) what
exists in one state will not exist in others, when there is equilibrium or motion with regards to commu-
tative properties of momentum and time; 2) that there may be commutative properties of the matrices
but the system tend to disorder which may lead to decreases in energy, and order which may lead to
increases in energy level without assuming independence in Agravat’s algorithm and distribution; 3)cer-
tain phenomenon of nature such as light, e.g. rainbows are transmutable as in the prisms. The author
believes that the Agravat series transformation of Dirac and special relativity of Einstein Agravat (2011)
is important to gravitation in outer space where gravity is greater in the solar system between planets.
Planets within a gravitational field and the time such as estimated time= 0 for events become more
important for infinite events. This understanding allows for the conception of actually how much energy
there is in space. Graphs and correction of special relativity in figures 12 and show that energy decreases
with increases in probability. The greater energy is at lower probability levels hence the question of
laws being appropriate to the solar systems in general may be questionable. Where electromagnetic
and gravitational fields are greater there life may not be supportable. Where life is supportable, the
laws of physics with respect to energy and gravitation may not be the rule because levels of forces in
space are greater despite being in ”zero gravity”. The concept or belief in entropy increasing is relative
to other events and defined as the disorder in a system. The first corollary has importance because
Heisenberg Uncertainty Principle states that one may not know both the position and momentum of a
particle. However, the author believes that separation of events by equilibrium and motion will clarify
this situation followed by the second corollary. As the system tends to disorder there is a decrease of
energy; and, if going towards order there is increase of energy at fixed points compared to overall system
energy. As during expanding space,where there is no limitation or assumption of no harm,one may pos-
tulate that then new order (disorder) may increase energy Agravat (2011) for large changes in time or
distances. Bose did not state photon behavior was independent Agravat (2011). Less perturbed systems
may increase order or disorder and involve hypergeometric properties in terms of waves. The author be-
lieves that Einstein’s special relativity is appropriate for his time travel hypothesis. However, subatomic
hypergeometric forces as well as the interaction between dependent and independent may propel some
particles faster than light which the author perceives is a medium and may potentially separate such as
by refraction that happens in water. Gravitation or motion of particles if time is included and potential
energy (mgh) is included, when destruction happens the potential energy may disperse to other particles
which may sum to be faster than media such as light, and some energy is propagated as waves at that
time.

f(z)=

∞∑
n=1

−2

z2
− 4yn

z2
+

4yn+1

z2
(87)

f(z)=
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n=1

6

z2
− 8yn

z2
− 8yn+1

z2
(88)

f(z)=
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n=1

−12

z2
+

16yn

z2
+

16yn+1

z2
(89)

Table 6: Agravat Series and Matrix
3rd 4th 5th

Condition 1 -33.52 -6.67 -17.87
Condition 2 -42.15 -127.02 -241.51
Condition 3 -8.41 -36.58 -7.77
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Agravat Series and Commutative Properties of Matrices Given by the formulas in equations
of Agravat series Agravat (2011) for 1st, 2nd, and 3rd columns respectively when n=3.16 and: z=.25,
y=.25 (first row); n=3.16,z=-1.532, y=-1.422 (second row); n=3.16, and z=.468, y=.578 (third row) (see
figure . The top right 2x2 the matrix multiplied by the bottom left 2x2 matrix are the elements from the
covariance matrix. Create the matrix first as shown in the table with Agravat Series. Next calculate the
covariance. The implicit derivatives are hyper-geometric and may involve natural log so calculations are
easily done from beta estimates. Agravat series shows that commutative properties do hold for matrices
that conflict with Heisenberg’s uncertainty principle regrading matrices. The ideal N statistic values
are derived by solving the fifth implicit derivative or Agravat series for z and y set equal to each other
and set to 0. The result is both z and y will equal .25. The base ten of log for n set to 2x.25 gives
n = 3.16. Thus that becomes the ideal exponent. The Agravat series as demonstrated before has ability
to portray the Poincairè conjecture and may be appropriate to explain the commutative properties of
the spheres different from hypothesized Heisenberg who did not calculate commutative porperties.Thus
hyper-geometric properties of the series may hold within the spheres. This procedure may be set to
replicate commutative properties of matrices showing that addition, substraction,and multiplication of
matrices are possible (see figures 10 and 11 for derivation and output)!

proc iml;

COVM = 3|| 4||5;

fzm={

-33.52 -6.67 -17.87,

-42.15 -127.02 -241.51,

-8.41 -36.58 -7.77};

fzmT=fzm‘;

print fzm;

sscpsfmT=fzm*fzm‘;

cov=sscpsfmT/8;

print cov;

proc iml;

* Read data into IML ;

use passlungexp5d;

read all ;

EL1={

821.98439 9529.7229,

83.092713 859.67573};

EL2={

821.98439 83.092713,

9529.7229 859.67573};

E1=EL1*EL2;

print E1;

deter=det(E1);

print deter;
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Condition 2:actual z and y and calculated n

Condtion3: add 2 to beta estimates

Figure 10: Ideal Beta Estimate Proof for Z and Y

fzm

-33.52 -6.67 -17.87

-42.15 -127.02 -241.51

-8.41 -36.58 -7.77

cov

185.92703 821.98439 83.092713

821.98439 9529.7229 859.67573

E1

91491277 8260772.4

8260772.4 745946.76

deter

7.26083E9

E2r

682562.74 7904716.3

7904716.3 91554661

deter

7.26083E9

Es

1643.9688 9612.8156

9612.8156 1719.3515

deter

-89579664

Esr

1643.9688 9612.8156

9612.8156 1719.3515

deter

-89579664

Figure 11: Agravat Series and Commutative Properties of Matrices
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E2r=EL2*EL1;

print E2r;

deter=det(E2r);

Print deter;

Es=EL1+EL2;

print Es;

deter=det(Es);

print deter;

Esr=EL2+EL1;

print Esr;

deter=det(Esr);

print deter;

Ess=EL1-EL2;

print Ess;

deter=det(Ess);

print deter;

Esrs=EL2-EL1;

print Esrs;

deter=det(Esrs);

print deter;

EsrsT=Esrs‘;

print EsrsT;

deter=det(EsrsT);

print deter;

3 Discussion

What will be appropriate when in the case of variables where the probability is not binomial? One may
utilize a cumulative distribution or glogit in logistic regression to observe the patterns of relationships
of values. The probability equation of the author, for three level of confounder, is appropriate for odds
ratios, relative risks, and hazard ratios and related calculations. In these risk statistics calculations,
there are also no restrictions on prevalence being 10 percent or less or the need for time points with

Table 7: INHANCE Comparison of Effect Modification and Confounding
RACE CASES (Never Drinkers) Controls CASES (Never Smokers) Controls

Non-Central European 795 2586 763 4397
Black 111 233 62 238

Hispanic 40 152 45 170
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these new methods for survival analysis. For hazard ratio, which deals with the baseline hazard and
the chief covariate over time, there may be an algorithm, Agravat’s conditional probability algorithm
is more appropriate than binomial where there may not be confidence in the results due to the lack of
an appropriate distribution to deal with heterogeneous covariates that are not normal for the outcome,
but can be selected during the Novel R code, that allows events to occur to be taken into account and
is a parametric method procedure. The most appropriate distribution can be chosen to obtain the best
results. The hazard ratio from the equation (3) is .21 (95 CI: .32,.14 ) which means the risk for head neck
cancer increases for one unit change in race level is 21 percent more for head neck cancer from no smoking
due to race being non-Hispanic and statistically significant from not smoking. Subsequently, the strata
2(black) and 3(Hispanic) from equation (3) yield hazard ratios increases by .046 (95 CI:.069,.03) and
.010 (95 CI: .015, .006 ) respectively also statistically significant for not smoking. The lowest cancer rate
is in Hispanic race of the three for head neck cancer due to non-smoking as exposure. The chi-squares
test shows P < 0.0001 for cases, zxy, and xzy, new variables and is statistically significant, hence the
author states there may be independence as well as randomness among these variables. The probability
algorithm may show nonlinear regression to be the case instead of linear due to probability value over
1 or 5.78, 27.91, and 130.2 for the strata’s one, two, and three due to higher probabilities from the
probability algorithm Agravat 2011. Higher probabilities calculated by P (z)new yield more changes in
the hazard logits that illustrate the problem for race and outcome head neck cancer for the exposure
nondrinking vs. nonsmoking.

In the article, ”Formulas Calculating Risk Estimates and Testing for Effect Modification and Con-
founding”, the equation regarding Bz=0 and By not equal to 0 gives odds(z) = (2 − y)/(1 − y)after
inverse equations and incorporating the standard definition of probability for binomial covariates. Thus
with Bz fixed to 0, no harm is assumed. Since there is confounding by race in this study of INHANCE,
P < 0.0001 for ”acov”, the calculation of the hazard ratio may be a useful statistic when the risk of no
harm is possible for this potential non-confounder trials at three levels and independence of exposure
non-smoking is rejected and hypothesis is rejected. Using this equation and value and the P (z) new
formula, one observes that the P (z) new is also 1 (eq. (4) in terms of odds (z)). Finally the new hazard
ratio equals 2.31 for head neck cancer with races fixed to βz = 0 for nonsmoking vs. non-drinking indi-
cating statistically higher risks and inferred for Bz = 0 and By 6= 0. The baseline hazard as calculated
by the author’s analysis shows a value of -2.30. Comparing the odds(z) above to the hazard ratios for
the three strata (see table 9 and 10) using equation (3), there is a great difference comparing the hazard
ratio when no harm is assumed. One might have thought that the risk is similar when assuming no
harm due to non-smoking. Actually the risk is more for binomial probability for hazard ratios for head
neck cancer for not smoking than the new probability formula with independence (HR(z) is .21) when
assuming no harm and the hypothesis is nonnormal than the multinomial distribution calculations. The
author is based on independence assumption Agravat 2011.

Pathology, Pathogenesis, and Treatment The risk factors of head neck cancer normally include
smoking, alcohol, and human papilloma virus, mutation of TP53 gene, that is influenced by heavy drink-
ing and heavy smoking including betel nuts which are commonly used in Asia Maur Bunting-Blaustein
(2011). Other factors are vitamin deficiencies such as A and iron in Plummer-Vinson syndrome. Hu-
man Papilloma Virus is associated with squamous cell carcinoma while Epstein-Barr virus is linked with
the non-keratinizing type, (type II and type III undifferentiated, nasopharyngeal carcinoma endemic to
Africa and Asia). Squamous cell carcinoma is associated with 25 percent of HPV and 60 percent of
oropharyngeal carcinoma of the lingual and palatine tonsils. Over amplification and cell expression is
associated with tumorigenesis. CDKN2A is associated with regulating the cell cycle. High production
of Epidermal Growth Factor Receptors are associated with head neck cancer as well and poor prognosis
is associated for higher α tumorigenic transforming factor levels. Treatment of head neck cancer is done
with cetuximab, ertolinib,or docetaxol combinations.

Tp53, a tumor suppressor gene, has been found to be involved in the etiology of head neck cancer as
well as other cancers such as lung,breast and colon cancer. The lack of TP53 gene may be secondary to
mutations or deletions in genes.Degradation of p53 and regulation of p53 is crucial to cell regulation and
may affect gene function.Enhanced degradation of p53 is linked to complexes of viral proteins. The E6
protein of high risk HPV viruses may result in increased p53 degradation. HPV DNA that is oncogenic
is present in over 80 percent of cervical SCC and association with p53 is found to transform viruses.P53
has a negative correlation with tonsilar carcinoma (P = .03). HPV is strongly associated with primary
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tumors of oropharynx (P = .005). There is also a high correlation with HPV and (P = .0001) SCC of
tonsil. 12.5 percent of oropharyngeal cancers that are not in tonsils were positive with HPV.There is an
inverse relationship to heavy smoking history with patients with HPV (P = .05),though there is a strong
association of heavy smoking history and p53 mutation.There is a correlation of HPV infection and race
(P = .015), where white patients were more likely to be HPV positive. The author’s results also conclude
that there is more risk by hazard ratio of .216 (95CI: .32, .14) that is statistically significant for white
race or non-central European versus other races, black and Hispanic. The new measure of the author
where baseline hazard and probability or with survival time comparison shows greater heterogeneity
(-.868 vs -1.07) (see table 9 and 10). Abnormal p53 has been found to be in 33-100 percent of head neck
cancer specimens Haraf,Nodzenski,Brachman, et.al.(1996) as supported by literature this evidence in
suggests that the exposure of alcohol and human papilloma virus are statistically significantly associated
with head neck cancer where heavy drinking is the exposure. Hence the gene TP53 which is significant
statistically for race and human papilloma virus may play a role that the exposure heavy drinking may
possibly need to be analyzed in the future to determine the mechanism.The statistics of analysis for
probability may be based on independence assumption or independence with respect to time and event
per probability of time. In section 2.13 the equation for probability of event given time over probabil-
ity of time shows that the mutually exclusive events may support the possibility of head neck cancer
from nonsmoking/nondrinking by race for the white race according to time probabilities being closer for
the comparison of Agravat’s probability algorithm result vs. mutually exclusive events probability in
equation (69) vs. equations (132 and 133) with values of (see equations 131-133) -1.42 vs. -.64 and -.52
being closer. The author also proves that the probability of mutually exclusive events equals 1 ,where
all events may occur, not 0. The exposure according to Haraf,Nodzenski,Brachman, et.al.(1996) states
the smoking is inversely related to human papilloma virus (P < 0.05).

The correlation of cases of head neck cancer with race is 0 as well as exposure nonsmokers from
PROC CORR and PROC FREQ gives lack of independence based on Pearson correlation statistic and
p value. R square is 0 for all variables. These standard statistical procedures reveal little in this case for
this study on head neck cancer. The conclusion may show the difficulty of study of this disease from the
point of view of heterogeneity and multi-collinearity as has been done in the past MacComb, Fletcher
(1971). Predicting the outcome, head neck cancer, for risk factors and possible interaction between
these covariates based on race may be difficult without taking into account the interaction based on the
variable race by strata if necessary.

The new measure value is -5.01 for strata 1 in INHANCE (non-central). For the black race, the new
measure is -12.19, and -15.91 for Hispanic. The corresponding survival time for strata 1 is .80; strata 2
has survival time of .95 for black race; Hispanic race has survival time for event of .98 and new survival
time equation (11). In this case βz = −1.532 and βy = −1.422. The variability of By is not limited to
the binomial distribution and the outcome statistic can be significant for handling more heterogeneity
with three confounding levels of race where data is non-normal for testing hypothesis for extreme prob-
abilities that are nonnormal.

A New Measure for Heterogeneity The survival statistic of −HR′(z)/P (z) allows the first strata’s
hazard function for all survival calculations (table 9) the value is -.868 for non-Hispanic. This new statis-
tic demonstrates that the measure of protection for negative derivative of Hazard Ratio over probability
of the event with respect to confounder is lowest because it is -.868 for non-Hispanic subjects. For black
race, the measure is -.179 or next lowest; then Hispanic group has (strata 3) a value of -.038 respective
to first group. Using the standard definition of P = z/1 + z in the place of P(z) in Agravat (2011)
and hazard ratio equation (3), the hazard ratio calculated compares 2.35 is calculated that compares to
the odds ratio value 2.3. The baseline and equation for hazard ratio equations of the author are more
sensitive. In fact the possibility of calculating risk based on no harm assumption may be a paradox in
time because the baseline and stratified values that are based on actual values rather than assumption
of standard errors being equal when regarding the subjects is better understood from the interaction
of the exposure nonsmoking vs. nondrinking for head neck cancer and race and effect modification and
confounding. Perhaps, there may be more factors over all to produce this risk from non-smoking for head
neck cancer in black race other than race such as the exposure for inferences that need to be analyzed
at stratified levels of non-normal data. The Hispanic race has slightly higher statistic versus strata 1
or 2. The survival time gives a measure of length of survival at time = 0 to event (at baseline) or a
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potential fixed time point. Still the survival times are lowest in non-central Europe, .80; then, next is
the black race with .95, and highest with Hispanic a survival time of .99 though the new measure shows
that other new survival measures discussed imply that the events and survival are actually different at
baseline (see tables 9 and 10). The new statistic, −HR′(z)/P (z)/S(z) shows a nonlinear relationship a
measure of heterogeneity due to race. This new statistical measure of risk versus probability compared
to survival time gives a value of -1.07 for central European group, -.188 for black group, and -.038 for
Hispanic group where greater risks among black, and non-Hispanic vs. Hispanic for baseline hazard vs.
probability respectively exist. One may state that the difference in the new measures exist for the strata
1 where the statistics have values of -.868 to -1.07 for the the first strata and the stratified comparisons
shows little difference hence there may be more heterogeneity for the first strata for non-central European
race (table 9 and 10) that has higher hazard ratio of .216.

If the individual strata is compared independently, then the distribution analysis shows greater dif-
ferences for non-central European race. The new measure for strata’s: 1,-5.01; 2 or black group is -12.19;
3, and -15.91 for Hispanic group. The corresponding measure compared to Probability of event is -.868,
-.437,and -.122 for strata’s one, two and,three races being non-Hispanic, black, and Hispanic groups.
This statistic versus probability compared to survival time is -1.07, -.46, and -.123 for the non-Hispanic,
black, and Hispanic groups. Compared to the view of the first strata which may involve bias the re-
sults show less risk for head neck cancer from nonsmoking due to race, and is worse for black subjects
and Hispanics compared to probability and actual strata’s hazard functions which is alarming because
the values are closer to 0 that hazard ratios are in fact reversed for seriousness of event from hazard
ratios. Confounding exists by race P < 0.0001 in ”acov” variable for chi-square showing an increase in
heterogeneity. This negative relationship with confounding,”negative confounding,” may decrease the
prognosis of subjects because of the expected increase of extra variables that may have an impact in
head neck cancer and exposure nonsmoking vs. nondrinking. Compared to Survival time, the difference
are more negative values for black and Hispanic subjects and higher risk for non-central European group
due to hazard ratios (see table 9 and 10 ).The S(z) is more sharp for the latter groups. All races treated
independently show a worse scenario of baseline hazard vs. probability and survival than based on the
first strata a statistic needed to be followed more closely (see table 9 vs table 10). Since the confounding
and issue of interaction of the new calculated P values for effect modification and confounding including
both the chi-square and F-statistic and Ocinf statistic there has to be more close attention to the risks
and for interaction of the exposure non-smoking vs non drinking than non-drinking vs. non-smoking for
baseline hazard.

In this case-control study (INHANCE), there is a possibility of residual confounding where there
are residual differences between cases and controls. In one step where nondrinkers or nonsmokers are
compared in one datable versus each other, the relative risk is .23 in a fixed effects analysis using the
logistic model for cases over controls Hashibe et. al.(2007). In the random effects analysis Hashibe et
al.(2007), for never smokers to never drinkers directly the relative risk is .33 adjusted for age, sex, race,
education, center, and years of smoking cigars or pipes. This analysis with hazard ratios for strata one
for race compared to the relative risk .23 is similar question of never smokers compared to the question
of head neck cancer for race being non-Hispanic or largely central European population. Strata two has
hazard ratio equal to .066 for black race that were a small segment of the various populations studied.
The Hispanic segment had hazard ratio equal to .01 compared to the same datable from INHANCE
for fixed effects and are different across strata by much more than 10 percent. In that analysis of the
case-control study, race is compared to the status of being ever drinkers vs. never smokers for head neck
cancer who never used tobacco or were never drinkers.

The analysis of head neck cancer by exposure nonsmoking supports heterogeneity existing. The
Shapiro-Wilks test shows non-normal data for outcome of cases of head neck cancer P < 0.0003. The

Table 8: Probability, Hazards and New Distribution Analysis for INHANCE and Non-smokers Based
Compared to Race Non-Central European

Strata P(z) HR(z) -HR’(z) -HR’(z)/ P(z) S(z) -HR’(z)/P(z)/S(z) F(z)
(1)White 5.78 .216 -5.01 -.868 .805 -1.07 .19
(2)Black 27.91 .046 -5.01 -.179 .95 -.188 .05

(3)Hispanic 130.2 .010 -5.01 -.038 .99 -.038 .01
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Table 9: Probability, Hazards and New Distribution Analysis for INHANCE and Non-smokers based on
Individual Strata of Non-normal Data

Strata P(z) HR(z) -HR’(z) -HR’(z)/ P(z) S(z) -HR’(z)/P(z)/S(z) F(z)
(1)White 5.78 .216 -5.01 -.868 .805 -1.07 .19
(2)Black 27.91 .046 -12.19 -.437 .95 -.46 .05

(3)Hispanic 130.2 .010 -15.91 -.122 .99 -.123 .01

Table 10: Traditional Hazards and Survival Analysis for INHANCE and Non-smokers Based Compared
to Race Non-Central European

Strata HR(z) S(z) F(z) Λ(z) λ(z) hz0
(1)White .216 .805 .19 .094 5.74 26.57
(2)Black .046 .95 .05 .022 22.54 490

(3)Hispanic .010 .99 .01 .004 100.08 10008

type 2 tests are significant for fixed effects thus rejecting fixed effects model for ”acov”. The chi-squares
are equal at 63.46 and F-statistics hence the denominator is approaching infinity explains the equivalence
of the value. The type 3 effects model is also rejected for equal Beta estimates to 0 hence one suspects
random effects because the P < 0.0001 for chi-square and F-statistics for ”acov”, therefore again one
suspects a heterogeneous model to explain the effects of head neck cancer by exposure non-smoking for
race and the Oc statistics is appropriate for calculating asymptotic chi-square for this heterogeneous
data. Since the probability is also greater than one, one suspects that there is non-normal probability
and a binomial formula for linear probability is not appropriate and the equation is appropriate based
on independence proof of the author Agravat(2011).

The population is large for this study strata about 11592 still the Breslow-Day fixed effects test for
testing homogenous odds null is not appropriate because this is a random effects model case that may
be needed. Since there is effect modification and confounding as supported by P values for ”aem” and
”acov” one reports the stratified hazard ratios for hazard ratios and the subsequent statistics for hazard
distribution available with the author’s derivation as shown in tables 9 and 10. The baseline hazard
function vs. probability shows a different trend. The measure shows that the black race group has a
low value of baseline hazard vs. probability -.437 for black followed by -.868 for non-Hispanic and -.122
for Hispanic. Perhaps there is a difference in treatment or availability, or possibly prevention due to the
risk of smoking and nonsmoking for head neck cancer by race in the International Head Neck Cancer
Epidemiology study by race. Table 9 presents the survival statistics according to the effects for race
being white for head neck cancer and nonsmoking that can be considered fixed by race being white
and still random. Table 10 renders survival statistics that are appropriate for race and random effects
since heterogeneity is shown to exist as well as effect modification by exposure non-smoking for race
(for chi-square P < 0.0001, F-statistic P < 0.01) and confounding for chi-square P < 0.0001, F-statistic
P < 0.0001 by race for the outcome head neck cancer. The baseline hazard, hz0 has power of 74 percent
when comparing the outcome for strata and link =log for igaussian distribution with PROC GENMOD
with P < 0.0091. Hence there is a statistical significance for strata and baseline hazard without P (z)new
in the model as a predictor. The utilization of the first strata is comparable to binomial statistical
analysis because the results are directly compared to one strata or not while the latter is multivariate
and reflective of each individual strata.

3.1 Probability of Mutually Exclusive Statements and Agravat’s
Algorithm

P (z ∪ t)=(1)÷ (odds(z))− (odds(y))

(1− odds(y))
− (2lnz(t+ 1))÷ (P (z)− 1) (90)

P (z ∪ t)=P (z) + P (t) (91)
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P (z|t)=P (z ∩ t)÷ P (t) (92)

P (z|t)=(z − t) ∗ (z − t)÷ (z − t)z (93)

P (z|t)=z2 − 2z ∗ t+ t2 ÷ (z2z − (2z ∗ t)z + tz2) (94)

P (z|t)=2ln ∗ z(1− t) + 2lnt÷ (4zln ∗ t− 2z ∗ lnzt) (95)

P (z|t)=2lnz + 2zlnt (96)

P (z|t)=− 2lnz(t+ 1) (97)

P (t)=[P (z ∩ t)]÷ (P (z|t)) (98)

P (t)=[P (z) + P (t)]÷ (−2lnz(t+ 1)) (99)

P (t)=[(P (z|t))]÷ (P (z)− 1) (100)

P (t)=[(−2lnz(t+ 1))]÷ (P (z)− 1) (101)

P (z ∪ t)=[P (z) + P (t)] (102)

P (z ∪ t)=(1)÷ (odds(i ∗ z))− (odds(y))

(1− odds(y))
− (2lnz(t+ 1))÷ (P (z)− 1) (103)

The derivation of Probability of time and z the odds (z) or confounder obtained from Agravat’s
algorithm Agravat (2011)of probability that is conditional is derived as demonstrated where z and t are
mutually exclusive equations (42,44). This statement is similar to random effects. The inferences are
also related to the random effects model. From the probability statements, the new probability formulae
for probability of z given time and time are derived that may be useful for many applications of survival
statistics equation (44). The potential is there but the risk of varying the outcome y for a fixed non zero
level of z shows that time approaches 0 as time increases and y increases with z hence the problem of
risks that may burden any equilibrium or homeostasis stressing the body beyond its limits (see figure
10). The change in hazard ratios is: 1.59 vs. .21 for non-Hispanics; 2.53 vs. .046 for blacks; and 3.53
vs. .017 for Hispanics with respect to time 0. Of course, if the time becomes 0 then there is nothing
that one can do to the subject to improve the human condition though one can measure the probability
in the study for the confounder and time in term of random effects. For fixed effects the probability
substituted likewise for P(z) by P (z∩ t), the probabilities for strata 1,2,3 are 5.78, 27.91, and 130.2. The
hazard ratios change to .187, .084, and .016 at time 0. Each group maintains improvement a decrease in
hazard ratio after study versus at time 0 which show a significant change.

3.2 Tenets on the The Nature of Time Theorem Under Independence, and
Agravat’s Algorithm

P (z ∩ t)=P (z) ∗ P (t) (104)

P (z ∩ t)=(1)÷ (odds(i ∗ z))− (odds(y))

P (z)÷ (P (z)− 1)
(105)

P (z ∩ t)=P (z)2(P (z)− 1) (106)
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P (z|t)= 1

(P (t)2 − 1)
+ 1=P (t) (107)

1=P (t)− 1

(P (t)2 − 1)
(108)

1=
P (t)3 − P (t)

P (t)2 − 1
(109)

P (t) + P (t)2 − 1 + 1=1 (110)

P (t) ∗ (P (t)− 1)=1 (111)

P (t)2 + P (t)− 1=0 (112)

P (z|t)=(z − t) ∗ (z − t)
(z − t)z

(113)

lnP (z|t)=ln(z)− ln(zt) + 2Ln(t)− 2zln(z) + 2zln(zt) + 2zlnt (114)

=(ln(2− 2z)− 1) + 2lnt+ 2zlnzt+ 2zlnt (115)

=(lnz(1− 2z)) + 2lnt+ 2lnz + 2zlnz + 2zlnz (116)

=(lnz − 2zlnz) + 2lnt+ 2lnz + 2zlnz + 2zlnt (117)

=(3lnz + 2lnt+ 2zlnt) (118)

=(3lnz + 2lnt(1 + z)) (119)

lnP (z|t)=3lnz + 2lnt(1 + z) (120)

lnP (z|t)=3lnz + 2lnt+ 2zlnt (121)

P (z|t)=P (z) ∗ P (t)

P (t)
=P (z) (122)

lnP (z|t)=lnP (z) (123)

lnP (z)=3lnz + 2lnt+ 2zlnt (124)

explnP (z)=exp3lnz + exp2lnt + exp2zlnt (125)

P (z)=z3 + t2 + t2z (126)

P (z)− z3=t2 + t2z (127)

P (z)− z3=t2(1 + tz) (128)

t2=
P (z)− z3

(1 + tz)
(129)
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t=

√
P (z)− z3

(1 + tz)
(130)

t2(1 + tz)=P (z)− z3 (131)

lnt2(1 + tz)=lnP (z)− lnz3 (132)

t2=
P (z)− z3

exp1+z
(133)

t=

√
P (z)− z3

exp1+z
(134)

If Probability of event given time is based on classic laws, then using the Agravat’s P(z)new as prob-
ability equation, and equation for P(t), one can set the equation to 1 and mutually exclusive events
laws gives that the probability of time is hypergeometric and involves complex numbers. The solution of
P (z|t) using the new conditional probability algorithm Agravat (2011)shows it is proportional to square
root of P(z) minus z cubed divided by 1 plus t to the z power. Equation (123) shows that the probability
of event given time equals probability of event and supports the independence assumption of Bayes. As
exp(y) and exp(z) become larger, time becomes complex and for negative values of exponential of z and
y, time is positive and probability of z is large (see table 11). For the time squared approaching 0 values
of energy is decreasing along with probability of event (see figure 13). Time is largely involving complex
numbers and roots that increase with decrease of probability.

P (z)

P (t)
=P (z|t)− 1 (135)

P (t)=
P (z)

(P (z|t)− 1)
(136)

P (t)(P (z) ∗ P (t)− 1)=P (z) (137)

P (t)2 ∗ P (z)− P (t)=Pz (138)

P (z) ∗ P (t)2 − P (t)=P (z) (139)

P (z)=
P (t)

(P (t)2 − 1)
(140)

P (z|t)=P (z)

P (t)
+ 1 (141)

P (z|t)= P (t)

(P (t)2 − 1)
P (t) + 1 (142)

P (z|t)= 1

(P (t)2 − 1)
+ 1 (143)

P (z)

P (t)
+ 1=

1

(P (t)2 − 1)
+ 1 (144)

P (z)=
P (t)

(P (t)2 − 1)
(145)
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Table 11: Values of Time Squared and Probability for Agravat’s Probability of Time Formula and Beta
Estimates

Y Z Time
Probability

−2 −2 4.77
8.38

−1 −1 1.83
3.718

0 0 Omega
Omega

1 1
√

(−.1828)
1.367

2 2
√
−20.02

1.13

3 3
√
−148.39

1.049

4 4
√
−1096

1.01

5 5
√
−8103.0

1.006

P (z|t)÷ (P (t))=
−2lnz(t+ 1)

−2lnz(t+ 1)

P (t)

(P (t)2 − 1)

(146)

P (z|t)÷ (P (t))=
P (t)

(P (t)2 − 1)
(147)

P (z|t)=(P (t)2 − 1) (148)

P (z|t)÷ (P (t))=P (z)− 1 (149)

P (z|t)÷ (P (t))=
P (t)

(P (t)2 − 1)
− 1 (150)

3.3 Inferences on Time and Probability of an Event and Special Relativity

The bending of light as shown in ”Formulas Calculating Risk Estimates and Testing for Effect Mod-
ification and Confounding” Agravat (2011) is supported by the tangential movement of time as the
probability algorithm of P(z) new loses appropriateness due to higher values. The calculations involves
using a probability formula such as Agravat’s P(z)new. Figure 13 shows that special relativity calcula-
tions values are not completely calculated by E = mc2. The new correction shows a different relationship
or distribution that is nonormal vs. normal (special relativity) and more of the value from the parameters
(see figure 14). Another plot shows energy approaches 0 as time squared approaches 0 and probabil-
ity. Probability and energy values are higher and larger and different by magnitude as time squared
approaches 0 for the author’s corrections. According to ”Formulas Calculating Risks and Testing for
Effect Modification and Confounding” Agravat (2011) z being proportional to y or c (speed of light) to
mass that may yield allowable values that are not destructive in reference to the Manhattan project.
Hence the question of is there more energy on planets more suitable for life or less energy on planets
where life is suitable may be asked. Still one may have to wonder is the universe actually contracting
or expanding may be unanswered on this view in our solar system. The decrease in Probability of event
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’z’ (P(z)) increase with time squared as shown (in table 12) for negative parameters (table 12)! Table
12 shows that as time is hypergeometric as parameters become positive and time is positive for negative
parameters. At certain values for the variables, Ecnew may have lower values than the standard E = mc2

or greater as the powers increase because time calculations according to the author’s corrections show
increases in energy that are higher than Einstein’s special relativity. E = mc2 shows a normal distribu-
tion by Shapiro-Wilks’s test for calculations. Table 12 has P(z) having P < 0.0011 is non-normal and
time has P < 1.0 meaning time is normal. Energy decreases with probability according to Einstein’s
Special Relativity but is constant with regards to special relativity correction (see figure 12) as well as
for time squared. First of all there is no time according to Einstein’s special relativity formula due to
derivatives and limits canceling to 0 though the new correction of energy does contain time squared.The
new correction actually shows that time squared and probability may be somewhat constant compared
to energy in figure 12. One may support the assertion that matter in neither created or destroyed within
limits. Second, with reference to Poincairè′s three body problem, as applied by the author where time
may exist for special relativity correction. Third, energy levels vary differently from Einstein’s special
relativity formula by magnitude and sign. In some points in space and time, energy may be more than
the time-squared values and probabilities in that area allowing for diversity in the cosmos! Or the areas
habitable like earth for life allow more time squared and probabilities at lower energies. the author’s
correction for special relativity shows that Einstein’s special relativity may be appropriate for three body
mass problem but not the whole solar system whose orbits are in ellipse.

data plotnewGSF12III;

input Pz m c t2 Ecnew E;

datalines;

1.36 1 1 -0.183 -1.197E+01 1

1.14 2 2 -148.35 -2.913E+01 8

1.04 3 3 -9744803446 -3.190E-01 27

1.01 4 4 -4.20E+25 -1.417E-01 64

1 5 5 -4.79E+51 -7.110E+13 125 ;

run;

axis1 value=none c=blue i=j w=2 l=1;

axis2 value=none c=red i=j w=2 l=2;

proc gplot data=plotnewGSF12III;

plot E*Pz =t2 / haxis=axis1 vaxis=axis2;

title’Plot of Energy and Probability’; run;

axis1 value=none c=blue i=j w=2 l=1;

axis2 value=none c=red i=j w=2 l=2;

proc gplot data=plotnewGSF12III;

plot Ecnew*Pz Ecnew*t2 / haxis=axis1 vaxis=axis2;

title’Plot of New Energy and Time Corrections’; run;

(tc)
2=

m(2 ∗ π ∗ r)2

E
(151)

(t)2=
P (z)− z3

exp1+z
(152)

Ec=
(m) ∗ (2 ∗ π ∗ r)2

t2c
(153)

P (z)=
(
1

c
−m)

1−m
(154)

t2=
(
(
1

c
−m)

1−m
)− c3

exp1+c
(155)
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Ecnew=
(m ∗ (π ∗ a ∗ b)2 ∗ exp1+c)

P (z)− z3
(156)

Ecnew=
(m ∗ (2 ∗ πr)2 ∗ exp1+c)

P (z)− z3
(157)

Ec=
(π ∗ a ∗ b)2 ∗ (exp1+c) ∗ (m−m2)

(
1

c
−m− c3)

(158)

3.4 Inferences on Atomic Particles from Probability of Time and Events

c2=
d2

t2
(159)

c2=
(2 ∗ pi ∗ r)2

t2
(160)

c2=
(2 ∗ pi ∗ r)2

P (c)− c3

exp1+c

(161)

c2=
(2 ∗ pi ∗ r)2

(
P (c)− c3

exp1+c
)

(162)

c2 ∗ (P (c)− c3)

exp1+c
=d2 (163)

2ln(c) + lnP (c)− 3lnc− c=d2 (164)

−ln(c) + lnP (c)− c=d2 (165)

−ln(c) + ln(

1

c
−m

(1−m)
)− c=d2 (166)

−ln(c) + ln(

1

c
−m

(1−m)
)− c=(2 ∗ π ∗ r)2 (167)

−ln(c) + lnc− c+ lnm− lnm=(2 ∗ π ∗ r)2 (168)

c=− (2 ∗ π ∗ r)2 (169)

c=− (2 ∗ π ∗ 5.29−11)2 (170)

c=− 1.1x10−19m2 (171)

Charge of Electron from New Time and Probability Calculations The importance of the
time equations (eq.129 or 154), Probability of event P(z), and, and rate x time equals distance a ba-
sic law of physics is that the author is able to calculate a value similar to charge of an electron. In
the case of the inferences referenced about less harm in Agravat (2011), one transforms P(z) into P(c)
and recalculates c that may stand for charge of electron in this case is −1.1x10−19 very similar to Mil-
likan’s estimate of 1.5x10−19. The author is able to use the value of accepted radii of an electron of
5.29x10−11m2 (Bohr radius) from wikipedia of Bohr. The author believes that the centripetal force
may hold the electron in orbit thus the Bohr radius becomes the pertinent radius to calculate the
charge of the electron. The author may not be sure of the units but the charge is negative and the
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magnitude is very similar. With the radius of the proton being .8768x10−15m, equation (169) yields
a value of −3.63x10−29m2 for its charge that is different from the same for 1 electron charge.This
may be true because the proton is in the nucleus with neutrons.The electron divided by proton charge
is 3030303030.The electron radius (2.81x10−15)gives a value of 3.13x10−28m for antiparticle of lepton.
The quantum of charge of the electron may be n∗ charge∗mass∗velocity in orbit. The mass of electron
is 9.1x10−31kg. The calculation of electron speed is: 1)Bohr radius/time; 2).energy correction formula
with P(c) as 0; 3). E = n ∗ m ∗ v; 4 the energy solved for may allow for calculation of velocity that
yields −1.43x10− 59m2 ∗ kg2/time2(the units for time was not kept) for the first orbit. The time of the
electron may be calculated and with P(c) as 0 gives

√
−.135 or .3698i. Velocity then becomes ∆D/time

or 5.29x10−11m/.3698(time) = −1.43x10 − 10m/time (perhaps a complex number i kept).The kinetic
energy of electron in orbit 1 may be thus −9.3x10−51. The proton radius of 2x10−16 yields a value of
1.579x10−30. Equation (172) yields a value of (with −1.1x10−19 for charge)−2.73x10−49 for energy.The
numerator is same but Energy with velocity differs by a factor of 1/− c3. The energy of electron accord-
ing to equation (174) is −9.34x10−20kg2 ∗m2/time2(orjoules).

E=
m ∗ (2 ∗ π ∗ r)2 ∗ exp1+c

P (c)− c3
(172)

E=
−2.73x10− 49

−c3
(173)

E=− 9.34x10−20kg2 ∗m2/time2 (174)

E=n ∗m ∗ v (175)

vq=
E

n ∗m
(176)

v=
∆D

time
(177)

3.5 Agravat’s Proof of Right Triangle Dimensions

E(Y )=P ∗Q=R (178)

E(Y )2=(P ∗Q)
2

(179)

E(Y )2=P̂ 2 ∗ Q̂2 (180)

(P ∗Q)
2
=P̂ 2 ∗ Q̂2 (181)

R̂2=P̂ 2 ∗ Q̂2 (182)

ln(P ∗Q)
2
=lnP̂ 2 + lnQ̂2 (183)

lnR2=lnP̂ 2 + lnQ̂2 (184)

explnR
2

=explnP̂
2

+ explnQ̂
2

(185)

R̂2=P̂ 2 + Q̂2 (186)

Based on the definition of the estimate of mean in the binomial distribution, the proof of P 2+Q2 = R2

is shown that works for right triangles. Vector mathematics is utilized to give definition of sums. The
estimate of means is utilized with vector sum to show this feature of right triangles.
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