
1 

Paper 239-2012 

 

Optimizing that which “… cannot be optimized ….” 

Superfast SAS SYSTEM® Searches and Fuzzy Linkage of Large 
Datasets 

Sigurd W. Hermansen, Westat, Rockville, MD, USA 

 

ABSTRACT 

Some of the more successful innovations in the 
SAS System® have percolated up through the 
SAS-L listserv and other sounding boards for 
SAS users. This review of large-scale search 
and fuzzy linkage methods focuses on questions 
and commentaries that have led to new 
techniques and methods. In turn, SAS has 
incorporated some of these innovations into later 
versions of the SAS System.  
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INTRODUCTION 
Dateline: Fri, 13 Mar 1998 17:52:07 

"Self, Karsten" <kself@VISA.COM> 

Re: Subsetting very large sasdataset 

(Related) 

Karsten’s post of a database search problem on 
the SAS-L listserv provoked much thought about 
and discussion of how to optimize searches of 
databases. 

Karsten (the sig line of his messages read “What 
part of "gestalt" don't you understand?”) asked 
for help in finding:  “… ways of restricting the 
number of potential matches” of key and 
demographic fields to corresponding fields in a 
very large database. Specifically,  

 Hash or key numeric fields such that 
transposes and near-misses are keyed 
with identical or similar values.  Should 
be suitable for SSN; 

 Hash or key text fields so that they may 
be searched readily for similar words 
and/or text elements.  Should be suitable 
for name and address data”. 

At the time, SAS Proc SQL JOIN’s followed an 
optimization strategy that did not differ materially 
from that of a SAS Data step MERGE: sort 
datasets being joined on the JOIN key and 
search the ordered datasets for matches on the 
key. This strategy has two major limitations. 
First, of particular concern in 1998, it either fails 
or takes too long when one or more of the 
datasets joined are too large to sort efficiently.  
Second, it does not select a limited number of 
potentially matching rows in datasets for closer 
comparison unless the rows match on a specific 
key value. One would have to sort large datasets 
many times to search for matches on multiple 
selection criteria. 

Perhaps of more interest retrospectively, Karsten 
waxed prescient when he suggested 

“The ultimate in index/data response would be to 
include a ramdisk in the search path and place 
the index on the ramdisk partition – essentially 
loading it in memory.  This technique, along with 
the use of SAS formats for value lookup, is used 
extensively in very large database and 
datawarehouse applications, where sever 
memory may be measured in gigabytes.”  

He missed the mark, though, when he 
discounted the value of homespun methods for 
optimizing database searches: “Building your 
own key-value lookup system introduces 
additional layers of complexity and maintenance, 
and introduces more opportunities for things to 
go wrong.  I am not saying the technique is 
never justified or that the results could not 
improve on what SAS has built in.  I am saying 
that your odds of improving on the available 
methods, and not breaking your application 
under the weight of complexity, are slim.” Within 
that same year events would prove him wrong. 

 
Dateline: Tue, 15 Dec 1998 21:15:40 

pdorfma@FL6612MAILEX4.UCS.ATT.COM 
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XMAS SASTip: Quick Table Lookup by 

Hashing 

In one fell swoop, Paul Dorfman demonstrated 
convincingly that a SAS Data step solution for 
many basic database search problems 
performed far better than SAS indexes, “big 
formats”, and SAS Proc SQL. Roll your own 
“Hashing” not only outperformed standard 
methods that I and many others considered the 
best that the SAS System had to offer, this 
programming feat straight out of Knuth’s classic 

Art of Computer Programming, Volume 3: 
Sorting and Searching was much faster than 
commercial DBMS static indexes. As we soon 
discovered, programs that build indexes on the 
fly and use them to reduce search spaces to 
manageable proportions would surpass 
Karsten’s fondest dream for a database search 
method. 

During the next year, Paul developed SAS hash 
index macroprograms for Westat that continue to 
be used to link or deduplicate very large 
datasets. SAS introduced the Java equivalent of 
a RAM disk, the Hash Object, circa 2004. Many 
programmers on the bleeding edge made good 
use of Paul’s innovations before SAS had built 
them into Version 9. The pages that follow will 
feature examples of SAS programs written by 
users that have improved on search 
improvement methods built into SAS and, in 
some instances, have led to important 
improvements in the SAS System.  

So when the SAS System runs into a roadblock 
and tells you “NOTE: The execution of this query 
involves performing one or more Cartesian 
product joins that can not be optimized.” don’t 
despair. Recent history shows that optimizing 
that “… which can not be optimized …” can and 
does happen. 

THE SCHRIER SOLUTION TO THE FUZZY 
MATCH PROBLEM 
 

Dateline: Tue, 30 Jan 2001 16:13:44 -

0500 howard_schreier@ITA.DOC.GOV 

Fuzzy conditional merge on 3 variables 

Howard responded to a plea for help with a fishy 
problem. A researcher was attempting to link 
geospatial coordinates for fish and water 
conditions. He hoped to find the closest water 
condition observation to an observed fish 
location. He began his search for a solution with 

theoretically sound, brute force SQL solution that 
implements the Pythagorean formula for the 
distance between two coordinates: 
create table nearest as 

select FishID, WaterID, 

sqrt((fish.x-water.x)**2 

+(fish.y-water.y)**2 

+(fish.z-water.z)**2 

     ) as distance 

from fish, water 

group by FishID  

having distance=min(distance);  

The only problem is that for large numbers of 
observations of fish and water conditions, this 
Cartesian product solution has to evaluate  
trillions of possible pairings of fish and water 
condition observations. Howard painstakingly 
reduces the search space dimensions from 
trillions to manageable numbers by placing 
bounds on the distance between any one fish’s 
location and the location of a water conditions 
measure. See 
http://www.nesug.org/proceedings/nesug03/at/at
008.pdf . 

The solution does not matter here as much as 
the concepts of a search space that, if very 
large, makes the search for a solution 
interminateably long, and of a search space 
reduction method that leads to a more timely 
solution. The solution combined anticipatory 
subsetting -that is, computing the maximum and 
minimum of each of the geospatial coordinates 
(x,y,z) of fish locations and limiting locations of 
water condition measure to those close to fish 
locations – e.g., 
select max(x), max(y), max(z), 

 min(x), min(y), min(z) 

into :maxx, :maxy, :maxz, 

     :minx, :miny, :minz 

from fish; 

create view watersubset as 

select * from water 

where &MINX-&RADIUS <= x <= 

&MAXX+&RADIUS 

and &MINY-&RADIUS <= y <= 

&MAXY+&RADIUS 

and &MINZ-&RADIUS <= z <= 

&MAXZ+&RADIUS; , 

    with offsets. A prescribed radius of a unit 
sphere around the fish location and a table of all 
possible cubes that overlap the unit sphere limits 
the pairings of fish location and water condition 
locations to a small subset of all possible 
pairings. A table named offsets, consisting of 
geographic coordinate values that differ by one 
unit, combines with a prescribed radius value to 
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reduce the search space to points at the corners 
of cubes that enclose the sphere. The offsets 
table forces links between fish locations and 
locations of water conditions to a few integer 
values instead of a multitude of fractional values: 
 

create table nearest as 

select FishID,WaterID, 

(fish.x-water.x)**2 

+(fish.y-water.y)**2 

+(fish.z-water.z)**2 as 

distance_squared 

from fish,offsets,watersubset as water 

where calculated  

distance_squared < &RADIUS**2 

  and int( fish.x/&RADIUS) 

      +xoffset = int(water.x/&RADIUS) 

  and int( fish.y/&RADIUS) 

      +yoffset = int(water.y/&RADIUS) 

  and int( fish.z/&RADIUS) 

      +zoffset = int(water.z/&RADIUS) 

group by FishID 

having distance_squared 

       =min(distance_squared); 

The best choice of a value of a radius around 
each fish location depends on the distribution of 
fish and water conditions measures. Good 
choices of successively greater radii and the 
offsets method translates a solution that would 
take 50+ years to run on a small machine to one 
that could run in no more than a few hours. 

Howard’s program demonstrates that when a 
programmer knows time, space, or other bounds 
on an abstract search space, one can frame a 
solution to fit within those bounds. Now try at 
home a simpler case of anticipatory subsetting. 
Say that a downtown shopping area has 400 
stores and 10,000 people shop there each day. 
What is the possible number of stores the 
shoppers will visit? Unconstrained, all possible 
pairings of shoppers and stores adds up to 
4,000,000: 
 

data stores; 

do store = 1 to 400; output; end; 

data shoppers; 

do shopper = 1 to 10000; output;            

end; 

proc sql; 

   create table storeShopperPairings as 

   select store,shopper 

   from stores,shoppers; 

If we take into account a time constraint on 
shoppers that limits the expected number of 
visits per shopper to 40 or less during one day, a 
better number for an upper limit on the number 

of store-shopper pairings would be far fewer 
than four million. Selecting shopper-store 
pairings at random in sets averaging 40 stores, 
 

create table storeShopperPairings as 

   select distinct shopper,store 

   from stores,shoppers 

   where ranuni(23467) < 1/10 

   order by shopper ; 

   the number of possible pairings decreases to 
around 400,000. Further, if we can assume that 
the absolute difference in store numbers 
approximates the distance between them, a 
query captures the distances in a table: 
 

create table storeDistancesApart as 

   select r1.store as store1, 

          r2.store as store2, 

    abs(store1 - store2) as distance 

   from stores as r1,stores as r2;  

This table can serve much the same purpose as 
an offset in that it can be used to constrain a 
search space. For instance, 
 

create table 

expectedStoreShopperPairings as 

  select distinct shopper, 

     store11 as store1,store2,distance 

  from (select r1.shopper as shopper, 

r1.store as store11,r2.store as store12 

from storeShopperPairings as r1,   

storeShopperPairings as r2 

where r1.shopper = r2.shopper and 

r1.store <= r2.store ) as r12 

   left join storeDistancesApart as r3 

    on store11 = r3.store1 

    and store12 = r3.store2 

group by shopper 

     having distance = max(distance) 

order by distance; 

The query executes in less than a minute with 
the constraints in place. Without them it ties up a 
desktop for at least an hour (until I lost patience).  

THE BOROWIAK SOLUTION TO THE LEFT 
JOIN OPTIMIZATION PROBLEM 
 

Dateline: Fri, 17 Feb 2006 17:23:05 -

0500 Ken Borowiak 

<evilpettingzoo97@AOL.COM> 

          For large datasets, skip the 

SQL solution for a hash based solution. 

While a SAS SQL INNER JOIN (e.g., … from R1 
inner join R2 on R1.ID = R2.ID …) benefits from 
hash index optimization and races ahead to a 
solution, a LEFT JOIN of the same R1 and R2 
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with the same ON condition crawls behind it. The 
time required for a hashed INNER JOIN 
increases proportionally with the number of rows 
or observations in the larger of R1 and R2. The 
LEFT JOIN begins by sorting both R1 and R2 
and time required for it increases 
disproportionately as the larger of R1 and R2 
increases.      

 
proc sql _method ; 

create table R3 as 

select * from R1  

left join R2 

on R1.person=R2.person 

and R1.id=r2.id; 

quit; 

NOTE: SQL execution methods chosen are: 

      sqxcrta 

          sqxjm 

            sqxsort 

            sqxsrc( WORK.SUBSETME(alias=T2)) 

              sqxsort …..      

Ken recogized that the SQL left join ON 
condition either succeeds or fails for each pairing 
of rows in two datasets.If it succeeds, the join 
proceeds as if it were an inner join and joined the 
two rows in the dataset. If it fails,the program 
joins null values for each RHS dataset variable 
to values in the LHS dataset.Ken’s method 
indexes a key value and other variable value in 
one table, and scans the other table for key 
matches to the index. If the key in a row in the 
other table matches the index, the program 
writes data from both datasets to an output 
dataset. If the key does not match, the program 
writes data from the LHS table and missing 
values of variables in the RHS table to the output 
dataset. 
 

/* ‘left look-up’ using the DATA step 

Hash Object – */  

data hlj1;  

if 0 then set VerySmall ;  

declare hash VS(hashexp:7, 

dataset:'VerySmall');  

VS.definekey('customer','id');  

VS.definedata(all:'Y');  

VS.definedone(); 

 

do until(eof);  

set Big end=eof;  

if VS.find()=0 then output;  

else do; 

call missing(of b1--c);  

output;  

     end;  

end;  

stop; run; 

Note that, when an attempt to find a key in Big 
that matches the same key in VerySmall fails, 
the call of the missing function sets values of 
variables in VerySmall to missing before 
output’ting the row containing the key value. 

The Borowiak article in  
http://www.nesug.org/proceedings/nesug06/dm/
da07.pdf. Ken concludes that typical large-scale 
LEFT JOIN’s take 30% - 40% longer to run than 
its hash object mimic. 

A LEFT JOIN OPTIMIZATION BASED ON A 
LOGICAL DECOMPOSITION 
 

Dateline: Sun, 16 Nov 2003 3:55 PM 

tin-shun-jimmy chan  

SAS-L@LISTSERV.UGA.EDU  

Subject: merging two dataset 

Even though Jimmy Chan’s question had to do 
more with why a LEFT JOIN could yield more 
rows than found in the LHS dataset (answer: 
when the RHS dataset has enough multiples of 
key values matching LHS key values in an ON 
clause), the extended answer to the question 
provides some interesting insights into how 
workarounds work well under some conditions 
but not others. 

We know from the prior section that the SAS 
SQL compiler does not select a potentially more 
efficient method for executing the LEFT JOIN 
query, but it does for the INNER JOIN query. All 
the more puzzling because the LEFT JOIN 
logically breaks down to an INNER JOIN query 
and another query or queries…. This basic Venn 
Diagram illustrates how a set of key values in a 
LHS dataset might intersect with a set of key 
values in a RHS dataset: 

Figure 1: Key sets                                     RHS 

                       LHS 

The yield of a LEFT JOIN includes the rows 
identified by keys in the cross-hatched 
intersection of LHS and RHS, plus those 
identified by the set complement of the RHS: that 
part of the LHS not in the LHS – RHS 
intersection. (This simple description doesn’t 
take into account multiples of the key values in 
the datasets.)   

Now suppose that we separate out the LEFT 
JOIN intersection potentially to take advantage 
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of the efficiency of a hash index. Should the RHS 
dataset keys fit easily into memory, a LEFT JOIN 
will execute at close to the time required to read 
the LHS dataset.  
 

   create table intersect as 

   select R1.customer as 

customer,R1.ID as ID,R2.c as c 

   from vwBig_keyed as R1 inner join  

        vwSubsetKeyed as R2 on 

R1.key=R2.key; 

The LEFT  JOIN solution now requires a UNION 
of intersect and the rows of Big that do not have 
one of the key values in intersect. 
   create table solution as 

   select * from 

   (select * from intersect) 

   outer union corr 

   (select * from Big 

 where 

compress(put(customer,z8.))||compres

s(put(ID,z8.)) NOT IN 

      (select 

compress(put(customer,z8.))||compres

s(put(ID,z8.)) 

       from intersect) 

    ); 

Borowiak’s hash solution to the LEFT JOIN 
tends to perform better than the standard LEFT 
JOIN query or the queries that implement a 
logical decomposition of the LEFT JOIN. Should 
the platform have less memory available than 
required by the hash solution, it will fail whereas 
the standard and alternative LEFT JOIN’s will 
succeed eventually. Between the two SQL query 
methods, the standard query works faster when 
sorting of the LHS and RHS datasets takes less 
time than it takes to read the LHS dataset twice.  

For example, the alternative method may work 
faster on wider datasets that take longer to sort. 
In one test based Borowiak’s synthetic data with 
number of variables ratcheted up to ten times 
the original number, the standard method took 
just over 30 minutes of elapsed time on a 
standard Windows desktop, while the alternative 
method took just under 13 minutes on the same 
machine. 

A SOLUTION TO A DISJUNCTIVE (OR) 
QUERY OPTIMIZATION PROBLEM 
 

Dateline: 30 Nov 2000 14:19:33 GMT Perry 

Bratis pbratis@MY-DEJA.COM  

Merge/Join Efficiency 

Perry posted a request for help with the task of 
making a query of this form run faster:  
 

    create view vwsuball as 

    select soundex(LN) as sLN, soundex(FN) as sFN,  

           substr(LN,1,3) as LN3, substr(FN,1,3) as FN1, 

           LN, FN,DOB,SSN,sex 

    from LNSUBS.submissionall ; 

    create view vwLNSub as 

    select soundex(LN) as sLN, soundex(FN) as sFN,  

           substr(LN,1,3) as LN3, substr(FN,1,3) as FN1, 

           LN, FN,DOB,SSN,sex 

    from LNSUBS.lexisnexis_submission ; 

    /* Multiple disjunctive condition query. */ 

    create table LNSUBS as 

    select * from vwsuball as R1 full join vwLNSub as 

R2 

       on  R1.SSN = R2.SSN 

       OR (R1.sLN = R2.sLN and R1.sFN = R2.sFN 

and R1.sex = R2.sex) 

       OR (R1.LN3 = R2.LN3 and R1.FN1 = R2.FN1 

and R1.DOB = R2.DOB) 

       OR (R1.FN = R2.FN and R1.DOB = R2.DOB) ; 

When fed very large datasets, this form of 
program takes an excessive amount of time to 
execute, if it actually terminates normally at all.  
The SAS SQL compiler often politely advises 
that the query cannot be optimized. The OR 
condition(s) in the ON clause specifies different 
sort or index keys. In a sense the query is asking 
the compiler to conduct independent searches 
and to combine the results of each. While similar 
in concept to the fuzzy fish linkage, this problem 
does not have a geographic distance to minimize 
when searching for a nearest neighbor. 

Initial VIEW’s, vwsuball and vwLNSub, define the 
same attributes and functions of attributes in 
each of two datasets. With these VIEW’s as a 
starting point, a hash object program offers an 
alternative to what the SAS SQL compiler tells 
us cannot be optimized. 

Another VIEW, vwhashMatches, builds four 
indexes of identifiers and stores keys and other 
attributes of the vwLNSub virtual table in 
memory. New to SAS V9.2, the multidata 
keyword prompts the program to index multiple 
instances of keys (definekey) and their related 
attributes (definedata). The program indexes 
four alternative keys and data read from 
vwLNSub: 
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/* Based on Dorfman (2007) and Ray - Secosky 

(2008). */ 

data vwhashMatches (keep=SSN SSNM LN LNM FN 

FNM DOB DOBM sex sexM)  

     / view=vwhashMatches; 

 if 0 then set vwLNSub ; 

     dcl hash hk 

(dataset:'vwLNSub',multidata:'y',hashexp:4) ; 

        hk.definekey   ('SSN') ; 

        hk.definedata  ('LN','FN','DOB','sex', 'SSN') ; 

              hk.definedone () ;          

 

     dcl hash hh 

(dataset:'vwLNSub',multidata:'y',hashexp:4) ; 

     hh.definekey   ('sLN','sFN','sex') ; 

     hh.definedata  ('LN','FN','DOB','sex', 'SSN') ; 

         hh.definedone () ; 

          

     dcl hash hi 

(dataset:'vwLNSub',multidata:'y',hashexp:4) ; 

     hi.definekey   ('LN3','FN1','DOB') ; 

     hi.definedata  ('LN','FN','DOB','sex', 'SSN') ; 

         hi.definedone () ; 

       

     dcl hash hj 

(dataset:'vwLNSub',multidata:'y',hashexp:8) ; 

    hj.definekey   ('DOB','FN') ; 

    hj.definedata  ('LN','FN','DOB','sex', 'SSN') ; 

         hj.definedone () ; 

With keys indexed and data linked, the program 
begins scanning the virtual table vwsuball. For 
each row in the second dataset, it assigns 
variables in vwsuball to new variables. The 
h*.find () method next looks up the key values on 
each of the four indexes, and, for each found 
(rc=0), it assigns indexed values to variables 
named in the argument list of each h*.definedata 

method ('LN','FN','DOB','SEX', 'SSN'), and 
outputs values of those and the other variables 
in vwsuball to the virtual table vwhashMatches. 
The program then uses the h*.has_next(result:r) 
method to search for any other key values in the 
indexes and, if found, outputs values of indexed 
data variables and other variables in vwsuball to 
vwhashMatches.  
      

     do until (eof2) ; 

        set vwsuball end = eof2 ; 

 

 LNM=LN; 

 FNM=FN; 

 DOBM=DOB; 

 SSNM=SSN; 

 sexM=sex; 

  

/* h*.find loop.. */ 

 rc = hk.find (); 

 if (rc = 0) 

                then do; output ; 

                         hk.has_next(result: r); 

                         do while(r ne 0); 

                            hk.find_next(); 

                            output; 

                            hk.has_next(result: r); 

                         end; 

                     end;  

 …. < Repeat  loop using hh, hi, and hj 

indexes.>   

     end ; 

run ; 

The VIEW’s finally materialize in a SQL query 
that combines selected data from the two 
sources, “scores” the linked pairs of identifying 
values, and creates a table of values from linked 
rows: 

/* Combine hash search results, compare pairings of 

identifiers, and compute overall similarity scores. */ 

    create table LNSubs.DeDupd as 

    select distinct sum(     max( (SSN = SSNM),  

                           0.2 * %spedis(SSN,SSNM) ), 

                           0.4 * %spedis( 

%fixSuffixDash(LN),%fixSuffixDash(LNM) ), 

              0.3 * %spedis( 

%fixSuffixDash(FN),%fixSuffixDash(FNM)  ), 

                           0.3 * (DOB = DOBM) 

        ) as Score, max(calculated Score) as maxScore,            

SSN,SSNM,LN,FN,LNM,FNM, 

            DOB,DOBM,sex,sexM 

     from vwhashMatches 

     where Calculated Score >= 1 

     group by SSN having maxScore >= 1  

                             and Score=maxScore     

     order by maxScore descending,SSN,Score 

descending; 

The weighted sum of different match measures 
reflects to some extent the similarity of a pair of 
identifiers and the importance of that pair of 
identifiers in a correct match and in a non-match. 
Note that logical equality [e.g., (SSN = SSNM)] 
and a fuzzy measure (a function of a SAS 
SPEDIS() comparison) both require two 
arguments and, in this context, one value from 
each of the data sources. Note also that the SQL 
query does not call for a join of the two data 
sources. So where does the pairing occur?  
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Recall that the h*.find () and h*.find_next () 
methods look up a key value and, if found, link 
through that key to data values pushed into a 
satellite index by the h*.definedata method. 
These indexed variables become available 
alongside rows of variables SET from data 
source two.  

Multidata, disjunctive (OR), hash object indexes 
and searches closely approximate a multiple 
disjunctive condition query of the type presented 
at the beginning of this section. That query 
joined all pairings of rows in vwLNSub 
(n=300,258) and vwsuball (n=564,113) subject 
to OR conditions into a table of 27,034,304 rows 
(a small fraction of the trillions of possible 
pairings of rows in the two tables). It took almost 
5 hours to run under SAS 9.2 on a fast Linux 
server. The hash object program and “scoring” 
query imposed additional score constraints at 
the row-pair level and the SSN group level. For 
the same two data sources, it generated 285,900 
linked pairs, much closer to the expected 
number of matching records. The program took 
less than 17 minutes to run on the same Linux 
SAS server.  

CONCLUSIONS 

A variety of large scale database search and 
fuzzy linkage problems have better solutions 
than those that the SAS SQL compiler can find, 
or than those that programmers can easily find 
on their own. Some problems have naïve 
solutions that would take far more than a 
reasonable amount of time to run. Many fuzzy 
matching problems fall in this group. A bounded 
search method such as that presented by 
Schrier reduces search space to manageable 
dimensions.  

 

Some data linkage problems have better 
solutions that lie outside the scope of the SAS 
SQL compiler or the Data step. SAS developers 
have to put a premium on methods that work 
reliably across many different contexts, and 
avoid methods that may fail when applied by 
programmers with less experience. Borowiak 
demonstrates that a method with a somewhat 
higher risk of failure may, in the hands of a 
skilled programmer, lead to better solutions. An 
alternative LEFT JOIN method takes advantage 
of knowledge of logical components of outer 
joins. Moreover, a simple extension of SAS hash 
object techniques explored by Secosky and Ray 
approximates another of those naïve solutions, 

disjunctive outer joins, that cannot be optimized 
by the SAS SQL compiler. SAS-L listserv 
participants and other user groups interact with 
SAS developers to improve both the SAS 
System and the experience of using it. 
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