
1

Paper 239-2012

Optimizing that which “… cannot be optimized ….”

Superfast SAS SYSTEM® Searches and Fuzzy Linkage of Large
Datasets

Sigurd W. Hermansen, Westat, Rockville, MD, USA

ABSTRACT

Some of the more successful innovations in the
SAS System® have percolated up through the
SAS-L listserv and other sounding boards for
SAS users. This review of large-scale search
and fuzzy linkage methods focuses on questions
and commentaries that have led to new
techniques and methods. In turn, SAS has
incorporated some of these innovations into later
versions of the SAS System.

KEYWORDS
Fuzzy linkage, SQL, outer join, hash index,
object, query optimization, method, search
space, Cartesian product, logical decomposition,
intersect, conjunctive, disjunctive, union.

INTRODUCTION
Dateline: Fri, 13 Mar 1998 17:52:07

"Self, Karsten" <kself@VISA.COM>

Re: Subsetting very large sasdataset

(Related)

Karsten’s post of a database search problem on
the SAS-L listserv provoked much thought about
and discussion of how to optimize searches of
databases.

Karsten (the sig line of his messages read “What
part of "gestalt" don't you understand?”) asked
for help in finding: “… ways of restricting the
number of potential matches” of key and
demographic fields to corresponding fields in a
very large database. Specifically,

 Hash or key numeric fields such that
transposes and near-misses are keyed
with identical or similar values. Should
be suitable for SSN;

 Hash or key text fields so that they may
be searched readily for similar words
and/or text elements. Should be suitable
for name and address data”.

At the time, SAS Proc SQL JOIN’s followed an
optimization strategy that did not differ materially
from that of a SAS Data step MERGE: sort
datasets being joined on the JOIN key and
search the ordered datasets for matches on the
key. This strategy has two major limitations.
First, of particular concern in 1998, it either fails
or takes too long when one or more of the
datasets joined are too large to sort efficiently.
Second, it does not select a limited number of
potentially matching rows in datasets for closer
comparison unless the rows match on a specific
key value. One would have to sort large datasets
many times to search for matches on multiple
selection criteria.

Perhaps of more interest retrospectively, Karsten
waxed prescient when he suggested

“The ultimate in index/data response would be to
include a ramdisk in the search path and place
the index on the ramdisk partition – essentially
loading it in memory. This technique, along with
the use of SAS formats for value lookup, is used
extensively in very large database and
datawarehouse applications, where sever
memory may be measured in gigabytes.”

He missed the mark, though, when he
discounted the value of homespun methods for
optimizing database searches: “Building your
own key-value lookup system introduces
additional layers of complexity and maintenance,
and introduces more opportunities for things to
go wrong. I am not saying the technique is
never justified or that the results could not
improve on what SAS has built in. I am saying
that your odds of improving on the available
methods, and not breaking your application
under the weight of complexity, are slim.” Within
that same year events would prove him wrong.

Dateline: Tue, 15 Dec 1998 21:15:40

pdorfma@FL6612MAILEX4.UCS.ATT.COM

Programming: Beyond the BasicsSAS Global Forum 2012

http://www.listserv.uga.edu/cgi-bin/wa?A2=ind9808A&L=sas-l&D=1&H=0&O=D&T=1&P=4237
http://www.listserv.uga.edu/cgi-bin/wa?A2=ind9803B&L=sas-l&D=1&H=0&O=D&T=1&P=16730
http://www.listserv.uga.edu/cgi-bin/wa?A2=ind9803B&L=sas-l&D=1&H=0&O=D&T=1&P=16730

2

XMAS SASTip: Quick Table Lookup by

Hashing

In one fell swoop, Paul Dorfman demonstrated
convincingly that a SAS Data step solution for
many basic database search problems
performed far better than SAS indexes, “big
formats”, and SAS Proc SQL. Roll your own
“Hashing” not only outperformed standard
methods that I and many others considered the
best that the SAS System had to offer, this
programming feat straight out of Knuth’s classic

Art of Computer Programming, Volume 3:
Sorting and Searching was much faster than
commercial DBMS static indexes. As we soon
discovered, programs that build indexes on the
fly and use them to reduce search spaces to
manageable proportions would surpass
Karsten’s fondest dream for a database search
method.

During the next year, Paul developed SAS hash
index macroprograms for Westat that continue to
be used to link or deduplicate very large
datasets. SAS introduced the Java equivalent of
a RAM disk, the Hash Object, circa 2004. Many
programmers on the bleeding edge made good
use of Paul’s innovations before SAS had built
them into Version 9. The pages that follow will
feature examples of SAS programs written by
users that have improved on search
improvement methods built into SAS and, in
some instances, have led to important
improvements in the SAS System.

So when the SAS System runs into a roadblock
and tells you “NOTE: The execution of this query
involves performing one or more Cartesian
product joins that can not be optimized.” don’t
despair. Recent history shows that optimizing
that “… which can not be optimized …” can and
does happen.

THE SCHRIER SOLUTION TO THE FUZZY
MATCH PROBLEM

Dateline: Tue, 30 Jan 2001 16:13:44 -

0500 howard_schreier@ITA.DOC.GOV

Fuzzy conditional merge on 3 variables

Howard responded to a plea for help with a fishy
problem. A researcher was attempting to link
geospatial coordinates for fish and water
conditions. He hoped to find the closest water
condition observation to an observed fish
location. He began his search for a solution with

theoretically sound, brute force SQL solution that
implements the Pythagorean formula for the
distance between two coordinates:
create table nearest as

select FishID, WaterID,

sqrt((fish.x-water.x)**2

+(fish.y-water.y)**2

+(fish.z-water.z)**2

) as distance

from fish, water

group by FishID

having distance=min(distance);

The only problem is that for large numbers of
observations of fish and water conditions, this
Cartesian product solution has to evaluate
trillions of possible pairings of fish and water
condition observations. Howard painstakingly
reduces the search space dimensions from
trillions to manageable numbers by placing
bounds on the distance between any one fish’s
location and the location of a water conditions
measure. See
http://www.nesug.org/proceedings/nesug03/at/at
008.pdf .

The solution does not matter here as much as
the concepts of a search space that, if very
large, makes the search for a solution
interminateably long, and of a search space
reduction method that leads to a more timely
solution. The solution combined anticipatory
subsetting -that is, computing the maximum and
minimum of each of the geospatial coordinates
(x,y,z) of fish locations and limiting locations of
water condition measure to those close to fish
locations – e.g.,
select max(x), max(y), max(z),

 min(x), min(y), min(z)

into :maxx, :maxy, :maxz,

 :minx, :miny, :minz

from fish;

create view watersubset as

select * from water

where &MINX-&RADIUS <= x <=

&MAXX+&RADIUS

and &MINY-&RADIUS <= y <=

&MAXY+&RADIUS

and &MINZ-&RADIUS <= z <=

&MAXZ+&RADIUS; ,

 with offsets. A prescribed radius of a unit
sphere around the fish location and a table of all
possible cubes that overlap the unit sphere limits
the pairings of fish location and water condition
locations to a small subset of all possible
pairings. A table named offsets, consisting of
geographic coordinate values that differ by one
unit, combines with a prescribed radius value to

Programming: Beyond the BasicsSAS Global Forum 2012

http://www.nesug.org/proceedings/nesug03/at/at008.pdf
http://www.nesug.org/proceedings/nesug03/at/at008.pdf

3

reduce the search space to points at the corners
of cubes that enclose the sphere. The offsets
table forces links between fish locations and
locations of water conditions to a few integer
values instead of a multitude of fractional values:

create table nearest as

select FishID,WaterID,

(fish.x-water.x)**2

+(fish.y-water.y)**2

+(fish.z-water.z)**2 as

distance_squared

from fish,offsets,watersubset as water

where calculated

distance_squared < &RADIUS**2

 and int(fish.x/&RADIUS)

 +xoffset = int(water.x/&RADIUS)

 and int(fish.y/&RADIUS)

 +yoffset = int(water.y/&RADIUS)

 and int(fish.z/&RADIUS)

 +zoffset = int(water.z/&RADIUS)

group by FishID

having distance_squared

 =min(distance_squared);

The best choice of a value of a radius around
each fish location depends on the distribution of
fish and water conditions measures. Good
choices of successively greater radii and the
offsets method translates a solution that would
take 50+ years to run on a small machine to one
that could run in no more than a few hours.

Howard’s program demonstrates that when a
programmer knows time, space, or other bounds
on an abstract search space, one can frame a
solution to fit within those bounds. Now try at
home a simpler case of anticipatory subsetting.
Say that a downtown shopping area has 400
stores and 10,000 people shop there each day.
What is the possible number of stores the
shoppers will visit? Unconstrained, all possible
pairings of shoppers and stores adds up to
4,000,000:

data stores;

do store = 1 to 400; output; end;

data shoppers;

do shopper = 1 to 10000; output;

end;

proc sql;

 create table storeShopperPairings as

 select store,shopper

 from stores,shoppers;

If we take into account a time constraint on
shoppers that limits the expected number of
visits per shopper to 40 or less during one day, a
better number for an upper limit on the number

of store-shopper pairings would be far fewer
than four million. Selecting shopper-store
pairings at random in sets averaging 40 stores,

create table storeShopperPairings as

 select distinct shopper,store

 from stores,shoppers

 where ranuni(23467) < 1/10

 order by shopper ;

 the number of possible pairings decreases to
around 400,000. Further, if we can assume that
the absolute difference in store numbers
approximates the distance between them, a
query captures the distances in a table:

create table storeDistancesApart as

 select r1.store as store1,

 r2.store as store2,

 abs(store1 - store2) as distance

 from stores as r1,stores as r2;

This table can serve much the same purpose as
an offset in that it can be used to constrain a
search space. For instance,

create table

expectedStoreShopperPairings as

 select distinct shopper,

 store11 as store1,store2,distance

 from (select r1.shopper as shopper,

r1.store as store11,r2.store as store12

from storeShopperPairings as r1,

storeShopperPairings as r2

where r1.shopper = r2.shopper and

r1.store <= r2.store) as r12

 left join storeDistancesApart as r3

 on store11 = r3.store1

 and store12 = r3.store2

group by shopper

 having distance = max(distance)

order by distance;

The query executes in less than a minute with
the constraints in place. Without them it ties up a
desktop for at least an hour (until I lost patience).

THE BOROWIAK SOLUTION TO THE LEFT
JOIN OPTIMIZATION PROBLEM

Dateline: Fri, 17 Feb 2006 17:23:05 -

0500 Ken Borowiak

<evilpettingzoo97@AOL.COM>

 For large datasets, skip the

SQL solution for a hash based solution.

While a SAS SQL INNER JOIN (e.g., … from R1
inner join R2 on R1.ID = R2.ID …) benefits from
hash index optimization and races ahead to a
solution, a LEFT JOIN of the same R1 and R2

Programming: Beyond the BasicsSAS Global Forum 2012

4

with the same ON condition crawls behind it. The
time required for a hashed INNER JOIN
increases proportionally with the number of rows
or observations in the larger of R1 and R2. The
LEFT JOIN begins by sorting both R1 and R2
and time required for it increases
disproportionately as the larger of R1 and R2
increases.

proc sql _method ;

create table R3 as

select * from R1

left join R2

on R1.person=R2.person

and R1.id=r2.id;

quit;

NOTE: SQL execution methods chosen are:

 sqxcrta

 sqxjm

 sqxsort

 sqxsrc(WORK.SUBSETME(alias=T2))

 sqxsort …..

Ken recogized that the SQL left join ON
condition either succeeds or fails for each pairing
of rows in two datasets.If it succeeds, the join
proceeds as if it were an inner join and joined the
two rows in the dataset. If it fails,the program
joins null values for each RHS dataset variable
to values in the LHS dataset.Ken’s method
indexes a key value and other variable value in
one table, and scans the other table for key
matches to the index. If the key in a row in the
other table matches the index, the program
writes data from both datasets to an output
dataset. If the key does not match, the program
writes data from the LHS table and missing
values of variables in the RHS table to the output
dataset.

/* ‘left look-up’ using the DATA step

Hash Object – */

data hlj1;

if 0 then set VerySmall ;

declare hash VS(hashexp:7,

dataset:'VerySmall');

VS.definekey('customer','id');

VS.definedata(all:'Y');

VS.definedone();

do until(eof);

set Big end=eof;

if VS.find()=0 then output;

else do;

call missing(of b1--c);

output;

 end;

end;

stop; run;

Note that, when an attempt to find a key in Big
that matches the same key in VerySmall fails,
the call of the missing function sets values of
variables in VerySmall to missing before
output’ting the row containing the key value.

The Borowiak article in
http://www.nesug.org/proceedings/nesug06/dm/
da07.pdf. Ken concludes that typical large-scale
LEFT JOIN’s take 30% - 40% longer to run than
its hash object mimic.

A LEFT JOIN OPTIMIZATION BASED ON A
LOGICAL DECOMPOSITION

Dateline: Sun, 16 Nov 2003 3:55 PM

tin-shun-jimmy chan

SAS-L@LISTSERV.UGA.EDU

Subject: merging two dataset

Even though Jimmy Chan’s question had to do
more with why a LEFT JOIN could yield more
rows than found in the LHS dataset (answer:
when the RHS dataset has enough multiples of
key values matching LHS key values in an ON
clause), the extended answer to the question
provides some interesting insights into how
workarounds work well under some conditions
but not others.

We know from the prior section that the SAS
SQL compiler does not select a potentially more
efficient method for executing the LEFT JOIN
query, but it does for the INNER JOIN query. All
the more puzzling because the LEFT JOIN
logically breaks down to an INNER JOIN query
and another query or queries…. This basic Venn
Diagram illustrates how a set of key values in a
LHS dataset might intersect with a set of key
values in a RHS dataset:

Figure 1: Key sets RHS

 LHS

The yield of a LEFT JOIN includes the rows
identified by keys in the cross-hatched
intersection of LHS and RHS, plus those
identified by the set complement of the RHS: that
part of the LHS not in the LHS – RHS
intersection. (This simple description doesn’t
take into account multiples of the key values in
the datasets.)

Now suppose that we separate out the LEFT
JOIN intersection potentially to take advantage

Programming: Beyond the BasicsSAS Global Forum 2012

http://www.nesug.org/proceedings/nesug06/dm/da07.pdf
http://www.nesug.org/proceedings/nesug06/dm/da07.pdf
mailto:SAS-L@LISTSERV.UGA.EDU

5

of the efficiency of a hash index. Should the RHS
dataset keys fit easily into memory, a LEFT JOIN
will execute at close to the time required to read
the LHS dataset.

 create table intersect as

 select R1.customer as

customer,R1.ID as ID,R2.c as c

 from vwBig_keyed as R1 inner join

 vwSubsetKeyed as R2 on

R1.key=R2.key;

The LEFT JOIN solution now requires a UNION
of intersect and the rows of Big that do not have
one of the key values in intersect.
 create table solution as

 select * from

 (select * from intersect)

 outer union corr

 (select * from Big

 where

compress(put(customer,z8.))||compres

s(put(ID,z8.)) NOT IN

 (select

compress(put(customer,z8.))||compres

s(put(ID,z8.))

 from intersect)

);

Borowiak’s hash solution to the LEFT JOIN
tends to perform better than the standard LEFT
JOIN query or the queries that implement a
logical decomposition of the LEFT JOIN. Should
the platform have less memory available than
required by the hash solution, it will fail whereas
the standard and alternative LEFT JOIN’s will
succeed eventually. Between the two SQL query
methods, the standard query works faster when
sorting of the LHS and RHS datasets takes less
time than it takes to read the LHS dataset twice.

For example, the alternative method may work
faster on wider datasets that take longer to sort.
In one test based Borowiak’s synthetic data with
number of variables ratcheted up to ten times
the original number, the standard method took
just over 30 minutes of elapsed time on a
standard Windows desktop, while the alternative
method took just under 13 minutes on the same
machine.

A SOLUTION TO A DISJUNCTIVE (OR)
QUERY OPTIMIZATION PROBLEM

Dateline: 30 Nov 2000 14:19:33 GMT Perry

Bratis pbratis@MY-DEJA.COM

Merge/Join Efficiency

Perry posted a request for help with the task of
making a query of this form run faster:

 create view vwsuball as

 select soundex(LN) as sLN, soundex(FN) as sFN,

 substr(LN,1,3) as LN3, substr(FN,1,3) as FN1,

 LN, FN,DOB,SSN,sex

 from LNSUBS.submissionall ;

 create view vwLNSub as

 select soundex(LN) as sLN, soundex(FN) as sFN,

 substr(LN,1,3) as LN3, substr(FN,1,3) as FN1,

 LN, FN,DOB,SSN,sex

 from LNSUBS.lexisnexis_submission ;

 /* Multiple disjunctive condition query. */

 create table LNSUBS as

 select * from vwsuball as R1 full join vwLNSub as

R2

 on R1.SSN = R2.SSN

 OR (R1.sLN = R2.sLN and R1.sFN = R2.sFN

and R1.sex = R2.sex)

 OR (R1.LN3 = R2.LN3 and R1.FN1 = R2.FN1

and R1.DOB = R2.DOB)

 OR (R1.FN = R2.FN and R1.DOB = R2.DOB) ;

When fed very large datasets, this form of
program takes an excessive amount of time to
execute, if it actually terminates normally at all.
The SAS SQL compiler often politely advises
that the query cannot be optimized. The OR
condition(s) in the ON clause specifies different
sort or index keys. In a sense the query is asking
the compiler to conduct independent searches
and to combine the results of each. While similar
in concept to the fuzzy fish linkage, this problem
does not have a geographic distance to minimize
when searching for a nearest neighbor.

Initial VIEW’s, vwsuball and vwLNSub, define the
same attributes and functions of attributes in
each of two datasets. With these VIEW’s as a
starting point, a hash object program offers an
alternative to what the SAS SQL compiler tells
us cannot be optimized.

Another VIEW, vwhashMatches, builds four
indexes of identifiers and stores keys and other
attributes of the vwLNSub virtual table in
memory. New to SAS V9.2, the multidata
keyword prompts the program to index multiple
instances of keys (definekey) and their related
attributes (definedata). The program indexes
four alternative keys and data read from
vwLNSub:

Programming: Beyond the BasicsSAS Global Forum 2012

mailto:pbratis@MY-DEJA.COM
http://listserv.uga.edu/cgi-bin/wa?A2=ind0011E&L=sas-l&D=0&P=13438

6

/* Based on Dorfman (2007) and Ray - Secosky

(2008). */

data vwhashMatches (keep=SSN SSNM LN LNM FN

FNM DOB DOBM sex sexM)

 / view=vwhashMatches;

 if 0 then set vwLNSub ;

 dcl hash hk

(dataset:'vwLNSub',multidata:'y',hashexp:4) ;

 hk.definekey ('SSN') ;

 hk.definedata ('LN','FN','DOB','sex', 'SSN') ;

 hk.definedone () ;

 dcl hash hh

(dataset:'vwLNSub',multidata:'y',hashexp:4) ;

 hh.definekey ('sLN','sFN','sex') ;

 hh.definedata ('LN','FN','DOB','sex', 'SSN') ;

 hh.definedone () ;

 dcl hash hi

(dataset:'vwLNSub',multidata:'y',hashexp:4) ;

 hi.definekey ('LN3','FN1','DOB') ;

 hi.definedata ('LN','FN','DOB','sex', 'SSN') ;

 hi.definedone () ;

 dcl hash hj

(dataset:'vwLNSub',multidata:'y',hashexp:8) ;

 hj.definekey ('DOB','FN') ;

 hj.definedata ('LN','FN','DOB','sex', 'SSN') ;

 hj.definedone () ;

With keys indexed and data linked, the program
begins scanning the virtual table vwsuball. For
each row in the second dataset, it assigns
variables in vwsuball to new variables. The
h*.find () method next looks up the key values on
each of the four indexes, and, for each found
(rc=0), it assigns indexed values to variables
named in the argument list of each h*.definedata

method ('LN','FN','DOB','SEX', 'SSN'), and
outputs values of those and the other variables
in vwsuball to the virtual table vwhashMatches.
The program then uses the h*.has_next(result:r)
method to search for any other key values in the
indexes and, if found, outputs values of indexed
data variables and other variables in vwsuball to
vwhashMatches.

 do until (eof2) ;

 set vwsuball end = eof2 ;

 LNM=LN;

 FNM=FN;

 DOBM=DOB;

 SSNM=SSN;

 sexM=sex;

/* h*.find loop.. */

 rc = hk.find ();

 if (rc = 0)

 then do; output ;

 hk.has_next(result: r);

 do while(r ne 0);

 hk.find_next();

 output;

 hk.has_next(result: r);

 end;

 end;

 …. < Repeat loop using hh, hi, and hj

indexes.>

 end ;

run ;

The VIEW’s finally materialize in a SQL query
that combines selected data from the two
sources, “scores” the linked pairs of identifying
values, and creates a table of values from linked
rows:

/* Combine hash search results, compare pairings of

identifiers, and compute overall similarity scores. */

 create table LNSubs.DeDupd as

 select distinct sum(max((SSN = SSNM),

 0.2 * %spedis(SSN,SSNM)),

 0.4 * %spedis(

%fixSuffixDash(LN),%fixSuffixDash(LNM)),

 0.3 * %spedis(

%fixSuffixDash(FN),%fixSuffixDash(FNM)),

 0.3 * (DOB = DOBM)

) as Score, max(calculated Score) as maxScore,

SSN,SSNM,LN,FN,LNM,FNM,

 DOB,DOBM,sex,sexM

 from vwhashMatches

 where Calculated Score >= 1

 group by SSN having maxScore >= 1

 and Score=maxScore

 order by maxScore descending,SSN,Score

descending;

The weighted sum of different match measures
reflects to some extent the similarity of a pair of
identifiers and the importance of that pair of
identifiers in a correct match and in a non-match.
Note that logical equality [e.g., (SSN = SSNM)]
and a fuzzy measure (a function of a SAS
SPEDIS() comparison) both require two
arguments and, in this context, one value from
each of the data sources. Note also that the SQL
query does not call for a join of the two data
sources. So where does the pairing occur?

Programming: Beyond the BasicsSAS Global Forum 2012

7

Recall that the h*.find () and h*.find_next ()
methods look up a key value and, if found, link
through that key to data values pushed into a
satellite index by the h*.definedata method.
These indexed variables become available
alongside rows of variables SET from data
source two.

Multidata, disjunctive (OR), hash object indexes
and searches closely approximate a multiple
disjunctive condition query of the type presented
at the beginning of this section. That query
joined all pairings of rows in vwLNSub
(n=300,258) and vwsuball (n=564,113) subject
to OR conditions into a table of 27,034,304 rows
(a small fraction of the trillions of possible
pairings of rows in the two tables). It took almost
5 hours to run under SAS 9.2 on a fast Linux
server. The hash object program and “scoring”
query imposed additional score constraints at
the row-pair level and the SSN group level. For
the same two data sources, it generated 285,900
linked pairs, much closer to the expected
number of matching records. The program took
less than 17 minutes to run on the same Linux
SAS server.

CONCLUSIONS

A variety of large scale database search and
fuzzy linkage problems have better solutions
than those that the SAS SQL compiler can find,
or than those that programmers can easily find
on their own. Some problems have naïve
solutions that would take far more than a
reasonable amount of time to run. Many fuzzy
matching problems fall in this group. A bounded
search method such as that presented by
Schrier reduces search space to manageable
dimensions.

Some data linkage problems have better
solutions that lie outside the scope of the SAS
SQL compiler or the Data step. SAS developers
have to put a premium on methods that work
reliably across many different contexts, and
avoid methods that may fail when applied by
programmers with less experience. Borowiak
demonstrates that a method with a somewhat
higher risk of failure may, in the hands of a
skilled programmer, lead to better solutions. An
alternative LEFT JOIN method takes advantage
of knowledge of logical components of outer
joins. Moreover, a simple extension of SAS hash
object techniques explored by Secosky and Ray
approximates another of those naïve solutions,

disjunctive outer joins, that cannot be optimized
by the SAS SQL compiler. SAS-L listserv
participants and other user groups interact with
SAS developers to improve both the SAS
System and the experience of using it.

REFERENCES
H. Schreier Picking Up Where the SQL

Optimizer Leaves Off, NESUG 16,

Arlington VA, 2003

K. Borowiak A Hash Alternative to the PROC
SQL Left Join, NESUG, Philadelphia, PA 2006
P. Dorfman, G. Snell. Hashing: Generations.
SUGI 28, Seattle, WA, 2003.
P. Dorfman, L. Shajenko. Data Step
Programming Using the Hash Objects, NESUG,

Baltimore, MD 2004.
R. Ray, J. Secosky Better Hashing in SAS®
9.2, SGF, San Antonio, TX, 2008

ACKNOWLEDGMENTS
Paul Dorfman, Michael Raithel, Stan Legum, and
Mike Rhoads suggested improvements of content
and presentation; despite their best efforts, the author
has sole responsibility for any errors or oversights.

DISCLAIMERS
The contents of this paper are the work of the author
and do not necessarily represent the opinions,
recommendations, or practices of Westat.

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

CONTACT INFORMATION
Your comments and questions are valued and
encouraged. Contact the author at:

Sigurd W. Hermansen

Westat

1650 Research Blvd.

Rockville, MD 20850

Work Phone: 301.251.4268

E-mail: hermans1@westat.com

Programming: Beyond the BasicsSAS Global Forum 2012

	2012 Table of Contents

