
Paper 228-2012

Is Your Failed Macro Due To Misjudged “Timing”?
Arthur Li, City of Hope Comprehensive Cancer Center, Duarte, CA

ABSTRACT
The SAS® macro facility, which includes macro variables and macro programs, is the most useful tool to develop
your own applications. Beginning SAS programmers often don’t realize that the most important function in learning a
macro program is understanding the macro language processing rather than just learning the syntax. The lack of
understanding includes how SAS statements are transferred from the input stack to the macro processor and the
DATA step compiler, what role the macro processor plays during this process, and when best to utilize the interface
to interact with the macro facility during the DATA step execution. In this talk, these issues are addressed via creating
simple macro applications step-by-step.

INTRODUCTION
The SAS macro facility includes macro variables and macro programs. One can use SAS macro variables and macro
programming statements in a SAS macro program to generate SAS codes. In order to utilize the SAS macro facility,
one needs to learn the SAS macro language. Although the convention of the macro language is similar to the SAS
language, macro language is indeed a separate language that is used in the SAS macro program. The most essential
aspect of learning the SAS macro language is understanding the mechanism of macro processing and utilizing the
interface to interact with the macro facility during the DATA step execution.

AN APPLICATION
Ht.sas7dat contains three variables: RACE, SEX, and HEIGHT. Three unique values for the RACE variable are ‘A’ for
Asian, ‘B’ for Black, and ‘W’ for White students. The SEX variable is coded as either ‘M’ for male or ‘F’ for female
students. HEIGHT is a numerical variable that contains the height in inches for each student.

You can use the two-sample t-test to study whether student’s height is varied by their gender. In order to perform the
two-sample t-test, the students’ height for males and females must follow normal distribution. If the normality
assumption is violated, the Wilcoxon rank sum test can be used. You can also use the chi-square test to evaluate the
association between students’ gender and their heights. But students’ heights need to be recoded as a categorical or
an indicator variable. For example, you can create an indicator variable, say HEIGHT_CAT, based on the HEIGHT
variable; HEIGHT_CAT is set to 1 if HEIGHT is greater than a threshold value or the mean height of all the students;
otherwise HEIGHT_CAT is set to 0. Once the indicator variable is created, the distribution of SEX and HEIGHT_CAT
can be categorized into a two-by-two table like the one below:

 HEIGHT_CAT = 1 HEIGHT_CAT = 0
SEX = ‘M’ A B
SEX= ‘F’ C D

You can use the Pearson chi-square test to evaluate the association between SEX and HEIGHT_CAT. To perform a
valid chi-square test, all expected counts in each cell of the two-by-two table must be greater than or equal to 5.

Suppose that you are asked to generate a table that contains the chi-square statistics between the SEX and
HEIGHT_CAT variables for all students and the students within each ethnic group. The HEIGHT_CAT is set to 1 if
the student’s height is greater than the mean height of their group; otherwise HEIGHT_CAT is set to 0. The table
should look like the one below that consists of four columns. The TEST column indicates whether the chi-square test
is valid or not. If one of the expected counts is less than 5, the TEST column should have the value of “not valid;”
otherwise, it should be “valid.” CHISQ column contains the chi-square statistics and P column contains the
corresponding P values.

Group Test Chisq P
All valid 8.97231 0.00274
A valid 0.07529 0.78378
B not valid 6.74074 0.00942
W valid 9.39323 0.00218

1

Programming: Beyond the BasicsSAS Global Forum 2012

CREATING AND REFERENCING MACRO VARIABLES
Macro variables are either automatic, which is provided by SAS, or user-defined, which is created by SAS users.
One way to create a macro variable is to use the %LET statement, which has the following form:

%LET MACRO-VARIABLE = TEXT;

TEXT is stored as character strings that can be ranged from 0 to 65,534 characters. Mathematical expressions that
are stored as TEXT are not evaluated. Furthermore, the case of TEXT is also preserved. If TEXT contains quotation
marks that include literals, then the quotation marks will be part of TEXT. Before assignment is made, any of the
leading and trailing blanks will be removed from TEXT. If MACRO-VARIABLE and/or TEXT contain references to
another macro variable, the reference will be evaluated first before the assignment. Also, if the MACRO-VARIABLE
has already been previously-defined in the program, the new value will replace the most current value of the
MACRO-VARIABLE. Here are some examples of defining macro variables by using the %LET statement::

%LET Statement Variable Name Value Length
%let var1 = 4 + 3; var1 4 + 3 5
%let var2 = hello; var2 hello 5
%let var3 = leading blank; var3 leading blank 13
%let var4 = " quotations "; var4 “ quotations “ 14
%let var5 =; var5 0
%let var6 = var7; var6 var7 4
%let &var6 = &var1 + 2; Var7 4 + 3 + 2 9

Once a macro variable is defined, the value of the macro variable is stored in the global symbol table. In order to
substitute a macro variable in the SAS program, you must reference the macro variable by preceding the macro
variable name with an ampersand (&). This reference causes the macro processor to search the macro variable in
the global symbol table. Once the macro variable is found, the value that corresponds to the macro variable will be
substituted into the SAS program. If the reference of a macro variable is within quotations, then double quotation
marks must be used. Program 1 creates a macro variable, VALUE, which has a value of 63. The macro variable
VALUE is then referenced in the DATA step.

Program 1:
%let value = 63;
data new_ht;
 set ht;
 height_cat = height > &value;
run;

UNDERSTANDING SAS AND MACRO PROCESSING
SAS PROCESSING

In order to understand how macro variables are processed and stored, one needs to understand how SAS
processing works. Once a sequence of SAS codes is submitted, it is processed in two-phase sequences: the
compilation and execution phases. The compilation phase is performed by the compiler. Before the SAS code is
transferred to the compiler, the codes are placed in a memory area, which is called the input stack. Next, the word
scanner takes the SAS code from the input stack and breaks that code into words or symbols, which are called
tokens, and directs the tokens to the correct destination, such as the compiler or the macro processor. When the
compiler receives a semicolon following the RUN statement, it stops accepting tokens from the word scanner. The
compiler then compiles the received tokens, checking for syntax errors. If there are no syntax errors, the execution
phase begins. The types of tokens that the compiler recognizes are illustrated in following table:

Types of Token Contains… Examples
Literal Characters enclosed in quotation marks “John”, ‘John’
Number Numerals including decimals, E-notation, date, time,

datetime constants, and hexadecimal constants
555, ‘01mar2010’d,
30e4, 2.5

Name Characters that begin with a letter or underscore and that
continue with underscores, letters, or numbers. A period
can sometimes be part of a name

n, means, dollar9.2
Descending

Special character Characters other than a letter, number, or underscore that
have a special meaning to the SAS system

*, /, +, %, &, ., ;

2

Programming: Beyond the BasicsSAS Global Forum 2012

MACRO PROCESSING

The macro processor is responsible for processing all the macro languages, such as the %LET statement and the
macro variable references. So that the macro processor can process the macro language, the word scanner has to
be able to recognize the macro language and direct the macro language to the macro processor. The tokens that
prompt the word scanner that the subsequent codes are macro languages are called macro triggers, such as %LET
followed by a name token and “&” followed by a name token. Once the macro triggers are detected by the word
scanner, the word scanner passes the tokens to the macro processor. Then the macro processor performs its
actions. For macro variables, the macro processor will either create a new macro variable or modify an existing
macro variable in a symbol table. The macro processor also retrieves the value from the existing macro variable and
returns it to the input stack where it originally contains the macro reference.

We can use Program 1 as an example to illustrate how macro processing works. First, Program 1 is pushed into the
input stack (Figure 1a). The word scanner recognizes that %LET followed by VALUE (a name token) is a macro
trigger; it directs the %LET statement to the macro processor (Figure 1b). The macro processor will keep requesting
tokens until it reaches the semicolon. The macro processor creates the macro variable VALUE and assigns the value
63 in the symbol table (Figure 1c). After the macro processor receives the semicolon, the word scanner begins to
transfer the subsequent statements to the compiler until it reaches the next macro trigger, which is ampersand (&)
followed by a name token, VALUE. Then the word scanner directs &VALUE to the macro processor (Figure 1d). The
macro processor retrieves the value that corresponds to VALUE in the symbol table, which is 63, and returns it to the
input stack (Figure 1e). The word scanner continues scanning. Since there are no more macro triggers, the remaining
tokens are passed-on to the compiler. When the compiler receives the semicolon following the RUN statement, it
stops accepting tokens from the word scanner. The compilation phase begins.

Figure 1a. Program 1 is pushed
into the input stack.

Figure 1b. The word scanner
recognizes that %LET followed
by “value” (a name token) is a
macro trigger, directing %LET to
the macro processor. The
macro processor requests
additional tokens until it receives
a semicolon.

3

Programming: Beyond the BasicsSAS Global Forum 2012

Figure 1c. The macro processor
creates the macro variable
VALUE and assigns the value 63
in the global symbol table.

Figure 1d. After the macro
processor receives the
semicolon, the word scanner
begins to transfer the
subsequent statements to the
compiler until it reaches the next
macro trigger, which is
ampersand (&) followed by a
name token (VALUE). The word
scanner directs &VALUE to the
macro processor.

Figure 1e. The macro processor
retrieves the value that
corresponds to VALUE in the
symbol table, which is 63,
returning it to the input stack.

4

Programming: Beyond the BasicsSAS Global Forum 2012

CREATING MACRO VARIABLES DURING THE DATA STEP EXECUTION
PROBLEMS WITH CREATING MACRO VARIABLES DURING THE DATA STEP EXECUTION

Sometimes creating a macro variable during the DATA step execution, based on the data value or programming
logic, is necessary. Using the %LET statement will not work since the macro variable created by %LET occurs before
the execution begins. For example, to calculate the chi-square statistics between SEX and HEIGHT_CAT among
Blacks, you can use PROC FREQ with the CHISQ option in the TABLES statement, like below:

proc freq data=new_ht;
 where race = 'B';
 tables sex*height_cat/chisq;
run;

Output:

The warning message in the output window tells us some of the cells from the 2-by-2 table have expected counts < 5,
which violates the assumption for performing the chi-square statistics. Suppose that you would like to create a macro
variable, TEST, which contains either a VALID or NOT VALID value. If any of the expected values in the 2-by-2 table
are less then 5, then TEST will be assigned with “not valid;” otherwise, it will assigned with the VALID value. To
calculate the expected counts for each cell, you can use the EXPECTED option in the TABLES statement from
PROC FREQ. You can then output the expected counts to an output data set by using the ODS OUTPUT statement.

Program 2a:
proc freq data=new_ht;

where race = 'B';
tables sex*height_cat/expected;
ods output CrossTabFreqs =CrossTabFreqs1;

run;

proc print data=CrossTabFreqs1;
run;

The SAS System
 h R C
 e F o o
 i r E w l
 g _ e x P P P M
 h _ T q p e e e i
 T t T A u e r r r s
 a _ Y B e c c c c s
O b s c P L n t e e e i
b l e a E E c e n n n n
s e x t _ _ y d t t t g

1 Table sex * height_cat F 0 11 1 7 5.53846 53.846 77.7778 87.5 .
2 Table sex * height_cat F 1 11 1 2 3.46154 15.385 22.2222 40.0 .
3 Table sex * height_cat F . 10 1 9 . 69.231 . . .
4 Table sex * height_cat M 0 11 1 1 2.46154 7.692 25.0000 12.5 .
5 Table sex * height_cat M 1 11 1 3 1.53846 23.077 75.0000 60.0 .
6 Table sex * height_cat M . 10 1 4 . 30.769 . . .
7 Table sex * height_cat 0 01 1 8 . 61.538 . . .
8 Table sex * height_cat 1 01 1 5 . 38.462 . . .
9 Table sex * height_cat . 00 1 13 . 100.000 . . 0

Statistics for Table of sex by height_cat
Statistic DF Value Prob
ƒƒ
Chi-Square 1 3.2590 0.0710
Likelihood Ratio Chi-Square 1 3.2898 0.0697
Continuity Adj. Chi-Square 1 1.4106 0.2350
Mantel-Haenszel Chi-Square 1 3.0083 0.0828
Phi Coefficient 0.5007
Contingency Coefficient 0.4477
Cramer's V 0.5007
 WARNING: 75% of the cells have expected counts less
 than 5. Chi-Square may not be a valid test.

5

Programming: Beyond the BasicsSAS Global Forum 2012

Program 2b uses the %LET statement to create the macro variable TEST. To verify whether TEST is created
correctly, you can use the %PUT statement1:

Program 2b:
data _null_;

set CrossTabFreqs1 end=last;
if not missing(expected) and expected < 5 then count +1;
if last then do;
 if count then do;
 %let test = not valid;

 end;
 else do;
 %let test = valid;
 end;

 end;
run;
%put test: &test;

SAS log:
125 %put test: &test;
test: valid

Program 2b did not create the macro variable correctly. There are three cells with expected counts less than 5, but
the TEST macro variable is assigned with a “valid” value. Let’s exam this program in more detail. At first, Program 2b
is pushed into the input stack. The word scanner directs the SAS code to the compiler until it reaches the macro
trigger (%LET). The word scanner directs the %LET statement to the macro processor. The macro processor creates
the macro variable TEST with the value of NOT VALID in the symbol table. After directing the %LET statement to the
macro processor, the word scanner directs subsequent tokens to the compiler until it reads the second %LET
statement. The word scanner directs the second %LET statement to the macro processor. The macro processor
reassigns VALID to the macro variable TEST. The word scanner continues to send the remaining tokens to the
compiler. When the compiler receives the semicolon following the RUN statement, it stops accepting tokens from the
word scanner. When the compilation begins, there will be no more %LET statements in the DATA step.

THE SYMPUT(X) ROUTINES

To fix the problem in Program 2b, you need to be able to create a macro variable during the DATA step execution,
which can be accomplished by using the SYMPUT routine. Since the macro variable is assigned with the value
during the DATA step execution, you can only reference the macro variable after the DATA step in which it is created.
The SYMPUT routine has the following form:

CALL SYMPUT (MACRO-VARIABLE, VALUE);

In the SYMPUT routine, both MACRO-VARIABLE and VALUE can be specified as literal (text in quotations), a DATA
step variable, or a DATA step expression. When both MACRO-VARIABLE and VALUE are literal, they are enclosed
in quotation marks. The text enclosed in quotation marks for the first argument is the exact macro variable name. The
second argument enclosed in quotation marks is the exact value that is assigned to the macro variable. In Program 2,
the macro variable we attempted to create is based on a calculated value in the DATA step. This is a perfect situation
to utilize the SYMPUT routine.

Program 3:
data _null_;
 set CrossTabFreqs1 end=last;
 if not missing(expected) and expected < 5 then count +1;
 if last then do;
 if count then call symput ('test', 'not valid');
 else call symput ('test', 'valid');
 end;
run;
%put test: &test;

1 Following is the general form of the %PUT statement: %PUT text , where text is any text string. The %PUT statement writes only
to the SAS log. If the text is not specified, the %PUT statement writes a blank line. The %PUT statement resolves macro triggers in
text before text is written. For more information, check SAS documentations.

6

Programming: Beyond the BasicsSAS Global Forum 2012

SAS log:
139 %put test: &test;
test: not valid

In Program 3, both arguments in the SYMPUT routine are enclosed in quotation marks. The first argument in the
SYMPUT routine, TEST, is the name of the macro variable. The second argument, NOT VALID or VALID, is the
value that is assigned to the macro variable TEST. Since the variable COUNT is greater than 0, macro variable TEST
is assigned with NOT VALID through the SYMPUT routine.

When the second argument in the SYMPUT routine is not in quotation marks, you are assigning the value of a DATA
step variable to the macro variable. Any leading or trailing blanks that are part of the values of a DATA step variable
will be part of the macro variables. If the DATA step variable is a numeric variable, the values will be converted to the
character variables automatically by using the BEST12. format. When the first argument in the SYMPUT routine is
not in quotation marks, you are creating multiple macro variables by using only one SYMPUT routine. The names of
the macro variables that you are creating are the value of a DATA step variable. You can use a DATA step
expression in either or both arguments in the SYMPUT routine.

The SYMPUTX routine is an improved version of the SYMPUT routine and becomes available beginning with
SAS®9. Besides creating macro variables like the SYMPUT routine, the SYMPUTX routine can remove leading and
trailing blanks from both arguments. Also, when the second argument is numeric, the SYMPUTX routine converts it to
characters by using the BEST32.format instead of using the BEST12. format. The SYMPUTX routine has an optional
third argument that enables you to specify the symbol table in which to store the macro variables, but the SYMPUT
routine does not. Further details can be found in SAS documentations.

USING THE EXECUTE ROUTINE TO CREATE MACRO VARIABLES DURING THE DATA STEP EXECUTION

In addition to using SYMPUT(X) routines, you can also use the EXECUTE routine to create a macro variable during
the DATA step execution. CALL EXECUTE has the following form:

CALL EXECUTE (ARGUMENT);

ARGUMENT in CALL EXECUTE can be a text expression that is enclosed in single or double quotation marks, the
name of a character variable, or a character expression that is resolved by the DATA step to a macro text expression
or a SAS statement.

If ARGUMENT in CALL EXECUTE produces macro language elements that are enclosed in single quotes, those
elements execute immediately during the DATA step execution phase. On the other hand, if the generated macro
language elements that are enclosed in double quotes, those elements will execute immediately during the DATA
step compilation phase. Single quote notation is commonly used in most applications.

If ARGUMENT in CALL EXECUTE produces SAS language statements, or if the macro language elements from
ARGUMENT generate SAS language statements, the SAS language statements will be placed into the input stack as
additional program code and execute after the end of the current DATA step's execution. Program 4 creates the
TEST macro variable by enclosing the %LET statement in quotations as the argument of CALL EXECUTE. More
examples on CALL EXECUTE will be shown in the section below.

Program 4:
data _null_;
 set CrossTabFreqs1 end=last;
 if not missing(expected) and expected < 5 then count +1;
 if last then do;
 if count then call execute ('%let test = not valid;');
 else call execute ('%let test = valid;');
 end;
run;
%put test: &test;

SAS log:
153 %put test: &test;
test: not valid

7

Programming: Beyond the BasicsSAS Global Forum 2012

REFERENCING MACRO VARIABLES INDIRECTLY
The method of referencing macro variables in previous examples is called direct macro variable references, which is
placing an ampersand preceding the name of the macro variable. The SAS macro facility provides indirect macro
variable references, which enables you to use an expression to generate a reference to one or a series of macro
variables. In indirect referencing, you need to use more than one ampersand to precede the name of the macro
variable. To resolve indirect references, the macro processor follows the rules below:

o Two ampersands (&&) are resolved to one ampersand.
o Macro variable references are resolved from left to right.
o More than one leading ampersand causes the macro processor to re-scan the reference until no more

ampersands can be resolved.

Suppose that you have the following macro variables:

MACRO-VARIABLE NAME MACRO-VARIABLE VALUE
I 1
VALUE1 A
VALUE2 B
VALUE3 W
VARNAME VALUE
DAT ht

Based on the macro variables above,

o &&VALUE&I resolves to A:

At beginning First Pass Second Pass
&&VALUE&I && &

VALUE VALUE
&I 1
Result: &VALUE1

&VALUE1 A
Result: A

o &&&VARNAME&I..TEST
resolves to ATEST

At beginning First Pass Second Pass
&&&VARNAME&I..TEST && &

&VARNAME VALUE
&I. 1
.TEST .TEST
Result: &VALUE1.TEST

&VALUE1. A
TEST TEST
Result: ATEST

Sometimes you need to be able to create indirect references based on a given token (i.e.how to create a macro
reference based on the given macro variables to generate a token ‘A’). In this situation, you need to think
“backward.” Since ‘A’ is the value of macro variable VALUE1, you can write &VALUE1. Since 1 is a component of
the macro variable VALUE1, you need to utilize indirect referencing, e.g. &&VALUE&I.

Let’s look at a more complicated example: how to generate a token ‘new_htA_chisq’?

At beginning First Pass Second Pass
new_htA_chisq new_ new_

ht &DAT
A &VALUE1. (A period is necessary
to separate the trailing text)
_chisq _chisq
Result: new_&DAT&VALUE1.chisq

new_&DAT new_&DAT
& &&
VALUE VALUE
1 &I. (A period is necessary to
separate the tailing text)
.chisq .chisq
Result: new_&DAT&&VALUE&I..chisq

MACRO PROGRAMS
Macro programs (or Macros) are compiled programs that enable you to substitute text in a program. Macros can
utilize conditional logic to make decisions about the text that you want to substitute in your programs. Macros can
also accept parameters, which enables you to pass information into your macro. When you include parameters in a
macro definition, a macro variable is automatically created for each parameter each time you call the macro. You can
include parameters in the macro definition in one of the following methods: Positional, Keyword, and Mixed. We will
only focus on the Positional parameters in this paper, which has the following form:

8

Programming: Beyond the BasicsSAS Global Forum 2012

%MACRO MACRO-NAME(PARAMETER1 <, …, PARAMETERN>);
TEXT
%MEND <MACRO-NAME>;

The MACRO-NAME is the name of the macro. TEXT can be constant text, SAS data set names, SAS variable
names, SAS statements, macro variables, macro functions, or macro statements. If more than one parameter is
being specified, you need to separate them with a comma. Each parameter must have a valid SAS name. You cannot
use a SAS expression to generate the name of the parameter.

Executing a macro with positional parameters has the following form:

%MACRO-NAME(VALUE1 <, …, VALUEN>)

The VALUE(S) can be null, text, macro variable references, or macro calls. For positional parameters, the VALUES
are assigned to the PARAMETERS via one-to-one correspondence. You don't need to place a semicolon at the end
of the macro call; as a matter of fact, in some situations, placing a semicolon at the end of the macro call will cause
an error. For example, Program 5 creates the macro CREATE_CAT1. CREATE_CAT1 takes only one argument,
VALUE. This macro creates a new data set, new_ht, by adding an additional indicator variable, HEIGHT_CAT.
HEIGHT_CAT is defined by comparing variable HEIGHT with VALUE.

Program 5:
%macro create_cat1(value);
 data new_ht;
 set ht;
 height_cat = height > &value;
 run;
%mend;

%create_cat1(63)

MACRO COMPILATION AND EXECUTION
MACRO COMPILATION

Before you execute your macro, you need to compile the macro first by submitting the macro definition. For example,
when you submit Program 5, the code is pushed into the input stack (Figure2a). The word scanner begins tokenizing
the program. When the word scanner detects % followed by a non-blank character in the first token, it starts to send
the tokens to the macro processor. The macro processor examines the token and recognizes the beginning of a
macro definition. It then starts to pull tokens from the input stack and compiles them until the %MEND statement
terminates the macro definition. During macro compilation, the macro processor creates an entry in the session
catalog. By default, macro programs are stored in a catalog in the WORK library (Figure 2b). The name of the catalog
is SASMACR. The macro processor stores all macro program statements for that macro as macro instructions and
stores all non-compiled items in the macro as text.

MACRO EXECUTION

After the macro is compiled, you can use it in your SAS programs for the duration of your SAS session without re-
submitting the macro definition. To execute the compiled macro program, you must call the macro program and
place a macro call anywhere in your program (except in the data lines of the DATALINES statement).

Once you submit the macro call, it is placed into the input stack. The word scanner examines the input stack and
detects the percent sign (%) followed by a non-blank character in the first token. The word scanner directs the tokens
to the macro processor to examine the token. The macro processor recognizes a macro call and begins to execute
macro CREATE_CAT1(Figure2c). The macro processor creates a local symbol table for the macro and adds entries
for the parameter and variable to the newly-created local symbol table. For this example, one macro variable,
VALUE, is created and stored in the local symbol table with the corresponding value of 63 (Figure 2d). The macro
processor begins to execute the compiled instructions of the macro and places SAS language statements on the
input stack (Figure 2e). The word scanner starts to pass the tokens to the compiler until it encounters a macro
variable reference (&VALUE). The word scanner directs &VALUE to the macro processor. The macro processor
retrieves the value that corresponds to &VALUE in the local symbol table, which is 63, and returns it to the input stack
(Figure 2f). The word scanner continues to pass tokens to the compiler. After the compiler receives the RUN token
and a semicolon, the DATA step compilation begins and is immediately followed by the execution. The data set
new_ht is then created.

9

Programming: Beyond the BasicsSAS Global Forum 2012

Figure2a. The macro definition is
pushed into the input stack.

Figure2b. The compiled macro
programs are stored in a catalog.

Figure2c. The macro processor
recognizes a macro call and
begins to execute macro
CREATE_CAT1.

10

Programming: Beyond the BasicsSAS Global Forum 2012

Figure2d. The macro variable
VALUE is created and stored in
the local symbol table with the
corresponding value of 63.

Figure2e. The macro processor
begins to execute the compiled
instructions of the macro and
places SAS language
statements on the input stack.

Figure2f. The macro processor
retrieves the value that
corresponds to &VALUE in the
local symbol table, which is 63,
and returns it to the input stack.

11

Programming: Beyond the BasicsSAS Global Forum 2012

THE GLOBAL AND LOCAL SYMBOL TABLES
THE GLOBAL SYMBOL TABLE

The global symbol table is automatically created when you start your SAS session and is deleted at the end of the
session. All the automatic macro variables are stored in the global symbol table. You can create the macro variables
that are stored in the global symbol table with a %LET statement in open code, a SYMPUT or SYMPUTX routine in
the DATA step in open code, an INTO clause of a SELECT statement in PROC SQL or a %GLOBAL statement. To
delete macro variable(s) from the global symbol table, you can use the %SYMDEL statement.

THE LOCAL SYMBOL TABLE

A local symbol table is automatically created when you call a macro that includes parameter(s) and it is deleted when
the macro execution is finished. You can create macro variables that are stored in the local symbol table by the
following method: parameters that are included in the macro definition, a %LET statement within a macro definition,
the SYMPUT or SYMPUTX routines in the DATA step in a macro definition, an INTO clause of a SELECT statement
in PROC SQL within a macro definition, or a %LOCAL statement.

RULES FOR CREATING/UPDATING MACRO VARIABLES

When creating a macro variable by using a %LET statement during the macro execution, the macro processor follows
certain rules. For example, suppose that you created the following macro variable within the macro definition:

%let value = 63;

The macro processor will adhere the following rules when creating the macro variable VALUE:

1. The macro processor checks to see if VALUE already exists in the local symbol table. If it does, the macro
processor updates VALUE in the local symbol table. If not, the macro processor goes to STEP 2.
2. The macro processor checks to see if VALUE already exists in the global symbol table. If it does, the macro
processor updates VALUE in the global symbol table. If not, the macro processor goes to STEP 3.
3. The macro processor creates a macro variable, VALUE, in the local symbol table and assigns 63 to it.

When referencing a macro during the macro execution (for example, &VALUE), the macro processor follows the rules
below:

1. The macro processor checks to see whether macro variable VALUE exists in the local symbol table. If it does, the
macro processor retrieves the value of VALUE. If it does not, the macro processor goes on to STEP 2.
2. The macro processor checks to see whether macro variable VALUE exists in the global symbol table. If it does,
the macro processor retrieves the value of VALUE. If it does not, the macro processor goes on to STEP 3.
3. The macro processor returns the tokens (&VALUE) to the word scanner. A warning message is written to the SAS
log: 'WARNING: Apparent symbolic reference VALUE not resolved'.

DIVIDE AND CONQUOR
To solve a difficult problem, it is better to break the problem down into a few small and easy-to-solve problems then to
connect them together in the end. This strategy is known as Divide and Conquer. For example, we can divide our
problem into the following components:

1. Subsetting the whole data set to a smaller data set for each ethnic group.
2. Creating the indicator variable HEIGHT_CAT.
3. Calculating the chi-square statistics for each ethnic group.
4. Combing the results together into one final table.

STEP 1: SUBSETTING THE DATA SET

To subset a data set, you need to write a macro with the following parameters:

o DAT: the input data set, which is the data set that you would like to subset, such as HT.
o VARNAME: the name of the variable, such as RACE.
o VAL: the value of the variable, such as W.

Before you write your macro, you should hardcode your program first to make sure it is working. Since this program
requires three parameters, you can create three macro variables first by using the %LET statement. Then you can
write the DATA step and use the macro variables that you created.

12

Programming: Beyond the BasicsSAS Global Forum 2012

%let dat = ht;
%let varname = race;
%let val = W;
data &dat&val;

set &dat;
 if &varname = "&val";
run;

Once you have confirmed that your code works, you can then write your macro by including the macro variable
names in the parameter lists of the macro definition.

Program 6:
%macro subset(dat, varname, val);

data &dat&val;
 set &dat;
 if &varname = "&val";

 run;
%mend;
%subset(ht, race, W)

The macro in Program 6 creates a data set (htW) by selecting White students from the data set ht. The name of the
resulting data set is created by concatenating two parameters, DAT and VAL, from the macro definition.

STEP 2: CREATING THE HEIGHT_CAT VARIABLE

In Program 5, the macro CREATE_CAT1 only contains one parameter, VALUE. You can make this macro more
flexible by including more parameters:

o DAT: the input data set, such as HTW, which is the one you just created in the previous step
o VARNAME: the name of a continuous variable that you used to create the indicator variable
o VALUE: either null or a given value. If VALUE is null (or not provided), then VALUE can be calculated within the

macro by using the mean of the continuous variable

One of the advantages of creating a macro program is that you will be able to use conditional logic to make decisions.
You can conditionally process a portion of a macro by using the %IF-%THEN/%ELSE statement, which can only be
used inside a macro program, not in open code. The %IF-%THEN/%ELSE statement has the following form:

%IF EXPRESSION %THEN ACTION;
<%ELSE ACTION;>

EXPRESSION is any macro expression that resolves to an integer. If the EXPRESSION resolves to a non-zero
integer (TRUE), then the %THEN clause is processed. If the EXPRESSION resolves to zero (FALSE), then the
%ELSE statement, if one is present, is processed. If the EXPRESSION resolves to a null value or a value containing
nonnumeric characters, the macro processor issues an error message. ACTION is either constant text, a text
expression, or a macro statement. If ACTION contains semicolons, then the first semicolon after %THEN ends the
%THEN clause. Use a %DO group or a quoting function, such as %STR, to prevent semicolons in ACTION from
ending the %IF-%THEN statement. Often you will use the %DO and %END statements in conjunction with the %IF-
%THEN/%ELSE statement:

%IF EXPRESSION %THEN %DO;
ACTION
%END;
%ELSE %DO;
 ACTION
%END;

Programmers often get confused about the difference between the %IF-%THEN/%ELSE statement and the IF-
THEN/ELSE statement. These two statements belong to two different languages. The %IF-%THEN/%ELSE
statement is part of the SAS macro language that conditionally generates text. On the other hand, The IF-
THEN/ELSE statement is part of the SAS language to conditionally execute SAS statements during the DATA step
execution. The EXPRESSION that is the condition for the %IF-%THEN/%ELSE and the IF-THEN/ELSE statements
are also different because the EXPRESSION in the %IF-%THEN/%ELSE statement can contain only operands that
are constant text or text expressions that generate text; while the EXPRESSION in the IF-THEN/ELSE statement can
contain operands that are DATA step variables, character constants, numeric constants, or date and time constants.
When the %IF-%THEN/%ELSE statement generates text that is part of a DATA step, it is compiled by the DATA step

13

Programming: Beyond the BasicsSAS Global Forum 2012

compiler and executed. On the other hand, when the IF-THEN/ELSE statement executes in a DATA step, any text
generated by the macro facility has been resolved, tokenized, and compiled. No macro language elements exists in
the compiled code.

Similar to the previous example, you should hardcode your program first to make sure it is working. If the VALUE is a
null value, you can write the following code:

%let dat = htW;
%let varname = height;
%let value =;

proc means data=&dat mean;

var &varname;
 ods output summary = summary1;
run ;
data _null_;

set summary1;
call symputx('value', &varname._Mean);

run;

data new_&dat;

set &dat;
 &varname._cat = &varname > &value;
run;

If the VALUE is given, you can write the following code:

%let value =63;
data new_&dat;

set &dat;
 &varname._cat = &varname > &value;
run;

Based on the code above, you can see that PROC MEANS and the first DATA step can be enclosed in the %IF-
%THEN statement. That is, if VALUE is equal to the null value, then run the PROC MEANS and the DATA step to
create the macro variable VALUE.

Program 7:
%macro create_cat(dat, varname, value);

%if &value = %then %do;
 proc means data=&dat mean;
 var &varname;
 ods output summary = summary1;
 run;

 data _null_;
 set summary1;
 call symputx('value', &varname._Mean);

 run;
 %end;
 data new_&dat;
 set &dat;
 &varname._cat = &varname > &value;
 run;
%mend;

%create_cat(htW, height,)
The macro CREATE_CAT in Program 7 creates a data set (new_htW) that contains the newly-created indicator
variable HEIGHT_CAT. The name of the newly-created variable is created by concatenating the parameter
VARNAME and the text string “_cat”. The name of the data set is created by concatenating the text string “new_” and
the parameter DAT.

14

Programming: Beyond the BasicsSAS Global Forum 2012

STEP 3: CALCULATE THE CHI-SQUARE STATISTICS

For this step, you need to create the following data set with four variables and one observation.

Group Test Chisq P
W valid 9.39323 0.00218

To generate this data set, four parameters are needed:

o DAT: input data set, such as NEW_HTW, which is created from the previous step.
o VAR1: one of the categorical or indicator variables that is used to calculate the chi-square statistics, such as

HEIGHT_CAT, which is created from the previous step.
o VAR2: same as VAR1, such as SEX.
o GROUP_LABEL: used to indicate the group, such as W.

To hardcode your program, you can test the following code first:

%let dat = new_htw;
%let var1 = height_cat;
%let var2 = sex;
%let group_label = W;

proc freq data=&dat;

tables &var1*&var2/chisq expected;
 ods output chiSq = chiSq1 CrossTabFreqs =CrossTabFreqs1;

data _null_;
 set chiSq1;
 if Statistic = 'Chi-Square';
 call symputx ('chisq', value);
 call symputx ('p', Prob);

data _null_;
 set CrossTabFreqs1 end=last;
 if not missing(expected) and expected < 5 then count +1;
 if last then do;
 if count then call symputx ('test', 'not valid');
 else call symputx ('test', 'valid');
 end;

data &dat._chisq;
 length group $ 3 test $ 9;
 group = "&group_label";
 chisq = &chisq;
 p = &p;
 test = "&test";
run;

The two CALL SYMPUTX in the first DATA step above creates two macro variables, CHISQ and P. Notice that the
second arguments are not enclosed in quotation marks because the values of the VALUE and P DATA step variables
are assigned to the macro variables CHISQ and P, respectively. The second DATA step above is taken directly from
Program3, which is used to create the macro variable TEST. Now, you can write your macro like following:

15

Programming: Beyond the BasicsSAS Global Forum 2012

Program 8:
%macro chi_sq(dat, var1, var2, group_label);

proc freq data=&dat;
 tables &var1*&var2/chisq expected;

 ods output chiSq = chiSq1 CrossTabFreqs =CrossTabFreqs1;

data _null_;
 set chiSq1;

 if Statistic = 'Chi-Square';
 call symputx ('chisq', value);
 call symputx ('p', Prob);

 data _null_;
 set CrossTabFreqs1 end=last;
 if not missing(expected) and expected < 5 then count +1;
 if last then do;
 if count then call symputx ('test', 'not valid');
 else call symputx ('test', 'valid');
 end;

data &dat._chisq;
 length group $ 3 test $ 9;
 group = "&group_label";
 chisq = &chisq;
 p = &p;
 test = "&test";

 run;
%mend;

%chi_sq(new_htW, height_cat, sex, W)

proc print data=new_htW_chisq;
run;

The SAS System

Obs group test chisq p

 1 W valid 9.39323 .002177878

The name of the data set that is created from the CHI_SQ macro from Program 8 is created by concatenating the
DAT parameter with the “chisq” text string.

STEP4: CREATING THE FINAL TABLE

In the final step, you need to create the chi-square statistics for each and all races separately within one macro.
Once the chi-square statistics is generated for each and all subgroups, you need to stack them all to create a final
table. The final macro can consist of the following parameters:

o DAT: the input data set; for example, HT.
o NUM_VAR: the numerical variable; for example, HEIGHT. This is the variable that is used to create the indicator

variable HEIGHT_CAT. Then you will use HEIGHT_CAT with CAT_VAR (next parameter) to calculate the chi-
square statistics.

o CAT_VAR: the categorical variable, such as SEX. You use this variable to calculate the chi-square statistics.
o GROUP_VAR: the variable that is used to separate the input data set; for example, RACE.
o GROUP_VALUE: the value of GROUP_VAR, such as W, A, or B.
o CUTOFF: a threshold value that is used to create the indicator variable. If CUTOFF is not given, the mean of the

NUM_VAR is used.

To calculate the chi-square statistics for each group, you can utilize the iterative %DO statement, which has the
following form:

16

Programming: Beyond the BasicsSAS Global Forum 2012

%DO MACRO-VARIABLE = START %TO STOP <%BY INCREMENT>;
TEXT AND MACRO LANGUAGE STATEMENTS
%END;

MACRO-VARIABLE is used to name a macro variable or a text expression that generates a macro variable name. Its
value functions as an index that determines the number of times the %DO loop iterates. If the macro variable
specified as the index does not exist, the macro processor creates it in the local symbol table.

You can change the value of the index variable during processing. START and STOP are integers or macro
expressions that generate integers to control the number of times the portion of the macro between the iterative %DO
and %END statements is processed. INCREMENT is an integer (other than 0) or a macro expression that generates
an integer to be added to the value of the index variable in each iteration of the loop. By default, the increment is 1.
INCREMENT is evaluated before the first iteration of the loop. Therefore, you cannot change it as the loop iterates.
The iterative %DO statements are macro language statements that can be used only inside a macro program.

Just like before, you need to hardcode your program first. You can first create the macro variables by using the %LET
statement. These macro variables will become the parameters of the macro.

%let dat = ht;
%let num_var = height;
%let cat_var = sex;
%let group_var = race;
%let group_value = A B W;
%let cutoff =;

The first step of the macro will be calculating the chi-square statistics for everyone in the data set. To calculate the
chi-square statistics, you need to create the indicator variable, HEIGHT_CAT, first.

%create_cat(&dat, &num_var, &cutoff)

The macro above will create the variable HEIGHT_CAT, which will be stored in the data set new_ht. HEIGHT_CAT
and NEW_HT will be used when calling the %CHI_SQ macro. To write a dynamic macro, you cannot use these two
names directly; you must change it to macro references based on the macro variables above. The macro reference
for HEIGHT_CAT will be &NUM_VAR._CAT and the macro reference for NEW_HT will be NEW_&DAT. Now you can
calculate the chi-square statistics for all subjects by calling the macro below:

%chi_sq(new_&dat, &cat_var, &num_var._cat, all)

The chi-square statistics that are generated from the macro above will be stored in the new_ht_chisq and
NEW_&DAT._CHISQ is the corresponding macro reference.

The next step will be calculating the chi-square statistics for each ethnic group. One additional step to calculate the
chi-square statistics for each ethnic group is subsetting the entire data set into a smaller data set based on a given
ethnic group. To simplify the lengthy code, you can use the iterative %DO statement to loop along each ethnic group.
The values of the ethnic group are given in the GROUP_VALUE parameter. To use the iterative %DO loop, you also
need to know the number of elements in the GROUP_VALUE, which will be the STOP value in the loop. There is a
DATA step function, COUNTW, that can be used to count the number of elements in a given string; however, there is
no corresponding macro function. In this situation, you can use the %SYSFUNC function to execute SAS functions,
which has the following form:

%SYSFUNC (FUNCTION(ARGUMENT1 <, ARGUMENTN>))

To create a macro variable GROUP_NUM that contains the number of elements in the GROUP_VALUE, you can
write the following:

%let group_num = %sysfunc(countw(&group_value));

To subset the whole data set into one that only contains one ethnic group, you only need one value from the
GROUP_VALUE parameter. Thus, you can use the %SCAN function, which can be used to search for a word that is
specified by its position in a string.

The %SCAN function is part of the macro character functions that have the same basic syntax as the corresponding
DATA step functions. But unlike DATA step character functions, macro character functions enable you to
communicate with the macro processor to manipulate the text that you insert into your program. The %SCAN
function has the following form:

17

Programming: Beyond the BasicsSAS Global Forum 2012

%SCAN (ARGUMENT, N <, CHARLIST>)

ARGUMENT is a character string or a text expression. N is an integer or a text expression that yields an integer,
which specifies the position of the word to return. If N is greater than the number of words in ARGUMENT, the
function returns a null string. If N is negative, %SCAN scans the character string and selects the word starting from
the end of the string and searches backward. CHARLIST is used to specify an optional character expression that
initializes a list of characters. The default CHARLIST is blank ! $ % & () * + , - . / ; < ^ |

The iterative %DO loop will loop three times within the macro program. You can create a macro variable that serves
as an index to test your program first before writing them into a loop. Suppose that you are using I as the index
macro variable.

%let i = 1;

Next, create a macro variable VALUE1 or VALUE&I that contain the value A by using the %SCAN function.

%let value&i = %scan(&group_value, &i);

Next, subset the data set by calling the %SUBSET macro. To reference the macro variable VALUE1, you need to
use indirect referencing, &&VALUE&I.

%subset(&dat, &group_var, &&value&i)

After subsetting the data set, the name of the resulting data set is htA and the corresponding macro reference is
&DAT&&VALUE&I. Now you can create the HEIGHT_CAT variable by calling the %CREATE_CAT macro.

%create_cat(&dat&&value&i, &num_var, &cutoff)

The resulting data set will be new_htA or NEW_&DAT&&VALUE&I. Next, you can call the %CHI-SQ macro.

%chi_sq(new_&dat&&value&i, &cat_var, &num_var._cat, &&value&i)

The chi-square statistics will be stored in new_htA_chisq, or NEW_&DAT&&VALUE&I.._CHISQ. To calculate the chi-
square statistics for Blacks, you can just assign the macro variable I to 2. Similarly, to calculate the chi-square
statistics for Whites, you can assign I to 3. These repetitions can be enclosed in an iterative %DO loop like below:

%do i = 1 %to &group_num;
%let value&i = %scan(&group_value, &i);
%subset(&dat, &group_var, &&value&i)
%create_cat(&dat&&value&i, &num_var, &cutoff)
%chi_sq(new_&dat&&value&i, &cat_var, &num_var._cat, &&value&i)

%end;

Once you are done calculating the chi-square statistics for each and all ethnic groups, you can stack them all by
using a DATA step.

data final;
 set new_ht_chisq
 new_htA_chisq
 new_htB_chisq
 new_htW_chisq;
run;

If you need to write the DATA step above within the macro, you have to use macro references like we did before. For
example,

data final;
set new_&dat._chisq
%do i = 1 %to &group_num;
 new_&dat&&value&i.._chisq

 %end;
 ;
run;

Program 9 is the final version of the macro by putting all the codes above into one single macro.

18

Programming: Beyond the BasicsSAS Global Forum 2012

Program 9:
%macro chisq_table(dat, num_var, cat_var, group_var, group_value, cutoff);

 %local i;
 %create_cat(&dat, &num_var, &cutoff)
 %chi_sq(new_&dat, &cat_var, &num_var._cat, all)

%let group_num = %sysfunc(countw(&group_value));

 %do i = 1 %to &group_num;
 %let value&i = %scan(&group_value, &i);
 %subset(&dat, &group_var, &&value&i)
 %create_cat(&dat&&value&i, &num_var, &cutoff)
 %chi_sq(new_&dat&&value&i, &cat_var, &num_var._cat, &&value&i)
 %end;

 data final;
 set new_&dat._chisq
 %do i = 1 %to &group_num;
 new_&dat&&value&i.._chisq
 %end;
 ;
 run;
%mend;

%chisq_table(ht, height, sex, race, A B W,)

ALTERNATIVE WAY TO SOLVE THE PROBLEM BY USING CALL EXECUTE
If you invoke a macro by enclosing the macro call as the ARGUMENT of CALL EXECUTE, the macro call will execute
immediately. If the macro call generates any macro language element, such as the %IF-%THEN statement or macro
references, these macro language elements execute immediately. However, any of the SAS language statements
that are generated by the macro call will be pushed to the input stack and executed after the end of the current DATA
step, which contains CALL EXECUTE. This will create problems if you invoke a macro that contains references for
macro variables that are created by CALL SYMPUT(X). CALL SYMPUT(X) is not considered a part of the macro
language; instead, it is just DATA step CALL routines. That is to say the macro references to the macro variables
created by CALL SYMPUT(X) will execute before they are even created.

In Program 10, macro FOO creates a macro variable VALUE by using CALL SYMPUTX. This program illustrates the
differences in invoking FOO between using CALL EXECUTE and without using CALL EXECUTE.

Program 10:
option mprint mlogic symbolgen;
%macro foo;
 %local value;
 data bar;
 a = 5;
 call symputx('value', a);
 run;
 %put value inside macro foo: &value;
%mend;

%foo
%put value outside macro foo &value;

data _null_;
 call execute('%foo');
run;
%put value outside macro foo &value;

19

Programming: Beyond the BasicsSAS Global Forum 2012

SAS Log from Program 10:
792 %foo
MLOGIC(FOO): Beginning execution.
MLOGIC(FOO): %LOCAL VALUE
MPRINT(FOO): data bar;
MPRINT(FOO): a = 5;
MPRINT(FOO): call symputx('value', a);
MPRINT(FOO): run;

NOTE: The data set WORK.BAR has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

MLOGIC(FOO): %PUT value inside macro foo: &value
value inside macro foo: 5
MLOGIC(FOO): Ending execution.
WARNING: Apparent symbolic reference VALUE not resolved.
793 %put value outside macro foo &value;
value outside macro foo &value
794
795 data _null_;
796 call execute('%foo');
797 run;

MLOGIC(FOO): Beginning execution.
MLOGIC(FOO): %LOCAL VALUE
MPRINT(FOO): data bar;
MPRINT(FOO): a = 5;
MPRINT(FOO): call symputx('value', a);
MPRINT(FOO): run;
MLOGIC(FOO): %PUT value inside macro foo: &value
value inside macro foo:
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

MLOGIC(FOO): Ending execution.

NOTE: CALL EXECUTE generated line.
1 + data bar; a = 5; call symputx('value', a); run;

NOTE: The data set WORK.BAR has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

798 %put value outside macro foo &value;
value outside macro foo 5

When invoking FOO the first time without using CALL EXECUTE, the macro variable VALUE is created and stored in
the local symbol table. The VALUE is then deleted from the local symbol table at the end of the macro execution.
When using CALL EXECUTE to invoke FOO, the %LOCAL statement executes immediately, which assigns the
macro variable VALUE to a NULL value. The DATA step within the macro FOO was pushed to the input stack. The
%PUT statement executes next; notice that at this point, VALUE contains a null value. The DATA step that creates
BAR executes after the execution of FOO, which creates the macro variable VALUE. Since the macro execution has
already ended, the VALUE is then stored in the global symbol table, which is not what you intended.

20

Programming: Beyond the BasicsSAS Global Forum 2012

In program 9, the CHISQ_TABLE macro calls two macros (CREATE_CAT and CHI_SQ) that contain the SYMPUT
routine. Thus, to modify the CHISQ_TABLE macro, you need to also modify the CREATE_CAT and CHI_SQ macros
by not including the SYMPUT routines.

Program 11 contains three macros. The first two macros (CREATE_CAT_NEW and CHI_SQ_NEW) are the
modifications of macros CREATE_CAT and CHI_SQ without using the SYMPUT routine. The last macro
(CHISQ_TABLE_NEW) is the modification of CHISQ_TABLE by utilizing a series of CALL EXECUTE. The
CHISQ_TABLE_NEW macro also eliminates the GROUP_VALUE parameters, which makes the macro simpler. In
the CHISQ_TABLE_NEW macro, after calculating the chi-square statistics for all the subjects combined, it creates
data set LIST that contains one variable RACE (&GROUP_VAR) with three unique values (A, W, B). The first DATA
NULL utilizes CALL EXECUTE three times to subset the data by each ethnic group, creates indicator variables,
and calculates the chi-square statistics for each ethnic group. The CATT function within the CALL EXECUTE is used
to generate macro expressions. This approach also eliminates the need for indirect referencing. CALL EXECUTE in
the second DATA _NULL_ is used to stack all the chi-square statistics into one table.

Program 11:
%macro create_cat_new(dat, varname, value);
 %if &value = %then %do;
 proc means data=&dat mean;
 var &varname;
 ods output summary = summary1;

 data new_&dat (drop=height_Mean foo);
 retain foo;
 merge &dat summary1;
 if _N_ = 1 then foo = height_Mean;
 &varname._cat = &varname > foo;
 run;
 %end;
 %else %do;
 data new_&dat;
 set &dat;
 &varname._cat = &varname > &value;
 run;
 %end;
%mend;

%macro chi_sq_new(dat, var1, var2, group_label);
 proc freq data=&dat;
 tables &var1*&var2/chisq expected;
 ods output chiSq = chiSq1 CrossTabFreqs =CrossTabFreqs1;

 data chiSq2 (rename =(Value = chisq Prob = p) keep = Value Prob);
 set chiSq1;
 if Statistic = 'Chi-Square';

 data CrossTabFreqs2 (keep=test);
 retain test;
 length test $ 9.;
 set CrossTabFreqs1 end=last;
 if not missing(expected) and expected < 5 then count +1;
 if last then do;
 if count then test = 'not valid';
 else test ='valid';
 output;
 end;

 data &dat._chisq;
 length group $ 3.;
 group = "&group_label";
 merge CrossTabFreqs2 chiSq2;
 run;
%mend;

21

Programming: Beyond the BasicsSAS Global Forum 2012

22

%macro chisq_table_new(dat, num_var, cat_var, group_var, cutoff);
 %create_cat_new(&dat, &num_var, &cutoff)
 %chi_sq_new(new_&dat, &cat_var, &num_var._cat, all) *new_&dat._chisq;

 proc sort data=&dat out= list (keep =race) nodupkey;
 by &group_var;
 run;

 data _null_;
 set list;
 call execute(catt('%subset(&dat, &group_var,', &group_var, ')'));
 call execute(catt('%create_cat_new(&dat.', &group_var, ',&num_var, &cutoff)'));
 call execute(catt('%chi_sq_new(new_&dat.', &group_var, ',&cat_var,
 &num_var._cat,', &group_var,')'));
 run;

 data _null_;
 set list end=last;
 if _N_ = 1 then do;
 call execute('data final;');
 call execute('set new_&dat._chisq');
 end;
 call execute(catt('new_&dat.', &group_var, '_chisq'));
 if last then call execute('; run;');
 run;
%mend;

%chisq_table_new(ht, height, sex, race,)

CONCLUSION
The SAS language and the SAS macro language look similar but are completely different languages. We use the
macro language to write macro programs to generate SAS code. Understanding the mechanisms of macro
processing is essential for creating macro variables precisely.

REFERENCES
Burlew, Michele M. SAS® Macro Programming Made Easy, 2nd Edition
SAS Institute Inc. 2006. SAS OnlineDoc® 9.1.3. Cary, NC: SAS Institute Inc
Whitlock, Ian, CALL EXECUTE: How and Why, Proceedings of the 22nd Annual SAS Users Group International

Conference, 1997

ACKNOWLEDGMENTS
I would like to thank Russ Tyndall, Technical Support Analyst from SAS Technical Support, for his valuable
programming suggestions and insight.

CONTACT INFORMATION
Arthur Li
City of Hope Comprehensive Cancer Center
Department of Information Science
1500 East Duarte Road
Duarte, CA 91010 - 3000
Work Phone: (626) 256-4673 ext. 65121
Fax: (626) 471-7106
E-mail: arthurli@coh.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Programming: Beyond the BasicsSAS Global Forum 2012

	2012 Table of Contents

