SAS Global Forum 2012 Programming: Beyond the Basics

Paper 231-2012

Solve the SAS® ODS Data Trap in PROC MEANS
Peter Crawford, Crawford Software Consultancy Ltd, London, UK
Myra Oltsik, Acorda Therapeutics, Hawthorne, NY, USA

ABSTRACT

The first version of this solution to the ODS Data Trap in PROC MEANS was delivered at SUGI-31(2006). This
update presents a revised version of the macro supporting additional features and eliminating a surprising error.
Those who wish a practical solution to this ODS Data Trap will appreciate the enhancements that correct and simplify
usage. Policies and impact of the macro are described for the more advanced audience who are interested in
adapting the macro and its techniques for their own purposes.

INTRODUCTION

The basic reporting provided by PROC MEANS “leaves something to be desired” when more than the most basic
statistics are requested. With brief and simple syntax the PROC provides quick reporting of five basic statistics.
Equally simply, these can be written to a data set with the OUTPUT statement. Both the report and the output provide
a table with a row for each variable and a column for each statistic. To extend this for more statistics (even just SUM)
requires a surprising additional amount of coding.

ODS OUTPUT does not capture the table arrangement reported by the PROC but creates tables in a structure similar
to the format created by the /JAUTONAME option of the OUTPUT statement with one row, i.e., with all statistics for all
variables (per class value). What makes the ODS table different from the /JAUTONAME form are:

e Additional columns name the original analysis variables (handy)
e The column order is different (less important)

e Variable labels in the result table do not distinguish between analysis variables so table viewers using
variable labels to clarify, only confuse! (not good)

This paper introduces a macro which creates a table in the form of the basic report from PROC MEANS, but
extending support to any or all statistics the PROC MEANS can create.

PAPER OUTLINE
1. Introduce the original (2006) solution approach
2. Explain the shortcomings (errors?) discovered by (post-presentation) reviewer
3. Present the new approach
4. Note other changes introduced to simplify usage and enhance results
5

Show the macro design and implementation policy

THE ORIGINAL SOLUTION TO THE DATA TRAP

Appendix 1 provides the original macro.

The objective of the original macro was to allow the macro user to name the table to analyze and define any
collection of statistics and variables to analyze. A result data set would be created named by suffixing the input data
set with _MEANS. By default all statistics for all numeric variables would be analyzed.

To achieve some flexibility while maintaining a reasonable level of performance PROC MEANS was executed only
once, but with a separate OUTPUT statement for each statistic. These were then brought together, and printed by
default, optionally with the rows (variables) sorted by name, in alphabetical order.

SAS Global Forum 2012 Programming: Beyond the Basics

Solve the SAS® ODS Data Trap in PROC MEANS, continued

SHORTCOMINGS OF ORIGINAL SOLUTION

Apart from the problems of publishing code in that release of PDF writer (solved by placing a paper upgrade in
www.sascommunity.org), one material error was demonstrated and other issues arose.

MATERIAL ERROR

Among the statistics that can be created by PROC MEANS are UCLM and LCLM (Upper and Lower Confidence
Limits of the Mean). These provide different results when derived together than when either is alone. The original
macro design separated them even when both were selected. Selecting UCLM and LCLM together assumes a two-
tailed distribution. However, the original solution separates all statistics so results for a one-tailed distribution are
always provided. This design flaw is difficult to solve with the original solution approach.

OTHER ISSUES

i Intermediate results are deliberately deleted as the macro finishes. For testing, and occasional interest,
keeping these is useful. [also useful to have these if the macro breaks for any reason]

ii. The names of these intermediate result tables are specific to the macro (prefixed “_better_means_"),
but make no attempt to avoid overwriting tables that might exist before the macro executes.

iii. When analyzing formatted numbers (date, time, money and percentages) it is not possible to show
statistics like MIN/MEAN/MAX in the formats of the analysis variable because they share the same
column. However for a report, the formatted value of a date is very important.

iv. It would be simple and very useful to have the macro monitor and report the duration of the process.

THE NEW APPROACH

As pointed out in the original paper, A Better Means - ODS Data Trap (059-31), using the OUTPUT statement option
/AUTONAME appends a statistic name to a column name and might breach the limit to the length of a name.

The new approach overcomes the risk of that “breach”. Simply renaming any analysis variable to “V{VARNUM}” -
reliably keeps the names short enough to enable the appending of the statistic name with that /AUTONAME option.

To avoid holding a second copy of the data (which might be large), this renaming is performed in a short DATA STEP
VIEW.

KA AR AR A A A A A A AR A AR A A A AR AR A AR A AR AR A AR A R A AR A AR A AR AR AR A A AR AR A A A kA A A A Ak kA Ak k%

* now build a view with VAR variables renamed v{varnum}
**;

data ¢bm datal /view= &bm datal ;
set &data ;
rename &name2num ;

run ;

hhkhhkhkhkhhkhhkhAhhkhkhkhkrhkhkhhhkhhkrhhkhhhkrhkhkhkhhkhhkrhhkhkhhkrhkhkhhkhkhkhkrhhkhkhhkrkhhkhkrhkhkxkkxk

* now collect all stats for all vars using /autoname for control *
**;

proc means data=&bm datal noprint missing &vdef;
var &nums_nm ;
output &sttsE out= _data /AUTONAME ;
run;

In the new approach, the OUTPUT statement with /AUTONAME creates statistics of analysis variables in columns
named like {analysis_variable} {statistic_name}. Having analysis variables named like vYNNN makes splitting of the
two parts straightforward:

An array “mean_set" has been defined which addresses the statistics of all analysis variables. The first of the
following statements extracts the variable name for the first statistic of the “n-th” analysis variable:

vname = vname(mean set(1, n)) ;
* vname name layout is "v{varnum} {statisticName}"
Vnamev = scan(vname, 1, ' ') ;

The last of those statement extracts the part of the name which is the analysis variable in PROC MEANS.

http://www.sascommunity.org/wiki/PROC_MEANS_-_Improve_on_the_default

SAS Global Forum 2012 Programming: Beyond the Basics

Solve the SAS® ODS Data Trap in PROC MEANS, continued

From the name of the analysis variable, look-ups are performed to obtain the original name and its label and format.

Vnamev = scan(vname, 1, ' ') ;

label put (vnamev, Snum2lab.) ;
name put (vnamev, Snum2nam.) ;
format = put(vnamev, Snum2fmt.) ;

The formats for these look-ups are constructed from the table created running PROC CONTENTS on the original
data set (modified to place variables in the order requested).

proc contents data= &data(keep= &varlst drop= &clss) noprint out= data ;
* just the VAR variables not in CLASS vars ;

run ;

%let bm contsl = &syslast ;

KK AR R A A A AR AR A A A A A A A A A A A A A A AR AR A A A A AR A A A IR A AR AR A A A A A A AR A A AR A A A A A AR A A X kK

* build look-up formats from Varnum-based var names back to original
* and to variable label, and to variable format
**;
data data ;
set &bm_contsl(drop=type) end=eof ;
retain fmtnl 'num2nam' fmtn2 'num2lab’' fmtn3 'num2fmt’
type 'c' start '12345678' hlo ' ' ;

start = cats('v', varnum) ;
fmtl = cats(format, formatl, '.', formatd) ;
output ;
if eof then do ;
fmtl = "&default fmt"
label= ' ' ;
hlo = 'o' ;
output ;
end ;
run ;
slet bm cntll = &syslast ;

proc format cntlin= &bm cntll(rename=
proc format cntlin= &bm cntll (rename=

fmtnl=fmtname name= label) drop= label);
fmtn2=fmtname)

(
(

where=(label ne ' ' or hlo ne ' ")) ;
proc format cntlin= &bm cntll(rename=(fmtn3=fmtname fmtl= label) drop= label
where=(label ne '0.0' and label ne ' '

or hlo eq 'o"))
fmtlib ;
run ;

Since the single output data set from that DATA step is used in multiple CNTLIN= PROC FORMAT steps, here is
some clarification. The purpose is to use “user formats” to provide “look-ups” to original variable name, label and
format for the “VARNUM”-based variable names that come out of PROC MEANS.

For each variable in the %better_means input data set, the DATA step reads an observation, created by PROC
CONTENTS. Any CLASS variables will have been excluded. For each of the three look-ups that will be created, the
CNTLIN= data set variable TYPE will be the same — a constant ‘C’. Similarly, the START variable is the same for
each look-up, being “V” followed by the VARNUM from PROC CONTENTS. The LABEL for two of the look-ups will be
the NAME and LABEL from PROC CONTENTS, but the FORMAT for the third look-up, needs extra care. PROC
CONTENTS provides the formatting information in three variables: FORMAT, FORMATL and FORMATD. When
these are combined with the CATS() function ‘0.0’ might appear for a variable with no format, so that ‘0.0’ is filtered in
the data set options when PROC FORMAT uses the data set to create that format look-up.

As the PROC FORMAT steps run, options on the CNTLIN= data set will rename the relevant FMTN1-FMTNS3 variable
to FMTNAME and the appropriate variable to LABEL (only NAME and FMTL are renamed as there is no need to
rename LABEL).

Programming: Beyond the Basics

SAS Global Forum 2012

Solve the SAS® ODS Data Trap in PROC MEANS, continued

OTHER CHANGES INTRODUCED TO SIMPLIFY USAGE AND ENHANCE RESULTS

ENHANCING RESULTS

For a NAME ordered list of the variables, the process uses the option, new in SAS9.2
SORTSEQ=LINGUISTIC

This will sort analysis variables without respecting their case.

The default set of statistics has been revised to place the MIN before the P1 and MAX after the P99 column. Also
brought together are the pair LCLM and UCLM, and the pair N and NMISS.

When a list of variables to be analysed is specified (rather than defaulting to _ALL_) the order of this selection is
preserved when the SORT=VARNUM parameter is specified.

SHOWING STATISTICS IN DIFFERING FORMATS IN THE SAME COLUMN

When analysis variables have formats on the input data, these are inherited in the statistic columns of the OUTPUT
OUT= data set (unless you use the NOINHERIT option on the OUTPUT statement). In the structure created by the
/AUTONAME option, each statistic/analysis-variable combination can have its own format because they are all in
separate columns. However, to improve the layout of our results we wish to have a row for each analysis variable and
place all statistics of the same type (SUM, MEAN, STD, and etc.) in the same column — and a column can have only
one format. Here is a clip of the effect of analyzing differently formatted variables together.

B5d VIEWTABLE: WORK.STATS (STATS FOR szshelp.prdsale 04JAN2012:17:42:39.87) [= e
name | kb | Pt | e | po | s | e | ps | P | P | P | M
1 |ACTUAL Actual Sales 4 59 m 261 50 7565 00 950.5 991 1000
2 |MONTH Menth 12054 12085 12113 1200 124035 12585 12692 12723 12753 12753
3 |PREDICT Predicted Sales &) &0 0 295 486 73 8085 5405 986 1000
4 |QUARTER Guatter 1 1 1 15 25 15 4 4 4 4
5 |YEAR e 1883 1993 1393 1883 19935 1994 1994 1894 1984 199

Figure 1. unformatted statistics

Only the Sales columns and YEAR remain meaningful, because MONTH and QUARTER are unformatted. To
support multiple formats within a column of statistics like P1-P99, MEAN and MAX for formatted analysis variables, a
parallel set of columns are created with the statistics re-formatted according to the separate format for each analysis
variable. In the same result table we can see the formatted values in the following clip

[igk VIEWTABLE: WORK.STATS (STATS FOR sashelp.prdsale 04]AN2012:20:50:38.08) [= =
| rname | fmn | fP1 | fP5 | fPw | fP»s | fpPso | fPs | fPe0 | fP95 f Pag fMax | format
1 |ACTUAL 5300 51400 359.00 $111.00 526100 550300 S75650 $900.00 $95050 899100 $1.00000 DOLLAR122
2 |MONTH Jan Jan Feb Mar Jun Dec Jun Oct Nowv Dec Dec MONNAME3.0
3 |PREDICT $0.00 $13.00 $60.00 $101.00 $23950 $42600 S739.00 $828.50 $94050 $98600 $1.00000 DOLLAR122
4 |QUARTER 1 1 1 1 2 3 4 4 4 4 4 20
5 |YEAR 1993 1993 1993 1993 1993 1984 1994 1994 1994 1934 1994 40

Figure 2. formatted statistics

Now statistics for the MONTH variable are appropriately formatted. The statistic columns have contents in more than
one format.

Even though the statistics of the analysis variables are in the differing formats of these analysis variables, when
converted to strings they can share the column.

When an analysis variable has no format defined, it is assigned a default format (BEST12. is the default value of this
macro parameter).

Two arrays define statistics requested from PROC MEANS and the corresponding set of formatted columns to be
output.

array stats(&n_stats) &out stats ; * the stat names output from proc means ;
$let f outs /* list the names of formmatted output stats variables */

= f %sysfunc(tranwrd(Sstr(),)) g
A\Y f ”

* TRANWRD replaces each blank in the list with

&out stats,

gstr(£)

effectively prefixing every variable name with “f:" ;

SAS Global Forum 2012 Programming: Beyond the Basics

Solve the SAS® ODS Data Trap in PROC MEANS, continued

array fstat(&n_stats) S&max fmt width &f outs ;

The PUT() function needs its format parameter to be compiled as a constant and cannot vary at run-time, so that
function does not help here. We need to support differing formats in the same function. For this situation there is the
PUTNY() function. This allows the format parameter to be a variable value which can change its value every time. We
need it to change for each analysis variable.

fstat(stat) = PUTN(stats(_stat), format) ;
As a result of this flexibility, PUTN() does not perform as quickly as PUT(), but because this function will operate on

the data output from PROC MEANS, the reduced volumes should not demand the faster performance of PUT(), and
we need that flexibility.

Presenting multiple formats in each column is a feature that is still not supported in the PROC MEANS updates in
SAS9.3.

OTHER IMPROVEMENTS -1 — DO NOT OVERWRITE PRE-EXISTING TABLES

To avoid overwriting data sets that may exist before the macro is invoked; the default behavior of the “DATA
statement with no output table name” is adopted. For SAS9.2 its use in a DATA statement is documented at
http://support.sas.com/documentation/cdl/en/Irdict/64316/HTML/default/a000188132.htm#a002503650 .

In use, outside of the DATA statement, for example, the OUT= option of PROC SORT, it is referred to as the
“Automatic Naming Convention” and documented for SAS9.2 at
http://support.sas.com/documentation/cdl/en/Ircon/62955/HTML/default/viewer.htm#a000766820.htm.

When any data set is created this “Automatic Naming Convention” can be forced by specifying the new data set
name as _DATA_.

The _DATA_ feature is used in the macro whenever a table is written (except the “final”’). The actual output table
name is captured from the SYSLAST automatic macro variable. And, to complete a “tidy up” at the end of the macro,
these intermediate tables are added to a list, for deletion just before the macro completes.

%let bm conts2 = &syslast ;

%let drop list = &drop list $%$scan(&syslast,-1,.) ;
To complete a “tidy up” at the end of the macro, these intermediate tables are added to a list, for deletion just before
the macro completes.
OTHER IMPROVEMENTS - 2 - REPORT MACRO RUNTIME

The start and finish times are captured, as the macro starts:

%$let bmeansstart = %$sysfunc(datetime()) ;
as it finishes
%let bmeanstime = $sysevalf (%$sysfunc(datetime()) - &bmeansstart) ;

and these are reported to the SASlog

%put Total BetterMeans Macro Time: $%$sysfunc(putn(&bmeanstime, time9.)) ;

MACRO DESIGN AND IMPLEMENTATION POLICY

Some features of the macro design have already been described

e Use of _DATA_ to protect pre-existing tables

e Collect list of temporary tables for deletion

In addition the policies are presumed to help:

1. Listall local macro variables in a %LOCAL statement and explaining purpose.

2. Design the macro and its parameters to allow the macro to be called with no parameters, and then all defaults
provide “all about the latest data set”.

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/a000188132.htm#a002503650
http://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm#a000766820.htm

SAS Global Forum 2012 Programming: Beyond the Basics

Solve the SAS® ODS Data Trap in PROC MEANS, continued

3. Keep the original macro interface (parameters) to enable “enhancement with least disturbance”.

4. Keep syntax narrow to support printing for “code review”.

CONCLUSION
A practical enhancement of the old macro provides simpler use and corrects a defect in the original design.
A new macro engine does not need to replace the interface.

To take advantage of the new PROC MEANS option, STACKODSOUTPUT in SAS9.3, would make the macro fail in
earlier releases. Next year there may be some merit in creating an alternate and simpler - BETTER_MEANS93.

REFERENCES

e Oltsik, Myra and Crawford, Peter. April 2006. “A Better Means - ODS Data Trap (059-31),”SAS Institute Inc.
2006. Proceedings of the Thirty-first Annual SAS® Users Group International Conference. Cary, NC: SAS
Institute Inc. Available at http://www2.sas.com/proceedings/sugi31/toc.html.

e SAS Institute Inc. 2009. Base SAS® 9.2 Procedures Guide. Cary, NC: SAS Institute Inc. For PROC MEANS
see http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a000146728.htm

ACKNOWLEDGMENTS

“Data_null_;” the pseudonym of the SAS Forum poster John King, who pointed out the deficiency of separating the
statistics in the basis of the original method!

RECOMMENDED READING
e Base SAS® Procedures Guide in particular PROC MEANS

e SAS® For Dummies®

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Name: Myra Oltsik

Enterprise: Acorda Therapeutics

City, State ZIP: Hawthorne, NY USA

Work Phone: 1-914-347-4300 x4045

Name: Peter Crawford

Enterprise: Crawford Software Consultancy Limited
City, State ZIP: London, UK

Work Phone: 0044 7802 732254

E-mail: Peter.Crawford@blueyonder.co.uk

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX 1

The macro using the earlier engine, can be found at http://www.sascommunity.org/wiki/PROC _MEANS _-
Improve_on_the default

APPENDIX 2

The macro using the new engine will soon appear in SAS Community.org at

http://www2.sas.com/proceedings/sugi31/toc.html
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a000146728.htm
http://www.sascommunity.org/wiki/PROC_MEANS_-_Improve_on_the_default
http://www.sascommunity.org/wiki/PROC_MEANS_-_Improve_on_the_default

SAS Global Forum 2012 Programminc

Solve the SAS® ODS Data Trap in PROC MEANS, continued

http://www.sascommunity.org/wiki/Solve _the SAS%C2%AE_ODS Data Trap in PROC _MEANS but is appended

here
/**/
/* PROGRAM: better means */
/* AUTHORS: Myra A. Oltsik and Peter Crawford */
/* ORIGINAL DATE: 04/20/05 */
/* PURPOSE: Create a dataset with PROC MEANS statistics, with each record being */
/* one variable. Can print stats, too. Fixes ODS problems. */
/* */
/* CHANGE HISTORY: */
/* 04Jan2006 PC: use a &testing parm to preserve _better : data sets */
/* 01Feb2006 xx: clean for production */
/* 07Jul2006 xx: add out= parameter (defaults to use current scheme) */
/* 11/29/07 - MO: Add use of VARDEF. */
/* */
/* 190ct2011 xXx: support two-tailed tests in UCLM and LCLM */
/* always add label and format for each VAR */
/* 300ct2011 xx: add f {statistic} columns with formatted results as strings x/
/* */
/* NOTE: This macro has special handling for N, SUMWGT, KURT and SKEW. */
/* Also: Q1, MEDIAN, Q3, STD are referred as P25, P50, P75, STD or STDev */

[/ Kk K kK ok Kk ok Kk ok K ok K ok Kk ok K ok K ok ok K ok ok ok ok K ok ok K ok K ok ko ok K ok K ok ok K ok ok ok Kk ok K ok K ok ok K ok K ok Kk ok Kk k Kk Kk ok Kk ok ok k kK /

Kk K kK ok Kk ok Kk ok K ok K ok K ok ok K ok K ok ok K ok ok ok ok K ok ok K ok K ok ok ok ok K ok ok K ok ok K ok ok ok Kk ok K ok K ok kK ok K kK ok k Kk k Kk Kk ok Kk ok ok k kK /

/* MACRO PARAMETERS: */
/* required: none */
/* optional: print -- whether or not to print results to output */
/* data -- dataset name to be analysed */
/* out -- output dataset (default is &data..means */
/* but source not always update-able */
/* sort -- sort order choice of the file of MEANS, by VARNUM or NAME */
/* stts -- indicate which statistics should included in the output */
/* varlst -- list of variables for means if not all numeric vars in file */
/* vdef -- supports alternate VARDEF for STD/VAR in weighted analyses */
/* clss -- variable(s) for a class statement */
/* wghts -- variable for a weight statement */
/* defaults: */
/* data -- &syslast (most recently created data set) */
/* print - Y */
/* sort —-- VARNUM */
/* stts -- _ALL_ */
/* varlst -- ALL */
/* */
/* Created Macro Variables: */
/* locals -- see inline comments at %local statement x/
/* Creates Data Sets x/
/* results are written to &data. means */
/* many data sets are created in the work library all prefixed better */
/* but unless the testing option is set, the work data stes are deleted */
/* */
/* SAMPLES: */
/* %better means (data=test); print all default statistics in a dataset */
/* %better means (data=sashelp.class,stts=MEAN SUM); print only MEAN and SUM stats */
/* %better means (data=sashelp.gnp,print=N, sort=NAME, stts=MIN MAX,varlst=INVEST */
/* EXPORTS) ; suppress list printing, limit output statistics and variables, and */
/* sort on NAME */
/* %better means (data=sasuser.shoes,clss=PRODUCT); run all stats by PRODUCT field */
/* %better_means(data:sasuser.weighted,wghts:WGT); run all stats weighted on WGT */
/* %better means (data=d07_algorithm adjust,stts=Mean Std,wghts=WEIGHT_ POP_D2007,
vdef=%quote (VARDEF=WGT)) ; *need VARDEF for correct Std calculations ;
/**/
$macro
better_means (

data = &syslast ,

out = ’

print =Y,

sort = VARNUM,

stts = _ALL_,

varlst = _ALL_,

clss = ,

wghts =,

vdef =, /* ADDED 11/29/07: Change default for VARDEF= option */

testing= no , /* any other value will preserve the better : data sets */
/**/

/* PROVIDE THE COMPLETE PROC MEANS STATISTIC LIST (FROM ONLINE-DOC) IF NONE STATED. */
)RR KKK KKK KKK KKK KKK KKK KKK KKK KKK KK KKK KKKKKKKKKKKKKKKKKKAK
_stts = N NMISS SUM MEAN mode STD VAR LCLM UCLM

MIN P1 P5 P10 P25 P50 P75 P90 P95 P99 MAX QRANGE RANGE

PROBT STDERR CV CSS SUMWGT KURT SKEW T USS ,
default_ fmt = bestl2. /* format for stats when no format on input data */
)i

http://www.sascommunity.org/wiki/Solve_the_SAS%C2%AE_ODS_Data_Trap_in_PROC_MEANS

SAS Global Forum 20

Solve the SAS® ODS Data Trap in PROC MEANS, continued

%local
BETTER cntl /* holds name of cntlin DS for VARNUM informat */
BETTER_cols /* holds name of contents DS for &data */
BETTER_means_out /* holds name of results before sorting */
bm2varnum /* holds varnum of first {var}_ {stat} PROC MEANS */
bm_cntll /* names cntlin for fmts of name label and format*/
bm_contsl /* holds name of contents DS for adapted &data */
bm_conts2 /* holds name of contents DS for raw PROC MEANS */
bm_datal /* holds name of VIEW with VAR variables renamed */
bm_stats_1 /* holds name of table OUTPUT from PROC MEANS */
bmeansstart /* macro start time */
bmeanstime /* finish time */
drop list /* COLLECT NAMES OF TEMPORARY TABLE TO BE DELETED*/
drop_views /* COLLECT NAMES OF VIEWS TO BE DELETED */
dum_varnum /* this dummy holder avoids warning from proc sqgl*/
f _outs /* list of preformatted stat names */
first stat /* holds name first {var} {stat} PROC MEANS */
full /* INDICATOR IN OUTPUT LABEL WHEN ALL STATS USED.*/
last_stat /* holds name last {var} {stat} PROC MEANS */
max_fmt_width /* maximun width for formatted values */
n_numerics /* counter of analysis vars */
n stats /* counter of statistics output by PROC MEANS */
name2num /* rename VAR variables to support /AUTONAME */
nums_nm /* provides a list of the renamed vars for VAR */
out_stats /* list statistic names output from PROC MEANS */
_stat /* pointer into results statistic arrays */
sttsE /* stats list with = after each statistic */
%let bmeansstart = %sysfunc(datetime()) ;
/**/
/* PUT STATS AND VAR PARAMETER LIST INTO UPPER CASE. */
/**/
$let varlst = %upcase (&varlst);
%let stts = %upcase (&stts);

[/ ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok o ok ok ok ok K ok ok K ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok kK ok ok K ok kK k kK /

/* VERIFY INPUT DATA SET EXISTS. */
/**/
%let data = &data ; /* RESOLVE &syslast, WHEN DEFAULTED */
/* provide default OUT= dataset */
$if NOT %sysfunc(exist(&data)) S%then %do ;
$put MACRO.ER%str (ROR) .&sysmacroName input data file &data does not exist ;
%abort ;
%end ;
/**/
/* PREPARE OUTPUT DATA SET. */

/**/

$if %length(&out) < 1 %then %do;

%let out = &data. means ;
%end ;
data &out ; stop ; run ;
%$if &syserr $then %do;

$put &sysmacroName-ER%str (ROR): unable to write output data file &out ;

%abort ;

%end ;

$if &sort eqg VARNUM S%then %do;

[/ ok ok K ok ok ok ok ok ok ok ok ok ok ok K ok ko ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok o ok ok ok ok K ok ok ok ok ok o ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok Kk Kk ok kK k ok k kK /

/* GET THE NAMES/NUMBERS OF ALL VARIABLES INTO A LOOKUP FORMAT IF SORT ORDER = VARNUM. */
/**/
proc contents data= &data out= _data_ noprint;
run;
%let BETTER cols = &syslast ;
$let drop list = &drop_list %scan(&syslast,-1,.) ;
data _data_ ;

retain
FMTNAME ' bm VN'
TYPE T
HLO ‘U’

;
set &BETTER_cols(keep= NAME VARNUM rename=(VARNUM=LABEL));
START = upcase(NAME) ;
run;
%let BETTER cntl = &syslast ;
%let drop_list = &drop_list %scan(&syslast,-1,.) ;
proc format cntlin= &BETTER_cntl;
run;
%end;

[K ok K ok ok K ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok Kk ok K ok kK ok ok Kk ok Rk Kk kK ok kK k kK kK ok kK Kk Kk kK /

/* PROCESS STATISTICS CONDITIONS / COMBINATIONS */

SAS Global Forum 20

Solve the SAS® ODS Data Trap in PROC MEANS, continued

/**/

%if &stts = _ALL_ or %length(&stts) = 0 %then %do;
%let stts = & stts ;
%let full = FULL STATS;

send;

%1f %length(&wghts) %then %do;
%* remove KURT and Skew when weights are present;
%let stts = %$sysfunc(tranwrd(&stts, KURT, %str()
%let stts = %$sysfunc(tranwrd(&stts, SKEW, %$str()
%let full = STATS ;

%end;

%else %do;
%* remove SUMWGT when no weights present ;
%let stts = %$sysfunc(tranwrd(&stts, SUMWGT, %str()));
%let full = STATS ;

%end;

)i

)
V)i

Gk k ok kK ok ok kK K ok ok K K ok ok Kk ok ok K K ok ok ok ok ok ok Kk ok ok K ok ok kK k ok o kK ok ok ok ok ok ok K K ok ok ok ok ok ok Kk ok R kK

* prepare stats list for OUTPUT statement (like SUM= MEAN= MAX= etc) *
**;
%let sttsE = $sysfunc(tranwrd(%sysfunc(

compbl (&stts)),%str(), %str(=)

))=

/**/
/* TO RUN PROC MEANS ON ALL VARIABLES AND ALL STATS NEEDS /AUTONAME, SO NEED TO PREPARE */
/* WITH A GENERAL RENAME OF THE VAR VARIABLES. VARNUM PROVIDES UNIQUE IDENTITY FOR VARS */
/* LATER THEY WILL BE RENAMED BACK TO NORMAL */
/* NEED TO PREPARE RENAME= AND LOOK-UPS FROM VARNUM TO PROVIDE NAME, LABEL AND FORMAT */
/**/
*** first prepare model data set, in requested structure
then VARNUM will be in any requested order ;
data _data_ ;
stop ;
retain &clss &varlst
keep &clss &varlst
set &data ;
run ;
%let bm conts0 = &syslast ;
%let drop_list = &drop_list %scan(&syslast,-1,.) ;

proc contents data= &bm_conts0(keep= &varlst drop= &clss) noprint out= _data_ ;
* just the VAR variables not in CLASS vars ;

run ;

%let bm contsl = &syslast ;

%let drop_list = &drop list %scan(&syslast,-1,.) ;

proc sgl noprint ;
* prepare renames and name lists ;
select cats(name, '= v', varnum)
, cats('v', varnum)
, varnum
: name2num separated by ' '
, : nums_nm separated by ' '
: dum_varnum
from &bm contsl
where type = 1 /* numeric vars only */
order by varnum

;

$let n_numerics = &sglobs ;

B R R R R R R

* later will be formatting stats together, so need max default width *
**;
select max(max(a.defw, b.formatl))
into : max_ fmt width separated by ' '
from dictionary.formats a
join &bm contsl b
on a.fmtname = b.format

7

*** not forgetting to get length of default formatting width ;

$let def_ fmt_width = %sysfunc(compress(&default fmt, 0123456789, k)) ;
*** and just in case default is the only format/width ;

$let max_fmt_width = %$sysfunc(max(&max_fmt_width, &def fmt_width)) ;
quit ;

B R R R R R R R

* pointless to proceed if there are no numeric vars to analyse *
**;

%if &n_numerics < 1 S%then %do ;
$put &sysmacroname-ER%STR(ROR): NO numeric variables selected for analysis from &data ;

SAS Global Forum 20

Solve the SAS® ODS Data Trap in PROC MEANS, continued

%abort ;
%end ;

R R R R R R R R R R

* always build look-up formats from Varnum-based var names, back to original
* and to variable label, and to variable format
**;
data _data_ ;
set &bm_contsl (drop=type) end=eof ;
retain fmtnl 'numZ2nam' fmtn2 'num2lab' fmtn3 'num2fmt’'

type 'c' start '12345678' hlo ' ' ;
start = cats('v', varnum) ;
*** when format length is not specified, avoid using the zero from proc contents ! ;
if formatl then fmtl = cats(format, formatl, '.', formatd) ;
else fmtl = format ;
output ;
if eof then do ;
fmtl = "&default fmt"
label= " ' ;
hlo = 'o' ;
output ;
end ;
run ;
%let bm cntll = &syslast ;

%let drop_list = &drop list %scan(&syslast,-1,.) ;

proc format cntlin= &bm cntll(rename=(fmtnl=fmtname name= label) drop= label);
proc format cntlin= &bm cntll(rename=(fmtn2=fmtname)
where=(label ne ' ' or hlone ' ')) ;

(

(

proc format cntlin= &bm cntll(rename=(fmtn3=fmtname fmtl= label) drop= label
where=(label ne '0.0' and label ne ' ' or hlo='o'"))
%$if &testing NE no %$then %do ;
fmtlib
$end ;
run ;

hkokkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk ok k ok k ok k ok kkk ok k ok kk ok ok kok ok ok &k kok &k &k &k ko

* feature _DATA doesnt work with data step views

so just using it to make a name available
**;

data _data_; stop; run ;

%let bm_datal = &syslast ;

%let drop_list = &drop list %scan(&syslast,-1,.) ;
%let bm datal = &bm datal.v ;

%let drop _views = &drop views %scan(&bm datal,-1,.) ;

Ak kA kA kA A kA A A A A A A A A A A A A A A A A A A Ak kA kA kA hh kA hhhhhhhhhkhhkhkhkhkhhhkhhkhhkhkhkhhkhhkh kK%
* now build a view with VAR variables renamed v{varnum}
**;
data &bm datal /view= &bm datal ;
set &data ;
rename &name2num ;
run ;

Kok kkkkkkkhkkkkkkkkkkkkkkkkkk kK

* now collect all stats for all vars using /autoname for control *
**;
proc means data=&bm_datal noprint missing &vdef;
var &nums_nm ;
%if %$length(&clss) %then %do;
class &clss;
%end;
%if %$length(&wghts) $then %do;
weight &wghts;

%end;
output &sttsE out= _data_ /AUTONAME ;
run;
%let bm stats_1 = &syslast ;
%let drop_list = &drop_list %scan(&syslast,-1,.) ;

KAk hkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhhhhkhkhkhkhkhkhkhkhkhhkhhkhhkhhkhkhkhkhkhkhkhhkhhkhhkhhkhhkhhkhhkhhkhkhkhkhkkxk*k
* now split up each row into stats for variables *
**;
* first, to identify first and last of the var stat variables output ;
* collect variable names ;
proc contents data= &bm_stats_1(drop= &clss _type__freq_) noprint
out=_data_ ;
run ;
%let bm conts2 = &syslast ;

10

SAS Global Forum 2012

Solve the SAS® ODS Data Trap in PROC MEANS, continued

%let drop list = &drop list %scan(&syslast,-1,.) ;

R R R R R R R R

* and select min and max VARNUM vars *

these provide the range of variable names in the results
**;
proc sqgl noprint ;

select name into :first_ stat separated by ' '

from &bm_conts2

having varnum = min (varnum)

7

select name into :last_stat separated by ' '

from &bm_conts2

having varnum = max (varnum)

;

* now get list of the statistics created by PROC MEANS ;

select scan(name,-1,' ') , varnum
into :out_stats separated by ' ' , :dum_varnum
from &bm_conts2
where scan(name,1l,' ') eq "%scan(&last_stat,l,)"
order by varnum
; FxAxk* yusing &last, but any one stat would do! ;
%put NOTE: &sglobs statistics found ;
quit ;

%let n_stats = &sqlobs ;
%$let £ outs /* formmatted output stats */
= f %sysfunc(tranwrd(&out stats, S$str(), %str(£))) ;

data _data_ ;
retain type &clss name label ;
length vname name $32 label $256 ; drop vname ;
format type 3.

$if %sysfunc(indexw(&out_stats, N)) %then %do ;
format n comma9. nmiss best7. pct_pop percent7.1l ;
$end ;

if 0 then set &bm stats 1 ;
array mean_set (&n_stats, &n_numerics) &first_stat——&last_stat ;

set &bm_stats_1 ;
$if &testing ne no %then %do ;

put mean set(l,1)= mean set(2,2)= mean set(2,1)= ;
%end ;

array stats(&n_stats) &out_stats ;
array fstat(&n_stats) $&max fmt width /*&bm max f len*/ &f outs ;

do n_ =1 to &n_numerics ;
vname = vname(mean_set(1, n_)) ;

* vname name layout is "v{varnum} {statisticName}" ;
vnamev= scan(vname, 1, R
label = put(vnamev, $num2lab.)
name = put(vnamev, $num2nam.) ;
format= put(vnamev, S$num2fmt.) ;

2

7

varnum= input (substr(vnamev,), best8.);

do stat =1 to &n_stats ;
stats(_stat_) = mean_set(_stat_, _n_) ;
fstat(_stat_) = putn(stats(_stat_), format) ;

end ;

$if %sysfunc(indexw(&out_stats, N)) S%then %do ;
pct_pop = n / _freq ;

%end ;

error =0 ;

output ;

end ;

drop &first_stat--&last_stat _stat_ ;
keep _type_ &clss name label &out_stats pct_pop varnum format £ : ;

run ;
%let better_means_out = &syslast ;
%let drop_list = &drop_list %scan(&syslast,-1,.) ;

gmacro now(fmt= datetime21.2) / des= "Timestamp";
$sysfunc(datetime(), &fmt
$mend now;

[K ok K ok ok K ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok Kk ok K ok kK ok ok Kk ok Rk Kk kK ok kK k kK kK ok kK Kk Kk kK /

/* CREATE FINAL DATASET WITH ALL STATISTICS, SORTED AS REQUESTED ON INVOCATION. */

11

S Global Forum 201

Programming: Beyond the

Solve the SAS® ODS Data Trap in PROC MEANS, continued

/*‘k*‘k*‘k*‘k*‘k*************************‘k*‘k*‘k*‘k*‘k*************************‘k*‘k*‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k/
%if &sort = MEANS %then %do *sort=MEANS indicates no sort requested ;
data &out(label= "&FULL FOR &data %$sysfunc(datetime (), datetime21.3)"
drop= vnameV

%if %$length(&clss) = 0 %then %do;

_TYPE

i

send;) ;

set &better_means_out ;

run ;

%end ;

%else %do ;

proc sort data= &better means_out
SORTSEQ=LINGUISTIC

/* in SAS9.2 + this provides mixed-case sorting for NAME */
out= &out (

label= "&FULL FOR &data SNOW"
drop=
%1if %$length(&clss) = 0 %then %do;
_TYPE
%end;
) ;
by TYPE &clss é&sort ;

run;
%end ;

[/ Kk K kK ok Kk ok Kk ok K ok K ok Kk ok K ok K ok ok K ok ok ok ok K ok ok K ok K ok ko ok K ok K ok ok K ok ok ok Kk ok K ok K ok ok K ok K ok Kk ok Kk k Kk Kk ok Kk ok ok k kK /

/* IF PRINTED OUTPUT IS REQUESTED, DO SO HERE. */
/**/
%if &print = Y %then %do;
proc print data= &out ;
title3 "MEANS FOR &data";
footnote2 .h=1

.j=1 T"&sysmacroname by &sysuserid at %now (fmt=twmdy) " ;

%1if %$length(&clss) > 0 %then %do;
by _TYPE_;

%end;

run;
title3 ;
footnote2 ;

%end;

$if &testing = no $then %do;

[/ ok K ok kK ok ok ok ok ok ok ok ok ok ok K ok ko ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok K ok Kk ok ok Kk ok k kK /

/* CLEAN UP REMAINING TEMPORARY DATASETS.

*/
/**/
proc datasets lib= work nolist;

delete &drop_list ;
delete &drop views / mt=view ;
run; quit;
%end;
%else %do ;
proc sql number flow= 20 70 ;
title3 'current macro vars ' ;
proc sql number ;
select name, scope, offset, value
from sashelp.vmacro

order by scope descending,

name, offset ;
quit ;
title3 ;
quit ;
%end ;

%let bmeanstime

$sysevalf (%sysfunc (datetime ()
%put Total BetterMeans Macro Time:

&bmeansstart) ;
%$sysfunc (putn (&bmeanstime, time9.))

7

%mend BETTER MEANS ;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

12

	2012 Table of Contents

