
1

Paper 299-2012

Regular Expressions in SAS® Enterprise Guide®
Mark Tabladillo PhD, MarkTab Consulting, Atlanta, GA

Associate Faculty, University of Phoenix

ABSTRACT
In version 9, the SAS® System introduces Perl regular expressions (sometimes known by the acronym PRX, the first
three letters of these functions or call routines). However, previous versions of SAS® already had regular expressions
(known by their acronym RX, the first two letters of these functions or call routines). This presentation will describe
specific functional and performance differences in these two exclusive regular expression strategies, and offer
recommendations on when to use each strategy. The technologies will be compared using SAS Enterprise Guide®
4.3.

INTRODUCTION
Regular expressions are the foundation of character pattern matching. Increasingly, textual data is becoming
important in both descriptive and predictive analytics as processing power increases and disk cost decreases. SAS®
software historically offered robust RX regular expressions (Cassell, 2004), though now deprecated in SAS® 9.3.
Fortunately, SAS Institute had already introduced Perl regular expressions (PRX). The best practice for already-
existing RX regular expressions is to migrate them to Perl regular expressions in SAS® 9.3 and Enterprise Guide®
4.3.

While SAS Institute offers other excellent advanced products for text mining, Perl regular expressions provide
complex text analysis within the Enterprise Guide® license. Intermediate to advanced Enterprise Guide® users
should become aware of what this software can provide for character analytics. This regular expression technology
can accept any characters you could put into quotations within a SAS data step (the specifics are determined by the
configuration of your SAS® installation and native operating system), thus expanding possible use beyond just
English.

Let’s define some terms pertinent to this topic (SAS Institute, 2012c, 2012e):

 Pattern matching enables you to search for and extract multiple matching patterns from a character string in one
step, as well as to make several substitutions in a string in one step.

 Regular expressions are a pattern language which provides fast tools for parsing large amounts of text.

 Metacharacters are special combinations of alphanumeric and/or symbolic characters which have specific
meaning in defining a regular expression.

 Character classes are single or combinations of alphanumeric and/or symbolic characters which represent
themselves.

Though the SAS Institute documentation says pattern matching can be done in one step, useful examples of regular
expressions often involve several steps. A few code lines with Perl regular expressions replace potentially many
lines of code. Single-step pattern matching allows for easier use in PROC SQL and the %SYSFUNC macro
command. However, multiple step pattern matching is always available in SAS Enterprise Guide® through the
improved Program Editor (SAS Institute, 2012h).

Regular expressions do not add any functionality beyond what an advanced programmer could write using other SAS
functions combined together, however they do provide essentially a short-cut syntax to accomplish several things in a
shorter amount of space. Functionally, what regular expressions do sounds like it could be a SAS® procedure.
However, the functionality is not implemented with a PROC statement, but instead a combination of CALL routines
and functions which can be used by the DATA step or SAS/Macro language.

Metacharacters are special character combinations used to generate patterns (SAS Institute, 2012e). One well-
known pattern which works in both the SAS and Perl regular expression environments is the asterisk. The asterisk is
a general wildcard character, meaning any zero or more characters. You may have used this metacharacter in the
UNIX or Windows® environment, and it even works with popular search engines like Bing®. However, the repetitive
and high-volume or complex string searching activity common to SAS® applications benefits most from regular
expressions.

What can make regular expressions hard to understand is that they are a combination of:

 Alphanumeric and/or symbolic characters representing themselves (character classes)

SAS® Enterprise Guide® Implementation and UsageSAS Global Forum 2012

Regular Expressions in SAS® Enterprise Guide®, continued

2

 Special combinations of alphanumeric and/or symbolic characters (metacharacters) representing zero or more
combinations of alphanumeric and/or symbolic characters

 Specially flagged combinations of alphanumeric and/or symbolic characters which would normally be interpreted
as metacharacters, but instead represent themselves (character classes)

This paper is presented in four sections. The first section provides a guide for migrating from SAS (RX) regular
expressions to Perl (PRX) regular expressions. The second section on Perl regular expression functions and routines
indicates best practices for where and when to use these functions in SAS Enterprise Guide®. The third section on
advanced Perl regular expression capabilities provides scenarios for multiple-step regular expression commands.
The final section provides two useful regular expression examples.

HOW TO MIGRATE FROM SAS (RX) TO PERL (PRX) REGULAR EXPRESSIONS

The old SAS (RX) regular expressions have been deprecated in SAS® version 9.3. If your SAS® version supports
Perl regular expressions, you should convert the code to the newer format. The following table provides a matching
guide, and you can find details of the Perl regular expressions in the SAS Institute documentation (SAS Institute,
2012b).

SAS (RX) Perl (PRX) Description

RXPARSE
Function

PRXPARSE
Function

Compiles a regular expression (RX or PRX) that can be used for pattern
matching of a character value

RXMATCH
Function

PRXMATCH
Function

Searches for a pattern match and returns the position at which the
pattern is found

CALL RXSUBSTR
Routine

CALL PRXSUBSTR
Routine

Returns the position and length of a substring that matches a pattern
(RX includes score)

CALL RXCHANGE
Routine

CALL
PRXCHANGE
Routine

PRXCHANGE
Function

Performs a pattern-matching replacement

CALL RXFREE
Routine

CALL PRXFREE
Routine

Frees unneeded memory allocated for a regular expression (either RX
or PRX)

Table 1. Mapping from the deprecated SAS (RX) to the Perl (PRX) Regular Expression Language

BEST PRACTICES FOR PERL REGULAR EXPRESSION FUNCTIONS AND ROUTINES
The following table summarizes the major regular expression commands, what they do, and where they are available.

Command Description Accepts Perl
Regular Expression

Accepts Regular
Expression ID

Has a Call Routine
Variant

PRXCHANGE Performs a pattern-matching
replacement.

YES YES YES

PRXDEBUG Enables Perl regular
expressions in a DATA step
to send debugging output to
the SAS log.

no no YES

PRXFREE Frees memory that was
allocated for a Perl regular
expression.

no no YES

PRXMATCH Searches for a pattern match
and returns the position at
which the pattern is found.

YES YES no

SAS® Enterprise Guide® Implementation and UsageSAS Global Forum 2012

Regular Expressions in SAS® Enterprise Guide®, continued

3

PRXNEXT Returns the position and
length of a substring that
matches a pattern, and
iterates over multiple matches
within one string.

no no YES

PRXPAREN Returns the last bracket
match for which there is a
match in a pattern.

no YES no

PRXPARSE Compiles a Perl regular
expression (PRX) that can be
used for pattern matching of a
character value.

YES no no

PRXPOSN Returns a character string
that contains the value for a
capture buffer.

no YES YES

PRXSUBSTR Returns the position and
length of a substring that
matches a pattern.

no no YES

Table 2. Chart of Perl Regular Expression Functions and CALL Routine Variants (SAS Institute, 2012b)

This table provides a helpful reference for establishing best practices for applying regular expressions within SAS
Enterprise Guide®. Let’s consider each column in order. The first column has the function names, and the second
column contains a one-line description from the SAS Documentation (SAS Institute, 2012b).

The third column labeled “Accepts Perl Regular Expression” indicates when the command could be used in a single
line function. Most useful are the PRXCHANGE and PRXMATCH functions (the PRXPARSE is intended for
subsequent regular expression functions or routines). Within Enterprise Guide®, that ability means easy use for
these two functions in:

 Filter and Sort

 Query Builder

 The %SYSFUNC Macro command

 Data Step (Program Editor) (SAS Institute, 2012g)

Using a function in a macro command is important for SAS Enterprise Guide® 4.3, which introduces conditional
macro variable processing (SAS Institute, 2012h).

The fourth column labeled “Accepts Regular Expression ID” indicates when the command requires a previously-
defined numeric value linking to the memory storage location of a compiled Perl regular expression. The PRXPARSE
function makes this special numeric value. The compilation includes more than just the regular expression string
pattern, and may include one or more capture buffers. This complexity therefore requires previously defining and
saving a new numeric variable. Here are some common applications:

 Data step processing -- This classic form of SAS programming is cursor-based, and considers one row (or
observation) at a time. The method is generally slower than PROC SQL since the SAS compiler is limited in its
ability to optimize joins. However, SAS programmers have a long love relationship with the Data Step, and
therefore SAS provides many examples (SAS Institute, 2012g). The recommended approach is to make a
numeric variable, and then drop that variable (or do not keep it) for output datasets.

 Macro Processing -- The recommended method is to create a numeric regular expression variable within a local
(or even nested) SAS Macro variable. That variable would not need to be carried forward beyond its use in
helping other Perl regular expression functions.

 PROC SQL -- A numeric regular expression ID variable could be included in the output dataset. The SAS
functions will only work when SAS processes the SQL, but not with pass-through SQL (hosts such as SQL
Server have their own functions and commands). A subsequent SQL statement could then drop the numeric
regular expression ID value (which typically has no subsequent utility).

The following code provides an example.

SAS® Enterprise Guide® Implementation and UsageSAS Global Forum 2012

Regular Expressions in SAS® Enterprise Guide®, continued

4

proc sql;
 create table work.MarkTabTest as
 select S.*,
 prxparse("/\w*chips/") as re,
 ifc(
 prxmatch(calculated re, S.product),
 prxposn(calculated re, 0, S.product),
 " "
) as PRX_Return_String
 from sashelp.snacks as S;
 alter table work.MarkTabTest
 drop re;
quit;

The fifth column labeled “Has a Call Routine Variant” describes when a CALL routine may be available. All these
CALL routines require first establishing a numeric regular expression ID. These routines are made for the data step
or for the macro command %SYSCALL, and are not intended for PROC SQL. When you look up those functions in
the SAS documentation, you will see applications to the data step (SAS Institute, 2012g). In SAS Enterprise Guide®
4.3, the program window has an improved Program Editor with autocomplete and integrated syntax help, both of
which aid in creating data steps (SAS Institute, 2012h). Using the CALL routines with macros is trickier because
%SYSCALL will sometimes will unquote the arguments (SAS Institute, 2012f). The recommended best practice is to
use the CALL routines in a data step; only advanced users should use CALL routines in a macro, and even then, with
caution.

Both the fourth and fifth columns indicate commands intended to be part of a multiple-step regular expression. In my
experience, those types of combinations offer the most power and flexibility for character pattern matching. While
Enterprise Guide® users might prefer the single-line PRXCHANGE and PRXMATCH commands (due to ease of
use), discovering how to make and use multiple-command regular expressions allows for a wider scope of
functionality. The examples in this presentation, therefore, focus on the multiple-step commands, and hopefully
provide the motivation to study how to use all the available regular expression functions and routines as appropriate.

ADVANCED PERL REGULAR EXPRESSION CAPABILITIES
Perl regular expressions (PRX) add the capabilities in the following table, which will be discussed in the following text.
These functions do not have equivalents in the old SAS (RX) regular expressions, another reason for converting
regular expression code from RX to PRX.

Perl (PRX) Description
CALL PRXPOSN Routine Returns the start position and length for a capture buffer
PRXPOSN Function Returns the value for a capture buffer
PRXPAREN Function Returns the last bracket match for which there is a match in a pattern
CALL PRXNEXT Routine Returns the position and length of a substring that matches a pattern and iterates

over multiple matches within one string
CALL PRXDEBUG Routine Enables Perl regular expressions in a DATA step to send debug output to the SAS

log
Table 3. Perl (PRX) Capabilities

Three of these unique features (CALL PRXPOSN routine, PRXPOSN function, and PRXPAREN function) are based
on creating capture buffers, defined as part of a match, enclosed in parentheses, explicitly specified in a Perl regular
expression (SAS Institute, 2012b). Capture buffers are ordered, and may either be identical in definition or different.
Conceptually, the capture buffers are a one-dimensional numbered array of results specified in a regular expression.

The regular expression has to create a ordered series of capture buffers in the first place. The examples in the SAS
documentation show useful examples, such as parsing the hours, minutes, and seconds from a time string, and
determining a first, middle, and last name (even when the middle name is missing). Another use would be parsing an
area code, prefix, and suffix from a phone number, which was input in a variety of possible ways. Capture buffers are
a good example of why it is not good to claim that regular expressions do things “all in one step”. These features
require a PRXPARSE function first, followed by one or more commands which access the created capture buffer.

FEATURE ONE: CALL PRXPOSN ROUTINE
The CALL PRXPOSN routine finds the start position and length of a numbered capture buffer within a string. The
obvious follow-up would be using a SUBSTR command to take the position and length and do something with the

SAS® Enterprise Guide® Implementation and UsageSAS Global Forum 2012

Regular Expressions in SAS® Enterprise Guide®, continued

5

results. A more advanced follow up would be using the resulting capture buffer to do further regular expression
definitions, as would be the requirement in a complex problem (such as the address breakdown example mentioned
earlier).

FEATURE TWO: PRXPOSN FUNCTION
The PRXPOSN function uses the positional number of the capture buffer to return the value of the result. Again, the
capture buffers are collectively like a one-dimensional array, so a single number will return the ordered piece
specified in the regular expression. In most cases, the PRXPOSN function would likely be more useful than the
CALL PRXPOSN routine.

FEATURE THREE: PRXPAREN FUNCTION
The PRXPAREN function assumes that the capture buffers are created in a ordered hierarchy, where last is both
highest and greatest (the last shall be first). The PRXPAREN function will return the non-missing capture buffer
which comes in at the highest place. This function is therefore useful when the capture buffer array is ordinal, defined
as being in a specified position within a numbered series.

The SAS Documentation (SAS Institute, 2012d) provides an example where three terms are searched for, in this
order: “magazine”, “book” and “newspaper”. Input strings which have the phrase “newspaper” would return
“newspaper” from the PRXPAREN function. Others may only have the highest term of “book” and would return that
phrase. A missing return would mean that none of the three keywords were found.

The following example assumes that the Perl regular expression (PRX) is '/(magazine)|(book)|(newspaper)/':

Capture Buffer Code
1 (magazine)
2 (book)
3 (newspaper)
Table 4. Numbered Ordinal Capture Buffers by Search Code

Input String Numeric Result of PRXPAREN
“magazine” 1
“book” 2
“newspaper” 3
“magazine book” 2
“book magazine” 2
“magazine boo newspaper” 3
“wall street journal” . (missing)
“wall street magazine journal” 1
“magazine book news” 2
Table 5. Results of PRXPAREN

A more advanced application would be creating a format first where the terms were assigned to ordinal integers
starting with one, and then using the results of PRXPAREN to match back to the original search term. Again, this
would be a powerful application which would deny the simplistic belief that regular expressions do things in one step.

FEATURE FOUR: CALL PRXNEXT ROUTINE
The CALL PRXNEXT routine allows either an entire string or substring to be searched with a Perl regular expression
(PRX), and will return the position and length of the result. Thus, this routine functionally does something similar to
PRXMATCH.

However, this routine is substantially different from PRXMATCH because it allows the string to be iteratively searched
for more matches. The “NEXT” term in the routine signifies that it will not only search using the regular expression,
but then be ready to find the next occurrence. The SAS Documentation (SAS Institute, 2012a) provides an example
where the goal is to look for the terms “bat” or “cat” or “rat” within a string, and the CALL PRXNEXT routine is
embedded inside a DO WHILE loop (SAS Institute, 2012a).

However, the author discovered that there is an error in the PRXNEXT routine through version 9.1.3, and in cases
where the end of the string includes a match, the start variable will be set higher than the stop variable. Though this
condition is not true for the example below, a recommended workaround line has been added to the example (see
bold text) for and should be used in cases where this bug occurs:

SAS® Enterprise Guide® Implementation and UsageSAS Global Forum 2012

Regular Expressions in SAS® Enterprise Guide®, continued

6

data _null_;
 ExpressionID = prxparse('/[crb]at/');
 text = 'The woods have a bat, cat, and a rat!';
 start = 1;
 stop = length(text);

 /* Use PRXNEXT to find the first instance of the pattern, */
 /* then use DO WHILE to find all further instances. */
 /* PRXNEXT changes the start parameter so that searching */
 /* begins again after the last match. */
 call prxnext(ExpressionID, start, stop, text, position, length);
 do while (position > 0);
 found = substr(text, position, length);
 put found= position= length=;
 if start > stop then position = 0;
 else
 call prxnext(ExpressionID, start, stop, text, position, length);
 end;
run;

The following lines are written to the SAS log:

The following lines are written to the SAS log:

 found=bat position=18 length=3
 found=cat position=23 length=3
 found=rat position=34 length=3

Output 1. Output from PRXNEXT Routine

FEATURE FIVE: CALL PRXDEBUG ROUTINE
The CALL PRXDEBUG routine works like a SAS® option, and allows debugging routine to be sent to the log. This
option only works with the DATA step. I did try it in SAS/AF® (an advanced SAS product independent of Enterprise
Guide®) and it does not work there. The SAS Documentation (SAS Institute, 2012b) provides an example of how to
use this routine, which is centrally useful when the code is valid but the results are not expected (invalid results will
send an error message to the log).

The recommended way to debug a regular expression is to build one piece at a time, perhaps even making several
dummy regular expressions, and using PUT statements to send resulting information to the log.

EXAMPLES OF REGULAR EXPRESSIONS
Perl regular expressions were used in two applications which process survey data. These code snippets could be
used in the Program Editor window for a data step. The original applications have been discussed in previous papers
(Tabladillo, 2003a, 2003b, 2004). Perl regular expression code was written for two sections where no regular
expression code was used in the past.

ILLUSTRATION ONE: WINDOWS PRINTER NAMES
The SAS® System version 9.3 uses the SYSPRINT system option to either get or set the printer name using the
Universal Naming Convention (UNC), which could be in the following format:

 \\computer_name\printer_shared_name

The goal of this code is to only allow known printers to be used by the application. Originally, the checking did not
use regular expressions. Here is the code before regular expressions:

SAS® Enterprise Guide® Implementation and UsageSAS Global Forum 2012

Regular Expressions in SAS® Enterprise Guide®, continued

7

 DCL
 char
 sasPrinter
 ;

 * Check for an active printer;
 sasPrinter = trim(upcase(optgetC('sysprint')));
 logMessage = 'Detected Printer is <'||sasPrinter||'>';

The issue is that the sasPrinter variable could hold the printer name in a variety of legal UNC formats:

 \\computer_name\printer_shared_name

 (\\computer_name\printer_shared_name)

 (“\\computer_name\printer_shared_name”)

Thus, the printer name could optionally be enclosed in parentheses, or parentheses and double quotation marks.
There are currently a total of 12 valid printers enumerated for the application, making a total of 36 possible
combinations. The old code has a series of 36 if-then statements to test for a valid printer.

A way to tackle the problem would be to make three different regular expressions for each of the varieties, and
process based on the single truth (and do error process code if none of the three varieties were true). In this case,
speed is not an issue because the regular expression code is not applied to iterative observations in a dataset, but
instead applied only once when the application is initialized. Additionally, Perl regular expressions offer the feature of
capture buffers, which is what was used to get the printer name. Because the UNC name uses the backslash,
applying Perl regular expression functions means that the backslash has to be flagged. The code now looks like the
following:

 DCL
 char
 sasPrinter
 sasPrinterName
 ,
 num
 prx
 ;

 * Check for an active printer;
 sasPrinter = trim(upcase(optgetC('sysprint')));

 prx = prxparse('/(\\\\[-\\\w]+|[-\w]+)/');
 if prxmatch(prx,sasPrinter) then
 sasPrinterName = prxposn(prx,1,sasPrinter);
 logMessage = 'Parsed Printer Name: <'||sasPrinterName||'>';

The next table shows how to understand the regular expression string, which is a total of 25 characters long:

Column(s) Description
1-25 '/(\\\\[-\\\w]+|[-\w]+)/'
1 Opening single quotation mark, to start the string – this requirement is from SAS and could have

been a double quotation mark – if you start with a single quotation mark then you have to double up
all single quotation marks inside the string. The SAS documentation shows many examples of
building a string, and simply passing the name inside the regular expression function.

2 The forward slash denotes the start of this Perl regular expression
3 The open parentheses means the start of the first capture buffer
4-7 A double backslash is used to show the start of the UNC name, but since the backslash is a special

Perl character, each of the double backslashes has to be flagged by another one
8-14 The square brackets means any one of the enclosed characters, and the valid characters include

hyphen (position 9), backslash (positions 10-11), and any word character including the underscore
(positions 12-13)

15 The plus sign means match the preceding expression one or more times
16 The vertical bar is a concatenation symbol (only one, not the SAS usual of two)
17-21 The square brackets mean any one of the enclosed characters, and the valid characters include

SAS® Enterprise Guide® Implementation and UsageSAS Global Forum 2012

Regular Expressions in SAS® Enterprise Guide®, continued

8

hyphen (position 18), and any word character including the underscore (positions 19-20). Note that
backslash is NOT included in the valid list since this last portion will be equivalent to the UNC printer
shared name. Also, note that the end does NOT include parentheses or quotation marks or braces
or brackets.

22 The plus sign means match the preceding expression one or more times
23 The closing parentheses show the end of the first capture buffer
24 The forward slash denotes the end of the Perl regular expression
25 The closing single quotation mark – if you start single, you have to end single
Table 6. Printer Character Regular Expression

Having specified the printer name, it could therefore be enclosed by any combination of braces, brackets, or
quotation marks, and still the regular expression would simply pick out the printer name. The PRXPOSN function
then simply will get the string from the first capture buffer. Finally, the PRXFREE routine is always used to prevent
memory allocation problems.

ILLUSTRATION TWO: WINDOWS DIRECTORY NAMES
The second example has to do with Windows subdirectory names. It was desired to get simply the subdirectory from
the longer string which started with the drive name and ended with a specific filename, such as one of the following
formats:

 X:\\Sub_Directory_1\Sub_Directory_2\...\Sub_Directory_N\Filename.Extension

 \\Sub_Directory_1\Sub_Directory_2\...\Sub_Directory_N\Filename.Extension

In other words, “Sub_Directory_N” (without the backslashes) would be considered the “PreviousSubdirectory” and the
target of interest. This function was previously done with the SUBSTR command, but as in the first example, the Perl
regular expression code was chosen because the capture buffer could easily clean off the undesired starting and
finishing characters, leaving the bare subdirectory of interest. The following code now determines that subdirectory
string:

 DCL
 num
 prx
 ,
 char
 previousSubdirectory
 ;

 if not(systemError) then do;
 prx = prxparse('/([:.-\\\w]*)\\([.-\w]+)\\([.-\w]+)/');
 if prxmatch(prx,inputDirectory) then do;
 previousSubdirectory = prxposn(prx,2,inputDirectory);
 end;
 else
 systemMessage = 'ERROR: PREVIOUS SUBDIRECTORY NOT FOUND';
 call prxfree(prx);

 end;

The next table shows how to understand the regular expression string, which is a total of 38 characters long. Please
study the details if you are considering using this code, since you might want to make some adjustments or
improvements:

Column(s) Description
1-38 '/([:.-\\\w]*)\\([.-\w]+)\\([.-\w]+)/'

1 Opening single quotation mark, to start the string – this requirement is from SAS and could have
been a double quotation mark – if you start with a single quotation mark then you have to double up
all single quotation marks inside the string. The SAS documentation shows many examples of
building a string, and simply passing the name inside the regular expression function.

2 The forward slash denotes the start of this Perl regular expression
3 The open parentheses means the start of the first capture buffer
4-12 The square brackets mean any one of the enclosed characters, and the valid characters include

colon (position 5), period (position 6), hyphen (position 7), backslash (positions 8-9), and the \w

SAS® Enterprise Guide® Implementation and UsageSAS Global Forum 2012

Regular Expressions in SAS® Enterprise Guide®, continued

9

metacharacter, meaning any word character including the underscore (positions 10-11)
13 The asterisk means zero or more characters.
14 The closing parentheses show the end of the first capture buffer – note that for this example, it was

not required to capture this beginning information in a specific buffer.
15-16 A flagged backslash, indicating the delimiter which separates subdirectories
17 The open parentheses means the start of the second capture buffer
18-23 The square brackets mean any one of the enclosed characters, and the valid characters include

period (position 19), hyphen (position 20), and the \w metacharacter, meaning any word character
including the underscore (positions 21-22).

24 The plus sign means match the preceding expression one or more times.
25 The closing parentheses show the end of the second capture buffer
26-27 The flagged backslash, indicating the delimiter which separates the last subdirectory from the

filename
28 The open parentheses means the start of the third capture buffer
29-34 The square brackets mean any one of the enclosed characters, and the valid characters include

period (position 30), hyphen (position 31), and the \w metacharacter, meaning any word character
including the underscore (positions 32-33).

35 The plus sign means match the preceding expression one or more times.
36 The closing parentheses means the end of the third capture buffer
37 The forward slash denotes the end of the Perl regular expression
38 The closing single quotation mark – if you start single, you have to end single
Table 7. Windows Subdirectory Regular Expression

The second capture buffer contains the subdirectory text without backslashes. Extra text is stored in the first and
third capture buffers. The PRXFREE routine is finally included to gracefully manage memory.

CONCLUSION
This paper provides an overview of regular expressions within SAS Enterprise Guide®, particularly version 4.3. The
first section provides a guide for migrating from SAS (RX) regular expressions to Perl (PRX) regular expressions. The
second section on Perl regular expression functions and routines indicates best practices for where and when to use
these functions in SAS Enterprise Guide®. The third section on advanced Perl regular expression capabilities
provides scenarios for multiple-step regular expression commands. The final section provides two useful regular
expression examples. Regular expressions can be used to build basic text mining and processing capability within
SAS Enterprise Guide®.

REFERENCES
Cassell, David L. (2004), “The Perks of PRX…”, SUGI Proceedings, 2003.

SAS Institute Inc. (2012a), SAS® 9.3 Functions and CALL Routines: Reference: CALL PRXNEXT Routine, Cary,
NC: SAS Institute, Inc. Retrieved March 1, 2012 from
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#n1obc9u7z3225mn1npw
nassehff0.htm

SAS Institute Inc. (2012b), SAS® 9.3 Functions and CALL Routines: Reference: Functions and CALL Routines by
Category, Cary, NC: SAS Institute, Inc. Retrieved March 1, 2012 from
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#p0w6napahk6x0an0z2dz
ozh2ouzm.htm

SAS Institute Inc. (2012c), SAS® 9.3 Functions and CALL Routines: Reference: Pattern Matching Using Perl
Regular Expressions (PRX), Cary, NC: SAS Institute, Inc. Retrieved March 1, 2012 from
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#n13as9vjfj7aokn1syvfyrp
aj7z5.htm

SAS Institute Inc. (2012d), SAS® 9.3 Functions and CALL Routines: Reference: PRXPAREN Function, Cary, NC:
SAS Institute, Inc. Retrieved March 1, 2012 from
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#p1kh2qqybgx44gn12who
44jdxifs.htm

SAS Institute Inc. (2012e), SAS® 9.3 Functions and CALL Routines: Reference: Tables of Perl Regular Expression
(PRX) Metacharacters, Cary, NC: SAS Institute, Inc. Retrieved March 1, 2012 from

SAS® Enterprise Guide® Implementation and UsageSAS Global Forum 2012

Regular Expressions in SAS® Enterprise Guide®, continued

10

http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#p0s9ilagexmjl8n1u7e1t1j
fnzlk.htm

SAS Institute Inc. (2012f), SAS® 9.3 Functions and CALL Routines: Reference: Using Functions and CALL
Routines, Cary, NC: SAS Institute, Inc. Retrieved March 1, 2012 from
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#p07c8e0ktns1c7n1vtowj
ev5g724.htm

SAS Institute Inc. (2012g), SAS® 9.3 Functions and CALL Routines: Reference: Using Perl Regular Expressions in
the DATA Step, Cary, NC: SAS Institute, Inc. Retrieved March 1, 2012 from
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#p1vz3ljudbd756n19502a
cxazevk.htm

SAS Institute Inc. (2012h), What's New in SAS Enterprise Guide® 4.3, Cary, NC: SAS Institute, Inc. Retrieved
March 1, 2012 from
http://support.sas.com/documentation/cdl/en/whatsnew/62580/HTML/default/viewer.htm#egwhatsnew43.htm

Shoemaker, Jack N. (2003), “How Regular Expressions Really Work”, Northeast SAS Users’ Group (NESUG)
Proceedings, 2003.

Tabladillo, M. (2003a), "Application Refactoring with Design Patterns", Proceedings of the Twenty-Eighth Annual SAS
Users Group International Conference, Cary, NC: SAS Institute, Inc.

Tabladillo, M. (2003b), "The One-Time Methodology: Encapsulating Application Data", Proceedings of the Twenty-
Eighth Annual SAS Users Group International Conference, Cary, NC: SAS Institute, Inc.

Tabladillo, M. (2004), "How to Implement the One-Time Methodology", Proceedings of the Twenty- Ninth Annual SAS
Users Group International Conference, Cary, NC: SAS Institute, Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Mark Tabladillo
Enterprise: MarkTab Consulting
Web: http://www.marktab.com/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS® Enterprise Guide® Implementation and UsageSAS Global Forum 2012

	2012 Table of Contents

