
1

Paper 225-2012

Sudoku-Solving System by SAS®

Setsuo Suoh, the University of Hyogo, Kobe, Hyogo Prefecture, Japan

ABSTRACT

We have developed the Sudoku-Solving System by SAS. The SAS data set is supposed to be one of the most
inconvenient data set to attack Sudoku puzzles because of its structure. Our system has four crucial factors: (1) how
to depict the values of 81 boxes in a SAS data set environment; (2) how to attack Sudoku puzzles efficiently and
smartly without using brute force; (3) the recursive technique employed for tree searching during the attacking
process, using the %INCLUDE statement; (4) an option for recording all of the attacking process or history of a tree
search. It consists of three SAS programs, one of which has 21 SAS macro definitions, and succeed in solving the
hardest Sudoku puzzles available on the Internet within a reasonable time.

INTRODUCTION

We have picked up Sudoku puzzles
and succeeded in developing our
solving system by SAS called “Sudoku
Solving System: SSS). Every Sudoku
puzzle has a unique solution that can
be obtained logically. The objective of
the game is to enter numbers into the
blank cells within 9x9 cells, so that
each row, column and 3x3 box contains
every number from 1 to 9. Figure 1.1
shows an example of an initial situation,
and Figure 1.2 shows its solution. It is
one of the hardest Sudoku puzzles
available on the Internet.

Since the SAS data set is ready only for “observation” wise operation, it is supposed to be one of the most
inconvenient data set types to attack Sudoku puzzles. To overcome this problem, we designed a SAS data set to
contain all the information on the entire board situation, from which information of row, column or box could be easily
gained in need. In the present paper we explain our system focusing on three crucial factors: (1) how to depict the
values of 81 boxes in a SAS data set environment; (2) how to attack Sudoku puzzles efficiently and smartly without
using brute force; (3) the recursive technique employed for tree searching during the attacking process, using
the %INCLUDE statement.

Almost all game playing programs including Sudoku would face a combinatorial explosion, if the brute force searching
were adopted during the tree search. Our system focuses on only several blank cells to avoid this problem.

HISTORY OF DEVELOPING SSS

In the early stage of developing SSS, it consisted of only one SAS program (ver.0) that included two basic Sudoku
attacking strategies; Operation (1) and Operation (2), both of which will be explained in the later section. Although it
successfully solved beginners‟ level puzzles, it failed to solve middle class level ones. After having found what else
more to be needed, we added more new operations one by one.

During this process we encountered a very serious, fundamental problem that our SAS program was not be able to
be compiled, probably because of failure of resolving macros. As discussed later, our system employs the recursive
technique to repeat executing the same SAS program that includes many macro definitions. Since we use
the %INCLUDE statement for recursion, the same macros were defined again and again in spite of no necessity. We
guessed that the SAS system would not allows users to define the same macros over a limit of a certain times, which
we thought is fair enough.

By this time the program grew sizable and also complicated, we decided to split it into three parts; (i) Set initial data
sets and macro variables, (ii) Define all macros and (iii) Sudoku solving engine. In this way only the solving engine
was recursively used. As a result, we overcame the compiling problem. After this, we kept on adding more
sophisticated Sudoku Operations (3) to (6), to upgrade it to ver.1 and ver1.5, ending up with SSS (ver.2) that
successfully solves all Sudoku puzzles it encountered on the Internet. The difference between ver.1 and ver.1.5 is
that during the attacking process, the initial board situation is either fixed, or rotated 90 degrees clockwise with a limit
of three times until a solution can be reached. During the solving process, SSS selects only a few blank cells to fix

(Data Source: http://gigazine.net/news/20100822_hardest_sudoku/)

 5 3
8 2

7 1 5
4 5 3

1 7 6
3 2 8

6 5 9
4 3

9 7

1 4 5 3 2 7 6 9 8
8 3 9 6 5 4 1 2 7
6 7 2 9 1 8 5 4 3
4 9 6 1 8 5 3 7 2
2 1 8 4 7 3 9 5 6
7 5 3 2 9 6 4 8 1
3 6 7 5 4 2 8 1 9
9 8 4 7 6 1 2 3 5
5 2 1 8 3 9 7 6 4

box

row

column
Figure 1.1. Sudoku Puzzle „Q999‟ Figure 1.2. Solution

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

2

CELL

ORIGINAL

BOX COL ROW

Text File of

Sudoku Puzzle

their numbers according to Operations (3) to (6). In the case that there are many such blank cells, it selects the “first”
few blanks, which means that the selection depends on their accidental locations of board situation. In the worst case,
only after the third rotation one Sudoku puzzle was solved. All the performing results of different versions are shown
in the final section.

The version 2 SSS has become a huge system with 29 macros, while ver.1 had 39 macros. This is the result of keep
adding extra operations every time our system failed in solving new Sudoku puzzles. Some of the later added
operations looked like each other with a slightly different way of usage. By this time we learned much about Sudoku
tactics through different versions of SSS, and decided to make it more compact to develop ver.3 SSS so that it would
be much easier for further upgrading it in the future.

STRUCTURE OF THE LATEST VERSION OF SSS

In the present section we focus on the latest version of SSS: ver.3, and explain how it is constructed. It consist of
three programs; (1) Sudoku_macro.sas, (2) puzzle_make_original_data.sas, and (3) puzzle_solve_final.sas

REPRESENTATION OF SUDOKU BOARD SITUATION IN SAS DATA SETS

Figure 2 shows how the initial board
situation is represented in SAS data sets.

(1) Given a Sudoku puzzle.

(2) Input the numbers by a text editor
and save it as a text file, denoting “0”
as a blank cell.

(3) Make a SAS data set ORIGINAL out
of the text file.

(4) Out of ORIGINAL make a SAS data
set CELL with 81 observations, each
of which represents a row number,
column number and a box number
together with its numerical value.
The box number can be calculated
by the following expression:

BOX_NO=max(int((ROW_NO-

1)/3),0)+int((COL_NO-

1)/3)+2*int((ROW_NO-1)/3)+1

(5) Out of CELL make a SAS data set
ROW that is coincidentally identical
to ORIGINAL.

(6) Out of CELL make a SAS data set
COL. Each observation represents
cell information belonging to the
same column.

(7) Out of CELL make a SAS data set BOX.
Each observation represents cell information belonging to the same box.

These four data sets, CELL, ROW, COL and BOX are most crucial data sets
in SSS, and they are always updated automatically by running a macro
„RECONSTRUCT‟. Figure 3 shows hierarchical structure of them.

 (1) Sudoku Puzzle (3) ORIGINAL (2) Text File

(5) ROW

(7)

BOX

(4) CELL

OBS a1 a2 a3 a4 a5 a6 a7 a8 a9
1 0 0 0 8 0 1 0 0 0
2 0 0 6 0 3 0 9 0 0
3 0 7 0 0 0 0 0 3 0
4 6 0 7 0 0 0 5 0 4
5 0 0 0 2 0 6 0 0 0
6 2 0 0 0 7 0 0 0 8
7 0 0 0 4 0 5 0 0 0
8 3 0 8 0 0 0 4 0 2
9 0 1 0 3 0 9 0 8 0

 000801000

006030900

070000030

607000504

000206000

200070008

000405000

308000402

010309080

OBS row_no col_no box_no v
1 1 1 1 0
2 1 2 1 0
3 1 3 1 0
4 1 4 2 8
5 1 5 2 0
6 1 6 2 1
7 1 7 3 0
8 1 8 3 0
9 1 9 3 0
10 2 1 1 0
11 2 2 1 0
12 2 3 1 6
13 2 4 2 0
14 2 5 2 3
15 2 6 2 0
16 2 7 3 9
17 2 8 3 0
18 2 9 3 0

1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 3 3 3
4 4 4 5 5 5 6 6 6
4 4 4 5 5 5 6 6 6
4 4 4 5 5 5 6 6 6
7 7 7 8 8 8 9 9 9
7 7 7 8 8 8 9 9 9
7 7 7 8 8 8 9 9 9

1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 3 3 3
1 1 1 2 2 2 3 3 3

4 4 4 5 5 5 6 6 6
4 4 4 5 5 5 6 6 6
4 4 4 5 5 5 6 6 6

7 7 7 8 8 8 9 9 9
7 7 7 8 8 8 9 9 9
7 7 7 8 8 8 9 9 9

OBS a1 a2 a3 a4 a5 a6 a7 a8 a9
1 0 0 0 6 0 2 0 3 0
2 0 0 7 0 0 0 0 0 1
3 0 6 0 7 0 0 0 8 0
4 8 0 0 0 2 0 4 0 3
5 0 3 0 0 0 7 0 0 0
6 1 0 0 0 6 0 5 0 9
7 0 9 0 5 0 0 0 4 0
8 0 0 3 0 0 0 0 0 8
9 0 0 0 4 0 8 0 2 0

OBS a1 a2 a3 a4 a5 a6 a7 a8 a9
1 0 0 0 8 0 1 0 0 0
2 0 0 6 0 3 0 9 0 0
3 0 7 0 0 0 0 0 3 0
4 6 0 7 0 0 0 5 0 4
5 0 0 0 2 0 6 0 0 0
6 2 0 0 0 7 0 0 0 8
7 0 0 0 4 0 5 0 0 0
8 3 0 8 0 0 0 4 0 2
9 0 1 0 3 0 9 0 8 0

BOX Numbering

System
OBS a1 a2 a3 a4 a5 a6 a7 a8 a9
1 0 0 0 0 0 7 0 6 0
2 8 0 0 0 3 0 1 0 0
3 0 9 0 0 0 3 0 0 0
4 6 0 2 0 0 0 7 0 0
5 0 2 0 0 0 7 0 6 0
6 5 0 0 0 0 0 4 0 8
7 0 3 0 0 0 1 0 8 0
8 4 0 3 0 0 0 5 0 9
9 0 4 0 0 0 8 0 2 0

(6)

COL

(81 observations)

Figure 2. How to Represent Sudoku Puzzles in SAS data sets

Figure 3. How to Create SAS Data sets

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

3

 reconstruct

make_filter

solve

find_check

find_two_choices

solve

verify reconstruct

output turn

check_no zero

keep_pair

operation_original

set_original

set_original

output turn

all

all_filter

repeat

once_
again3

loop_
again3

operation_
candidate

STRUCTURE OF SAS PROGRAMS

SSS (ver.3) consists of three SAS programs, sudoku_macro.sas, puzzle_make_original_data.sas and
puzzle_solve_final.sas. Users of SSS must run them in this order.

(1) SUDOKU_MACRO.SAS

In this program there are twenty one
macros defined. On top of this program
users are asked to specify fundamental
information to macro variables such as a
drive name where the SSS system is
saved. For more details refer to Appendix II.

Figure 4 shows the structure of all of the
SAS macros. The macro ALL is a core of
Sudoku solving engine, and it directly
invokes seven macros from ALL_FILTER
to OUTPUT. They also further invoke other
macros, and so on. Those macros in bald
type have the %include statement in which

‘puzzle_solve_final.sas‟ is executed

recursively.

(2) PUZZLE_MAKE_ORIGINAL_DATA.SAS

In the beginning of this program users are asked to specify a text file name of Sudoku puzzle to a macro variable Q.
Other macro variables are automatically specified by our system. There are some X commands by which new folders
are automatically created and also old output and log information are deleted. The specified text file of Sudoku puzzle
is converted to SAS data set INITIAL, out of which four SAS data sets ORIGINAL_1 to ORIGINAL_4 are created by
rotating 90 degrees clockwise respectively. They will be used as SAS data set ORIGINAL for later stages. The SAS
code of this program is as follows.

/* puzzle_make_original_data.sas */

* Specify a file name of Sudoku puzzle to the following macro variable Q;

%let Q=Q113; *Sudoku Puzzle saved as a DAT file (No extensions necessary);

* Don't change the following macro variables definitions;

%let round=0; * No. of repetitions of executing 'puzzle_solve_final.sas'

 for each candidate board situation;

%let new_round=0; * No. of times of executing 'puzzle_solve_final.sas' recursively;

%let time_sw=0; * It will be set to 1 as soon as 'starttime' is set on;

%let rotate=1; * Every time the initial board is rotated 90 degrees clockwise,

 varies from 2 to 4;

%let rotate_sw=0; * Set to 1 every time each of four initial board situations is set

 as SAS data set ORIGINAL.

 Reset to 0 when no solutions were found after New Operation (3);

%let op3_no=0; * Eventually total No. of candidate board situations created

 in the beginning of New Operation (3) is set;

%let set3_no=0; * During New Operation (3) each candidate board situation is given

 a number from 1 to whatever the total number of them as a part of

 its SAS data set name;

options noxwait;

x "cd &drive:\&folder";

x "md output_window";

x "cd output_window";

x "del *.*";

x "cd ..";

x "md log_window";

x "cd log_window";

x "del *.*";

x "exit";

%let log=&drive:\&folder\log_window;

%let output=&drive:\&folder\output_window;

options nocenter nodate nonumber ls=90;

filename in1 "&problem_folder\&Q..dat";

Figure 4. the Structure of SAS Macros of SSS

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

4

data initial;

 drop i;

 infile in1;

 length x $ 1;

 do i=1 to 9; row=_n_; col=i; input @i x $ @@; output; end;

 input;

run;

proc print; title "initial"; run;

%rotate(1) %rotate(2) %rotate(3) %rotate(4)

(3) PUZZLE_SOLVE_FINAL.SAS

This program is a sort of main program. At the end of this program SAS macro ALL is invoked. It further invokes all
the rest of other macros either directly or indirectly, as shown in Figure 4. It is executed recursively by invoking four
macros REPEAT, ONCE_AGAIN3, OUTPUT and LOOP_AGAIN3 denoted by bald type in Figure 4. The SAS code of
this program is as follows.

/* puzzle_solve_final.sas */ /* ver.3 */

 *Before this program is run, "puzzle_make_original_data.sas" must be run.;

options &non.notes &non.source;

*No Need to Specify Below;

 %let round=%eval(&round+1);

 %let new_round=%eval(&new_round+1);

 %let found=0; * 1 is set when a new number was found;

 %let wrong=0; * 1 is set in case an incompatible situation occurs;

data _null_;

 if &time_sw=0 then do;

 starttime=DATETIME(); put starttime= time.;

 *presents SAS time;

 call symput("starttime",starttime);

 *sets running starting time in SAS time;

 end;

run;

%let time_sw=1; * 1 is set after setting 'starttime'to 1;

%set_rotate; *By rotating the original situation 90 degrees clockwise,

 four'original' board situations have already been created.

 Each one of them is now set to SAS dataset ORIGINAL;

data original_before;

 *Save ORIGINAL by a different dataset name for later comparison;

 set original;

run;

&star. ods listing close;

&star. ods html file=

"&output\&rotate._ROUND&round._Operation(3)ORIGINAL&set3_no..xls";

&star. proc print data=original;

title "ROUND &round:&new_round. data=original"; run;

&star. ods html close;

&star. ods listing;

&star. PROC PRINTTO log=

"&log\log&rotate._ROUND&round._Operation(3)ORIGINAL&set3_no..txt" NEW; RUN;

&star. PROC PRINTTO print=

"&log\output&rotate._ROUND&round._Operation(3)ORIGINAL&set3_no..txt" NEW; RUN;

%all; *Solving Engine;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

5

RECURSIVE TECHNIQUE

Calculation of factorial is often used to explain the recursive technique. The recursive definition of n! is as follows.

We wrote a set of two SAS programs to calculate 4! recursively. The first program
„factorial_set_initial.sas‟ defines SAS macro FACTORIAL in which the second program
„factorial.sas‟ is executed recursively by using the %include statement. Note that the

program must be terminated by
the %abort statement when the value
of macro variable N becomes 2.
Although the ERROR message
appears in the SAS log, it is not a
malfunction of the program, but a
normal termination.

The recursive technique similar to the
above example was employed in SSS, in
other words, embedding the % include
statement makes it possible to repeat
executing the same SAS program when
becoming necessary. As a result, the SAS
system keeps on „copying‟ and inserting
the respective SAS code on the spot as
shown in the right. When a final solution
was found, the SAS code remained
untouched must be discarded by using
the %abort statement.

STRATEGIES EMPLOYED BY THE LATEST VERSION OF SSS

The Sudoku attacking strategies of the latest model of SSS consists of three operations; Operations (1) to (3). The
first two operations are very fundamental, and the result gained from them is always correct and determined. The
third operation is an auxiliary method that is used when the final solution cannot be reached by the first two
operations. It is a sort of searching procedure for seeking a final solution out of multiple number of candidates.
Obviously, beginners‟ level Sudoku puzzles tend to be solved only by the first two operations, and experts‟ level

elsenfn

n
nf

)1(

0 if1
)(

/* factorial_set_initial.sas */

options mprint nocenter;

%let N=4; *Calculate N! ;

data factorial;

 f=&N; run;proc print;

 title "Initial value N=&N"; run;

%macro factorial;

%let N=%eval(&N-1);

data factorial; set factorial; f=&N*f; run;

proc print; title "N=&N"; run;

%if &N=2 %then %abort;

%include "C:\SAS_Forum\2012\recursive\factorial.sas";

%mend;

/* factorial.sas */

 %factorial;

puzzle_solve_final.sas

%include itself
%include itself

A solution was found

No Need to Run

Figure 5. Result of %include Statement

Initial value N=4

OBS f

 1 4

N=3

OBS f

 1 12

N=2

OBS f

 1 24

OUTPUT1. After Running two Programs

18 /* factorial.sas */
19 %factorial;
MPRINT(FACTORIAL): data factorial;
MPRINT(FACTORIAL): set factorial;
MPRINT(FACTORIAL): f=3*f;
MPRINT(FACTORIAL): run;

MPRINT(FACTORIAL): proc print;
MPRINT(FACTORIAL): title "N=3";
MPRINT(FACTORIAL): run;

MPRINT(FACTORIAL): data factorial;
MPRINT(FACTORIAL): set factorial;
MPRINT(FACTORIAL): f=2*f;
MPRINT(FACTORIAL): run;

MPRINT(FACTORIAL): proc print;
MPRINT(FACTORIAL): title "N=2";
MPRINT(FACTORIAL): run;

ERROR: Execution terminated by an %ABORT statement.

SAS LOG1. After Running „factorial.sas‟

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

6

puzzles could not be solved without Operation (3).

FILTER

A new concept of the „filter‟ for all 81 cells was introduced to represent cell situation. It is defined as follows;

filter = [

] where or i

For instance, when the filter of a blank cell is [123406780], then 5 or 9 may be applicable for the
respective cell. The value of filter can be obtained by cross-referencing row group, column group and box
group of each cell. This concept was found very useful for Sudoku attacking strategy.

OPERATION (1)

There are two cases in which a new number can be found.
The first case is very simple in which only one number is
available for a certain blank cell. It can be found easily by
checking its filter information. For example, take a look at
the cell (1) in Figure 6. Its filter is [123456089] that
indicates that the cell must be 7.

The second case is not as simple as the first one, but not
so complicated as imagined. From the filter of cell (2) the
cell‟s value may be 1, 2 or 9. If further examined in the
same row, however, „2‟ is not allowed in all the rest of four
blank cells, which means that cell(2) must be 2.

Accordingly, SSS updates the board situation by adding
newly found two numbers in cell (1) and (2), and go back
to Operation (1) recursively until no more new numbers
can be found. After this, SSS goes to Operation (2).

OPERATION (2)

First of all, SSS tries to
update filter
information, and look
for two blank cells with
the same combination
of only two numbers as
candidates among the
same group of row,
column or box. If there
are such two blank
cells, the two numbers
cannot be used any
more by other cells in
the same group, which
means that the filter
information can be
updated. Figure 7.1
shows such an
example. There are
two dark cells with a filter
[023450789]. The number
of these two cells must be
either 1 or 6, which means that the other two blank cells indicated by downward arrows in the same row can be
neither 1 nor 6. Thus the filter information of these cells can be updated as shown in Figure 7.2. After updating the
filter information, SSS goes back to Operation (1). After going to and from Operations (1) and (2), and no more new
numbers cannot be found, SSS goes to Operation (3)

Figure 6. Filter Information Before Operation (1)

123
006
780

100
006
780

100
006
780

8
103
000
780

1
103
450
089

103
000
089

123
400
089

023
006
709

103
006
709

6
123
406
089

3
103
056
089

9
003
006
089

023
406
089

023
006
700

7
003
006
780

123
400
780

103
000
780

103
056
789

003
450
709

3
023
400
789

6
120
456
700

7
023
456
780

023
456
700

120
456
709

5
003
456
780

4
023
006
700

120
006
700

020
006
780

2
023
006
700

6
020
456
089

023
456
080

020
456
080

2
120
006
780

020
006
780

023
406
780

7
120
056
789

020
450
789

023
450
780

8
123
456
080

103
450
780

103
456
780

4
003
450
709

5
020
450
089

023
450
080

020
450
080

3
123
400
780

8
023
450
089

023
450
789

123
456
089

4
023
400
080

2
123
006
089

1
103
006
789

3
103
450
789

9
123
450
089

8
123
400
089

(2)

(1)

Figure 7.1. Before Operation (2) Figure 7.2. After Operation (2)

１２３
４００
７８０

０２３
４００
７８０

１２３
４０６
７８０

１２３
４０６
７８０

123
006
780

123
006
780

3 8
123
400
780

1 2
123
000
089

123
400
089

023
006
709

103
006
709

6 7 3
103
056
789

9
023
006
789

023
406
789

023
006
780

7
003
006
780

123
450
780

123
400
780

103
056
789

8 3
023
400
789

6 3 7
023
456
780

023
456
780

8 5 2 4

023
406
700

123
406
700

023
406
780

2 4 6
020
456
089

023
456
080

020
456
080

2
123
056
780

023
056
780

5 7 3
023
450
789

023
450
780

8

123
456
080

103
450
780

103
456
780

4 8 5
020
450
089

023
450
080

020
450
080

3
123
400
780

8
023
450
789

023
450
789

7 4
023
400
780

2

123
006
089

1
123
006
789

3 2 9
123
450
089

8
123
400
089

123
006
780

123
006
780

3 8
123
400
780

1 2
123
000
089

123
400
089

023
006
709

103
006
709

6 7 3
103
056
789

9
023
006
789

023
406
789

023
006
780

7
003
006
780

123
450
780

123
400
780

103
056
789

8 3
023
400
789

6 3 7
023
456
780

023
456
780

8 5 2 4

023
406
700

123
406
700

023
406
780

2 4 6
020
456
089

023
456
080

020
456
080

2
123
056
780

023
056
780

5 7 3
023
450
789

023
450
780

8

123
456
080

103
450
780

103
456
780

4 8 5
020
450
089

023
450
080

020
450
080

3
123
406
780

8
023
450
789

023
450
789

7 4
123
406
780

2

123
006
089

1
123
006
789

3 2 9
123
450
089

8
123
400
089

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

7

NEW OPERATION (3)

As mentioned in HISTORY OF DEVELOPING SSS, many sophisticated operations have been added one by one in
the earlier versions of SSS. From that experience we became confident that after Operations (1) and (2) it would be
much better to select a reasonable number of candidate board situations and to concentrate on solving them as if
they were initial board situations. The correct solution must be included among them.

When we started to developing earlier version SSS, we presupposed that there always exist a few blank cells with
two numbers as candidates, and realised that it was not true in the case of expert level Sudoku puzzles and that
there are almost always some blank cells available with „three‟ numbers as candidates. Without them we would have
resorted to the brute force to attack Sudoku, which we hate to do. We, therefore, adopted the New Operation (3) in
which SSS tries to first look for a certain number (default value is 6) of blank cells with „two‟ numbers as candidates.
In case that the number of such cells is smaller than the default value, more blank cells with „three‟ candidate
numbers are searched to supplement the lack of blank cells to be attacked. The number of total candidate board
situations is, therefore, between 64 (=2

6
) and 729 (=3

6
). Usually this number is around 300 because of mixed

combination of two and three. In most cases final solution can be found before all these candidate board situations
are tried.

Along with the creation of the New Operation (3), SAS macros defined in „sudoku_macro.sas‟ were refined, ending up
with decreasing the number of SAS macros from 29 to 21.

COLLABORATION OF OPERATIONS (1) TO (3)

The collaboration of Operations (1) to (3) is shown in Figure 8.

PERFORMANCE OF SSS (VER.3) AND RESULTS

We have been developing the Sudoku solving system, SSS for nearly one year. Overcoming some serious problems,
both of versions 2 and 3 of SSS succeeded in solving all the hardest Sudoku puzzles available on the Internet. Table
1 shows the performances of different versions of SSS. „N‟ denotes the failure of solving. All these Sudoku puzzles,

Figure 8. Collaboration of Operations (1), (2) and (3)

 Operation (1)

Operation (2)

Operation (3)

Recursion

・・・

Find correct numbers from logical

inference.

If no more new numbers can be found, go

to Operation (3).

Select six cells with two or three

candidate numbers, and then make all

candidate board situations from their all

combinations.

There always exists one correct

combination among them.

Apply Operations (1) and (2) for all these

combinations recursively.

In case no successful solutions can be reached after trying all these combinations, try the next

original initial board situation created by rotating the current initial board situation 90 degrees

clockwise, and then go back to start Operation (1) recursively. Keep trying two more rotated initial

board situations in case no solutions can be reached.

In case no successful solutions can be found after all these rotations, the intermediate solution

will be displayed together with a „give-up‟ message, although this case has never occurred in

version 3.

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

8

a1 to a10 and Q999 are supposed to be the hardest Sudoku puzzles available on the Internet. The first ten Sudoku
puzzles, a1 to a10 are shown in Appendix I, and „Q999‟ is shown in Figure 1.1.

SSS produces substantial amount of information in both SAS LOG and OUTPUT windows, and we would easily see
a warning message that these windows are full, without any consideration. The maximal number of lines displayed in
each window is approximately 99,999. Most of OUTPUT window information of SSS is saved in an external file
specified by the user. It is a record of how SSS solved Sudoku puzzles, while SAS LOG information is able to either
be saved in an external file specified by the user or discarded. If it is discarded, substantial amount of run time can be
saved. The run time of ver.1.5 In Table 1 includes time for storing SAS LOG information. The number in the column
denoted by an asterisk is the number of times of execution of solving engine, SAS program, „puzzle_solve_final.sas‟.

Table 1. Performances of Different Versions of SSS

Version

Opera-

tions

Employe

Sudoku

Puzzles
Result *

Run Time

（No LOG）
Result *

Run Time

（With LOG）
Result *

Run Time

（No LOG）

No. of

Rotations

a1 N 314 12min12sec Y 488 34min57sec Y 715 1ｈ3min33sec 1

a2 Y 204 8min46sec Y 204 12min12sec Y 376 21min59sec 0

a3 N 79 2min49sec N 332 24min11sec Y 300 19min46sec 1

a4 N 233 8min33sec Y 914 1ｈ21min2sec Y 1602 2ｈ4min4sec 3

a5 Y 187 7min21sec Y 187 13min6sec Y 140 7min49sec 0

a6 N 240 9min54sec Y 428 34min42sec Y 811 1ｈ10min52sec 1

a7 N 88 3min14sec N 368 30min59sec Y 29 55sec 0

a8 Y 156 6min2sec Y 156 10min33sec Y 64 2min34sec 0

a9 Y 83 3min1sec Y 84 5min16sec Y 82 3min24sec 0

a10 N 266 10min23sec Y 747 59min21sec Y 988 1ｈ7min44sec 2

Q999 Y 123 4min46sec Y 123 4min46sec Y 261 13min49sec 0

ver.1 ver.1.5 ver.2

1, 2, 3, 4, 5 1, 2, 3, 4, 5 + Rotation 1, 2, 3, 6, 5 + Rotation

Version

Opera-

tions

Employed

Sudoku

Puzzles
Result *

Run Time

（No LOG）

No. of

Rotations
Result *

Run Time

（No LOG）

No. of

Rotations

a1 Y 532 24min24sec 1 Y 1984 1ｈ43min25sec 1

a2 Y 372 13min38sec 0 Y 277 12min52sec 0

a3 Y 180 5min20sec 0 Y 146 6min43sec 0

a4 Y 519 18min2sec 1 Y 1543 1ｈ42min32sec 1

a5 Y 107 2min11sec 0 Y 460 10min13sec 0

a6 Y 283 9min36sec 0 Y 957 44min14sec 0

a7 Y 445 14min14sec 0 Y 1505 1ｈ20min15sec 0

a8 Y 27 1min9sec 0 Y 971 1ｈ40sec 0

a9 Y 104 3min36sec 0 Y 728 34min12sec 0

a10 Y 1268 58min1sec 2 Y 3318 4ｈ19min7sec 2

Q999 Y 1248 1ｈ4min6sec 2 Y 888 26min16sec 0

ver.3 ver.3

1, 2, New 3 (select_no=6)

 + Rotation

1, 2, New 3 (select_no=7)

 + Rotation

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

9

It is obvious that the more the rotations occur, the more the run time required. Adjustment of default value of the
number of candidates‟ cells for version 3 affected the run time it took before finding a solution. It took SSS (ver.3) with
default value of 6 much less time than that with default value of 7 except for the hardest Sudoku puzzle, Q999.

OUTPUT 2 shows the result after Sudoku
puzzle „Q999‟ was solved successfully.

This kind of programs usually needs the
tree searching procedure, but we do not
have one. Instead, we use the recursive
technique. In the early stage of developing
SSS, we were not confident that it would
work, but our confidence has become
stronger as our system has been developed
to solve Sudoku smartly and perfectly.

In Appendix II all the SAS macro definitions
in SAS program „sudoku_macro.sas‟ are
shown. The source code of the whole three
SAS programs that consist of SSS (ver.3)
can be downloaded from the following URL,
so that anyone could use our system.

(http:/mighty.gk.u-hyogo.ac.jp/confidential/sudoku.zip)

REFERENCES

T Barron, D.W. (1968), Recursive Techniques in Programming, Elsevier.

ACKNOWLEDGMENTS

After the author started developing SSS, Ms Namiko Chihira, 4
th

 year undergraduate student joined my project.
Without her dedicate cooperation it could not have been done successfully. We adopted the recursive technique for
attacking Sudoku puzzles. I learned it when I was an undergraduate student nearly forty years ago. I happened to
find a book written by Barron(1968) in the office of my then supervisor, Prof. M. Sawamura, otherwise I would not
have learned it.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Setsuo Suoh
Enterprise: the University of Hyogo
Address: 8-2-1 Gakuen-nishimachi, Nishi-ku
City, State ZIP: Kobe City, Japan, 651-2197
E-mail: suoh@gk.u-hyogo.ac.jp
Skype name: charliesuoh

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Problem # Q999 was successfully solved.
No. of 90-Degree Clockwise Rotations: 0

No. of Repetitions of Running 'puzzle_solve_final.sas': 888 times
Run Time: 1493 Seconds

OBS a1 a2 a3 a4 a5 a6 a7 a8 a9

 1 1 4 5 3 2 7 6 9 8

 2 8 3 9 6 5 4 1 2 7
 3 6 7 2 9 1 8 5 4 3
 4 4 9 6 1 8 5 3 7 2

 5 2 1 8 4 7 3 9 5 6
 6 7 5 3 2 9 6 4 8 1
 7 3 6 7 5 4 2 8 1 9

 8 9 8 4 7 6 1 2 3 5
 9 5 2 1 8 3 9 7 6 4

OUTPUT 2. Result after Sudoku Puzzle ‘Q999’ Was Solved

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

10

Appendix I. Hardest Sudoku Puzzles Available on the Internet

1 7 9 1 6 2 8 5 7 4 9 3 5 9 7 4 8 5 6 2 9 7 1 3
3 2 8 5 3 4 1 2 9 6 7 8 6 2 7 6 9 3 4 1 8 2 5

9 6 5 7 8 9 6 4 3 5 2 1 1 8 6 1 3 2 8 7 5 4 9 6

5 3 9 4 7 5 3 1 2 9 8 6 1 7 4 5 1 3 7 9 2 6 8 4
1 8 2 9 1 3 5 8 6 7 4 2 7 6 3 9 2 7 4 6 8 5 3 1

6 4 6 2 8 7 9 4 1 3 5 6 3 2 6 4 8 5 1 3 2 7 9

3 1 3 5 6 4 7 8 2 1 9 6 4 2 5 1 9 8 6 3 4 7
4 7 2 4 1 9 3 5 8 6 7 9 5 1 3 9 4 2 5 7 1 6 8

7 3 8 9 7 2 6 1 3 5 4 8 1 2 8 7 6 1 3 4 9 5 2

7 9 5 4 8 2 6 1 7 3 6 2 6 5 3 7 4 9 2 1 8
6 1 4 2 6 8 3 1 7 5 9 4 9 1 5 7 9 4 8 2 1 6 3 5

3 4 2 1 7 3 4 9 5 2 8 6 8 3 4 1 2 8 5 3 6 7 4 9

8 3 5 8 1 9 7 4 3 6 5 2 2 1 4 6 9 3 5 2 8 7 1
2 9 7 6 3 2 9 5 1 7 4 8 5 6 9 5 3 1 6 8 7 9 2 4

4 8 9 5 4 7 6 8 2 3 1 9 7 9 2 8 7 1 9 4 3 5 6

2 6 7 4 2 1 5 6 9 8 3 7 7 3 2 8 7 5 9 1 3 4 6 2
1 9 3 8 6 1 7 4 9 2 5 4 5 3 1 2 4 6 8 5 9 7

7 8 6 7 9 5 2 3 8 4 6 1 6 7 8 9 4 6 2 7 5 1 8 3

1 5 4 1 2 8 5 7 6 4 9 3 1 6 1 8 2 3 9 4 5 6 7
9 3 5 4 9 1 3 2 7 8 6 1 3 9 6 7 1 5 8 2 4 3

7 8 5 3 7 6 9 4 8 1 2 5 5 2 9 3 4 5 6 7 2 9 1 8

1 3 7 6 1 2 8 5 9 3 4 9 1 8 2 9 7 3 1 6 5 4
8 6 5 8 3 2 6 9 4 5 7 1 7 4 8 7 5 6 2 4 9 3 8 1

9 7 8 4 9 5 3 1 7 2 6 8 3 5 2 4 3 1 5 8 6 7 9 2

4 2 1 6 5 4 7 2 3 8 1 9 5 4 6 5 9 3 4 1 7 8 2 6
2 8 6 2 1 3 8 5 9 6 4 7 8 6 7 2 1 8 9 6 3 4 7 5

1 2 9 8 7 4 6 1 3 5 2 7 5 6 7 4 8 2 5 1 3 9

8 1 9 8 4 2 7 6 3 5 1 1 4 2 7 9 3 1 6 8 5 4
7 4 2 3 1 7 9 5 4 8 2 6 3 2 5 3 8 2 9 4 7 1 6

6 3 7 6 2 5 3 8 1 7 9 4 6 8 9 6 1 4 5 7 8 3 9 2

2 9 5 6 2 8 3 9 4 1 7 7 6 5 4 8 7 1 6 9 2 3 5
1 6 8 1 4 9 5 6 7 2 3 8 9 5 8 9 2 3 7 4 5 6 8 1

3 4 7 3 8 4 1 2 5 6 9 8 4 1 5 6 8 2 3 4 7 9

1 7 6 4 5 1 7 9 3 6 8 2 4 9 1 3 4 2 9 5 7 1 6 8
9 8 5 2 9 3 6 4 8 1 7 5 7 2 4 7 9 1 6 8 2 5 4 3

4 8 7 6 1 2 5 9 4 3 5 3 7 8 6 5 4 3 1 9 2 7

1 4 8 1 6 5 4 9 7 8 2 3 4 6 7 4 5 1 8 6 3 9 7 2
4 3 9 2 4 7 5 3 8 1 6 9 6 9 8 2 7 1 4 6 5 3

9 6 5 8 3 9 1 2 6 4 5 7 3 2 1 6 3 7 5 9 2 8 4 1

5 3 6 5 1 3 4 2 7 9 8 7 8 5 7 9 6 3 2 8 5 1 4
1 6 3 7 2 9 8 1 6 4 5 1 4 3 1 5 4 7 6 2 9 8

7 2 4 9 8 6 7 5 3 1 2 2 9 5 8 2 4 9 5 1 3 6 7

4 1 9 5 8 4 2 1 3 9 7 6 7 5 1 4 8 6 3 9 7 2 5
7 8 4 7 1 6 8 5 9 2 3 4 9 1 3 2 7 9 1 8 5 4 3 6

2 4 8 9 2 3 7 6 4 5 8 1 3 4 8 5 6 3 2 4 7 1 8 9

Sudoku a5 Solution a5 Sudoku a10 Solution a10

Sudoku a8 Solution a8Sudoku a3 Solution a3

Sudoku a4 Solution a4 Sudoku a9 Solution a9

Sudoku a1 Solution a1 Sudoku a6 Solution a6

Sudoku a2 Solution a2 Sudoku a7 Solution a7

(Source: http://www.aisudoku.com/en/AIsudoku_Top10s1_en.pdf)

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

11

Appendix II. SAS Code of „sudoku_macro.sas‟

/*sudoku_macro.sas*/
%let drive =C; /* Drive Name where SSS is saved */
%let folder =sudoku; /* Folder name where the result of execution of SSS will be saved
*/
%let program=sudoku; /* Folder name where three SAS programs of SSS are saved */
%let non=no; /* (1) No LOG information is displayed ="no"
 (2) LOG information is displayed =" " */
%let star=*; /* (1) Only the final page of OUTPUT window is displayed ="*"
 (2) All information of both LOG and OUTPUT windows are saved in
external filess =" " */
%let select_no=6; /* The No. of cells selected for Operation (3) */

*options mtrace macrogen;

* First of all, please save the following SAS programs in '&drive:\&folder'. ;
*(1) sudoku_macro.sas;
*(2) puzzle_make_original_data.sas;
*(3) puzzle_solve_final.sas;

* The users do not need to specify the macro variables below;
*(1) Full path of SSS engine, 'puzzle_solve_final.sas';
 %let run_solve="&drive:\&program\puzzle_solve_final.sas";
*(2) Folder name where text files of Sudoku puzzles are saved. ;
 %let problem_folder=&drive:\&folder\problem;
*===;
%macro rotate(rotate_no);
%* Creates four SAS data sets, ORIGINALx1 to ORIGINALx4
 by rotating the initial Sudoku puzzle 90 degrees clockwise three times.;

proc sort; by row; run;
data originalx&rotate_no;

 array a {9} $ 1;
 retain a1-a9;
 set; by row;
 do i=1 to 9; a{col}=x; end;
 if last.row;
run;

ods listing close;
ods html file="&output\&Q.matrix&rotate_no..xls";

proc print; title"matrix&rotate_no"; run;

ods html close;
ods listing;

data initial;

 keep x new_row new_col;
 rename new_row=row new_col=col;
 set initial;
 new_row=col;
 new_col=10-row;
run;

proc print; title"new matrix&rotate_no"; run;

%mend rotate;
*===;
%macro set_rotate; %* Sets 90 degrees rotated board situation to ORIGINAL;
%if &rotate_sw=0 %then %do;
%let round=0; %* How many times 'puzzle_solve_final.sas' is recursively executed
 for each candidate board situation during Operation (3).;

%let op3_no=0; %* The No. of candidate board situations created

 in the beginning of Operation (3);
%let set3_no=0; %* The Identification number of candidate board situation
 to currently be checked during the execution of Operation (3);

data original;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

12

 set originalx&rotate;
run;

%let rotate_sw=1;
 %end;
%mend;
*===;
%macro make_filter(dsname); %* Make 'filter' for each row, column and box. ;
data phase1;
 drop i;
 array a {9} $ 1;
 array x {9};
 array sw {9} $ 1;
 set &dsname;
 do i=1 to 9; if a{i}=0 then x{i}=123456789;
 else do; if sw{a{i}}="Y" then call symput("wrong","1");

 else do; sw{a{i}}="Y";
 x{i}=a{i}*10**(9-a{i});
 end;
 end;
 end;
run;

&star. proc print; title "ROUND &round: data=phase1(&dsname)"; run;

data phase2;
 drop i;
 array x {9};
 set;
 filter=0;
 do i=1 to 9; if x{i} NE 123456789 then filter+x{i}; end;
run;

&star. proc print; title "ROUND &round: data=phase2(&dsname)"; run;

data &dsname._filter;
 keep &dsname._no &dsname._filter;
 set;
 &dsname._no=_n_;
 &dsname._filter=filter;
run;

&star. proc print; title "ROUND &round: data=&dsname._filter"; run;

%mend make_filter;
*==;
%macro all_filter; %* Synthesize three filters of row, column and box.;
%reconstruct;

%make_filter(row);
%make_filter(col);
%make_filter(box);

proc sort data=cell; by row_no; run;
data all_filter; merge cell row_filter; by row_no; run;

proc sort data=all_filter; by col_no; run;
data all_filter; merge all_filter col_filter; by col_no; run;

proc sort data=all_filter; by box_no; run;
data all_filter; merge all_filter box_filter; by box_no; run;

proc sort data=all_filter; by row_no; run;
&star. proc print; title "ROUND &round: data=all_filter"; run;

data filter;

 drop i xrow_filter xcol_filter xbox_filter;
 length filter $ 9;
 length xrow_filter $ 9;
 length xcol_filter $ 9;
 length xbox_filter $ 9;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

13

 set all_filter;
 xrow_filter=row_filter;
 xcol_filter=col_filter;
 xbox_filter=box_filter;

 do i=1 to 9; if substr(xrow_filter,i,1)=i OR
 substr(xcol_filter,i,1)=i OR
 substr(xbox_filter,i,1)=i then substr(filter,i,1)=i;
 else substr(filter,i,1)=0;
 end;
 if v NE 0 then filter=" ";
run;

&star. proc print; title "data=filter"; run;

data find_cell;

 drop i;
 set filter;
 zero_cnt=0;
 if filter=" " then return;
 do i=1 to 9; if substr(filter,i,1)=0 then zero_cnt+1; end;
run;

&star. proc print; title "ROUND &round: data=find_cell"; run;

data candidate;* Find candidate numbers for each cell by applying 'filter';
 set find_cell;
 if filter=" " then return;
 candidate=123456789-filter;
run;

&star. proc print; title "ROUND &round: data=candidate"; run;
%mend all_filter;

*==;
%macro solve(row_col_box_no); %* Operation (1);
data cell;
 keep v row_no col_no box_no found;
 set candidate;
 if zero_cnt NE 1 then return;
 do i=1 to 9; if substr(filter,i,1)=0 then do; v=i; found=1; end; end;
run;

&star. proc print; title "ROUND &round: data=cell(2)"; run;

proc sort data=cell; by row_no; run;

data original;
 keep a1-a9;
 retain a1-a9;

 array a {9} $ 1;
 set cell; by row_no;
 if first.row_no then i=0;
 i+1;
 a{i}=v;
 if last.row_no;
run;

&star. proc print; title "ROUND &round: data=original(2) Easy Update from
&row_col_box_no"; run;

%let skip_sw=0;
proc sort data=candidate; by &row_col_box_no; run;

data select1;
 keep &row_col_box_no all_candidate cnt_no1-cnt_no9;
 length all_candidate $ 90;

 retain all_candidate;

 length xcandidate $ 9;
 array cnt_no {9};

 set candidate; by &row_col_box_no;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

14

 xcandidate=candidate;
 if first.&row_col_box_no then all_candidate=" ";
 all_candidate=trim(left(xcandidate || all_candidate));
 if last.&row_col_box_no then do; do i=1 to 9;
 cnt_no{i}=0;
 do k=1 to 81;
 if substr(all_candidate,k,1)=i then cnt_no{i}+1;
 end;
 end;
 output;
 end;
run;

&star. proc print; title "ROUND &round: data=select1"; run;

data select2;

 keep &row_col_box_no cnt_no1-cnt_no9;
 array cnt_no {9};
 set select1;
 do i=1 to 9;
 if cnt_no{i}=1 then do; output; call symput("skip_sw",1); return; end;
 end;
run;

&star. proc print; title "ROUND &round: data=select2"; run;
%if &skip_sw=1 %then %do;
data select3;
 keep row_no col_no box_no candidate cnt_no1-cnt_no9;
 merge select2(in=in1) candidate; by &row_col_box_no;
 if in1;
run;

&star. proc print; title "ROUND &round: data=select3"; run;

data select4;
 drop xcandidate i;
 array cnt_no {9};
 length xcandidate $ 9;
 set select3;
 do i=1 to 9;
 if cnt_no{i}=1 then do; xcandidate=candidate;
 if substr(xcandidate,i,1)=i then
 do; v=i; output; end;

 end;
 end;
run;

&star. proc print; title "ROUND &round: data=select4 (New found numbers)"; run;

proc sort data=select4; by row_no; run;

data found_nos;
 keep new1-new9 row_no mactch_key;
 array new {9} $ 1;
 retain new1-new9;

 set select4; by row_no;
 mactch_key=row_no;
 do i=1 to 9; if i=row_no then new{col_no}=v; end;
 if last.row_no then output;
 do i=1 to 9; new{col_no}=" "; end;
run;

&star. proc print; title "ROUND &round: data=found_nos (Only new found numbers)"; run;

data originalx;
 set original;
 mactch_key=_n_;
run;

&star. proc print; title "ROUND &round: data=originalx"; run;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

15

data original;
 keep a1-a9;
 array a {9} $ 1;
 array new {9} $ 1;

 merge originalx found_nos; by mactch_key;

 do i=1 to 9; if new{i} NE . then a{i}=new{i}; end;
run;

 %end;

&star. proc print;
title "ROUND &round: data=original(updated) from &row_col_box_no"; run;
%mend solve;

*==;
%macro find_two_choices(row_col_box_no); %* Operation (2): Update 'filter';
data xcandidate;
 set candidate;
 if zero_cnt=2;
run;

proc sort data=xcandidate; by &row_col_box_no zero_cnt candidate; run;
&star. proc print data=xcandidate;
title "ROUND &round: Cells with only two candidates: &row_col_box_no";
run;

data two_candidates;
 keep &row_col_box_no candidate;
 set xcandidate; by &row_col_box_no candidate;
 if first.&row_col_box_no=1 then delete;
 if first.candidate=0;

run;

&star. proc print data=two_candidates;
title "ROUND &round: data=two_candidates: &row_col_box_no";
run;

data two_candidates(drop=buffer candidate);
 set two_candidates;
 length buffer $ 9;
 buffer=candidate;
 candidate_copy=candidate;
 candidate1=indexc(buffer,"123456789");
 if candidate1 NE . then buffer=translate(buffer,"0",candidate1);
 candidate2=indexc(buffer,"123456789");
run;

&star. proc print data=two_candidates;
title "ROUND &round: data=two candidates: &row_col_box_no"; run;

proc sort data=candidate; by &row_col_box_no; run;

data merge_candidate(drop=candidate_copy);
 length vvv 8;
 merge candidate two_candidates; by &row_col_box_no;
 if candidate EQ candidate_copy then dont_change="NO";
 if zero_cnt=1 then do; vvv=right(translate(candidate," ","0")); v=vvv; end;
run;

&star. proc print data=merge_candidate;
title "ROUND &round: data=merge_candidate: &row_col_box_no";
run;

data choose_candidate(drop=xxcandidate);

 set merge_candidate;
 length xxcandidate $ 9;
 if candidate1 EQ . OR dont_change="NO" then return;

 xxcandidate=candidate;
 if candidate=. then return;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

16

 substr(xxcandidate,candidate1,1)="0"; candidate=translate(xxcandidate,"0"," ");
 substr(xxcandidate,candidate2,1)="0"; candidate=translate(xxcandidate,"0"," ");
run;

&star. proc print data=choose_candidate;
title "ROUND &round: data=choose_candidate: &row_col_box_no";
run;

data candidate;
 keep filter row_no col_no box_no v row_filter col_filter box_filter zero_cnt
 candidate;
 set choose_candidate;
 if v NE 0 OR dont_change="NO" OR candidate1=. then return;

 substr(filter,candidate1,1)=candidate1;
 substr(filter,candidate2,1)=candidate2;

 zero_cnt=0;
 do i=1 to 9; if substr(filter,i,1)=0 then zero_cnt+1; end;
run;

&star. proc print data=candidate;
title "ROUND &round: data=candidate updated from two candidates: &row_col_box_no";
run;
%mend find_two_choices;
*===;
%macro find_check;
%* Set SAS macro variable 'found' to 1 if a new number has been found in this round.;
%* Set SAS macro variable 'not_yet' to the No. of cells unsolved.;
proc compare data=original_before compare=original out=result noprint; run;

&star. proc print data=result; &star. var a1-a9;
title "ROUND &round: data=result: X <- Newly found"; run;

data found;
 keep found_sw;
 set result end=final;
 array a {9} $;
 retain found_sw 0;
 do i=1 to 9; if a{i} NE "." then found_sw=1; end;
 if final then do; call symput("found",found_sw); output; end;
run;

&star. proc print data=found; title "ROUND &round: If new numbers were found,
found_sw=1 "; run;

data _null_;
 set original;
 array a {9} $ 1;

 do i=1 to 9; if a{i}="0" then not_yet+1; end;
 call symput("not_yet",not_yet);
run;

%mend find_check;
*===;
%macro repeat;
%* Run 'puzzle_solve_final.sas' recursively when new correct numbers are found;
%* When no new numbers were found, execute Operation (2).;
%if &found=1
 %then %include &run_solve;
 %else %do; %find_two_choices(row_no);
 %find_two_choices(col_no);
 %find_two_choices(box_no);

 data final;
 set candidate;

 if filter=" " then return;
 candidate=123456789-filter;
 run;

 &star. proc print data=final;
 title"ROUND &round: data=final";

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

17

 run;

 %solve(row_no);
 %solve(col_no);
 %solve(box_no);
 %end;
%mend repeat;
*===;
%macro verify; %* Judge if the board situation becomes illegal or not,
 after adding candidate numbers.;
%reconstruct;

data verify;
 length all $ 9;
 array a {9} $ 1;
 array cnt_no {9};

 retain wrong 0;

 set row col box;
 do i=1 to 9; substr(all,i,1)=a{i}; end;
 do i=1 to 9;
 cnt_no{i}=0;
 do j=1 to 9; if substr(all,j,1)=i then cnt_no{i}+1; end;
 do k=1 to 9; if cnt_no{k}>=2 then wrong=1; end;
 end;
 call symput("wrong",wrong);
 if wrong=1 then stop;
run;

&star. proc print data=verify; title"verify!"; run;
%mend verify;
*===;
%macro once_again3; %* Control of Operation (3);

%if ¬_yet=0 %then %output;
 %else
 %do; %if &found=1 %then %include &run_solve;
 %else
 %do; %if &set3_no=0 %then %loop_again3;
 %else
 %do; %if &set3_no=&op3_no
 %then;
 %else
 %do; %set_original(3,&set3_no,set3_no);
 %include &run_solve;
 %end;
 %end;
 %end;
 %end;
%mend once_again3;

*===;
%macro loop_again3; %* Create new candidate board situations in Operation (3);
data original_operation2;
 set original;
run;
%check_no(&select_no);
%operation_candidate(3,&zero_all,&number,&op3_no,op3_no,&select_no);
%set_original(3,&set3_no,set3_no);
%include &run_solve;
%mend loop_again3;
*===;
%macro check_no(n1);
%* preliminary process for creating candidate board situations in Operation (3).
%* Set the No. of cells with only two candidate numbers to macro variable 'number'.;
%* Set the No. of candidate board situations created in Operation (3) to macro
variable 'zero_all'.;

data x2candidate;
 set final;
 if zero_cnt=2 then do; cnt+1; output; end;
 %global number;
 call symput ("number",cnt);
run;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

18

%zero(2);

data x3candidate;
 set final;
 if zero_cnt=3;
run;

%zero(3);

data xxxcandidate;
 set x2candidate x3candidate;
 if _N_<=&n1.;
run;

&star. proc print; title"xxxcandidate"; run;

data zero_candidate;
 array a{&n1.};
 retain a1-a&n1.;
 set xxxcandidate end=finish;
 a{_N_}=zero_cnt;
 if finish=1;
run;

&star. proc print; title"zero_candidate"; run;

data zero_candidate;
 array a{&n1.};
 set zero_candidate;
 all_cnt=1;
 do i=1 to &n1.; all_cnt=all_cnt*a{i}; end;
%global zero_all;

call symput ("zero_all",all_cnt);
run;

%mend check_no;
*===;
%macro zero(no); %* Get candidate numbers from a selected cell.;

data x&no.candidate;
 set x&no.candidate;
 length buffer $ 9;
 buffer=candidate;
 %do i=1 %to &no.;
 candidate&i=indexc(buffer,"123456789");
 if candidate&i NE . then buffer=translate(buffer,"0",candidate&i);
 %end;
run;

%mend zero;
*===;
%macro operation_candidate(n1,n2,n3,n4,n5,n6);
%* Make all candidate board situations from the combination of
 all possible candidate numbers for selected cells;
data two_candidates;
 keep row_no col_no xx1-xx3;
 set xxxcandidate;
 %do i=1 %to 3;
 xx&i=candidate&i;
 %end;
run;

&star. proc print;title"data=two_candidates";run;

data two_candidates;

array v{&n2.};
set two_candidates;
do x=1 to &n6.;
 if xx3=.
 then do; repeat=2**(_N_-1);
 do i=1 to &n2.; v{i}=xx2; end;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

19

 do i=1 to &n2. by repeat*2;
 do j=i to i+repeat-1; v{j}=xx1; end;
 end;
 end;
 else do; repeat=3**(_N_-1-&n3.);
 do i=1 to &n2.; v{i}=xx3; end;
 do i=1 to &n2. by repeat*3;
 do j=i to i+repeat-1; v{j}=xx1; end;
 do j=i+repeat to i+repeat*2-1; v{j}=xx2; end;
 end;
 end;
end;
run;

&star. proc print; run;

%do i=1 %to &n2;
 %keep_pair(&i);
%end;

&star. proc print;title"keep_data";run;

%let xxxcnt=&n4;

%do i=1 %to &n2;
 %let xxxcnt=%eval(&xxxcnt+1);
 %operation_original(&n1,&i,&xxxcnt);
%end;
%let &n5=&xxxcnt;

%mend operation_candidate;
*===;
%macro keep_pair(no);

%* Make SAS data sets, each of which represents candidate numbers for selected cells.;
data keep_pair&no;
 keep row_no col_no v&no;
 set two_candidates;
run;
%mend keep_pair;
*===;
%macro operation_original(x1,x2,x3);
%* Make all candidate board situations by merging SAS data sets 'keep_pair&x2'
 and 'final';
proc sort data=keep_pair&x2; by row_no col_no; run;
proc sort data=final; by row_no col_no; run;

data original_&x1._&x3.;
 keep row_no col_no v;
 merge final keep_pair&x2; by row_no col_no;

 if v&x2 NE . then v=v&x2;
run;

data original_&x1._&x3.;
 keep a1-a9;
 retain a1-a9;
 array a {9} $ 1;
 set original_&x1._&x3.; by row_no;
 if first.row_no then i=0;
 i+1;
 a{i}=v;
 if last.row_no;
run;

&star. ods listing close;
&star. ods html
file="&output\original_&x1._&x3.(&rotate._ROUND&round._OPE3_ORIGINAL&set3_no.).xls";

&star. proc print data=original_&x1._&x3.;
title "original_&x1._&x3."; run;
&star. ods html close;
&star. ods listing;

%mend operation_original;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

20

*===;
%macro set_original(n1,n2,n3);
%* Set next candidate board situation to SAS data set ORIGINAL;
%let n2=%eval(&n2+1);

data original;
 set original_&n1._&n2.;
run;

%let &n3=&n2;
%let round=0;
%mend set_original;
*===;
%macro turn; %* Get back the current board situaton to original shape, if it was
rotated;
data original;

 keep x row col;
 array a {9} $ 1;
 set original;
 do i=1 to 9; row=_n_; col=i;
 x=a{i};
 output;;
 end;
run;

data original;
 keep x new_row new_col;
 rename new_row=row new_col=col;
 set original;
 new_row=col;
 new_col=10-row;
run;

proc sort; by row; run;
data original;
 keep a1-a9;
 array a {9} $ 1;
 retain a1-a9;
 set; by row;
 do i=1 to 9; a{col}=x; end;
 if last.row;
run;

%mend turn;
*===;
%macro reconstruct; %* Make four SAS data sets, CELL, ROW, COL and BOX from
ORIGINAL;
data cell;
 keep v row_no col_no box_no;

 array a {9} $ 1;
 *array row_no {9};
 *array col_no {9};
 *array box_no {9};

 set original;
 do i=1 to 9; row_no=_n_; col_no=i;
 box_no=MAX(INT((_n_-1)/3),0)+INT((i-1)/3)+2*INT((_n_-1)/3)+1;
 v=a{i};
 output;;
 end;
run;
/*
proc print data=cell; title "data=cell"; run;
*/
*---;
proc sort data=cell; by row_no; run;

data row;
 keep a1-a9;
 array a {9} $ 1;
 retain a1-a9;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

21

 set cell; by row_no;
 a{col_no}=v;
 if last.row_no then output;
run;

options nocenter ps=100;
/*
proc print data=row; title "data=row"; run;
*/
*---;
proc sort data=cell; by col_no; run;

data col;
 keep a1-a9;
 array a {9} $ 1;
 retain a1-a9;

 set cell; by col_no;
 a{row_no}=v;
 if last.col_no then output;
run;
/*
proc print data=col; title "data=col"; run;
*/
*---;

proc sort data=cell; by box_no; run;

data box;
 keep a1-a9;
 array a {9} $ 1;
 retain a1-a9 i;

 set cell; by box_no;
 if first.box_no then i=1;
 a{i}=v; i+1;
 if last.box_no then output;
run;
/*
proc print data=box; title "data=box"; run;
*/
%mend reconstruct;
*===;
%macro output;
%* When the solution was found, it is displayed in the OUTPUT window,
 otherwise the solving engine will be executed recursively by using
 rotated board situations one after another. In case no solution can
 be found after three rotations, only the intermidiate solution gained
 from Operations (1) and (2) is displayed;

options nonotes nosource;

%if ¬_yet=0 %then %do; %*<-----; %* Go to display the solution in the OUTPUT
window;
%if &rotate=1 %then; %* Display now, because of no rotations done;
 %else %do i=1 %to %eval(5-&rotate); %turn; %end;
 %* Rotate clockwise to put it in the original posision;

proc printto;

data;
 endtime=DATETIME();
 put endtime= time.;
 call symput("endtime",endtime);
run;

data;

 time=&endtime-&starttime;
 put time= time.;
 time=round(time);
 call symput("time",time);
run;

Programming: Beyond the BasicsSAS Global Forum 2012

<Paper title>, continued

22

proc print data=original;title1 "Problem # &Q. was successfully solved.";
 title2 "No. of 90-Degree Clockwise Rotations: %eval(&rotate.-
1)";
 title3 "No. of Repetitions of Running
'puzzle_solve_final.sas': &new_round";
 title4 "Run Time: &time. Seconds"; run;

%abort;
 %end; %*<-----;
 %else %do; %*======;
 %if &rotate<4 %then
 %do;
 %* In case no solutons have been found, rotate the board
position 90 degrees clockwise;
 %let rotate=%eval(&rotate+1);
 %let rotate_sw=0;

 %include &run_solve;
 %end;

data original;
 set original_operation2;
run;

%turn

proc printto;

data;
 endtime=DATETIME();
 put endtime= time.;
 call symput("endtime",endtime);
run;

data;
 time=&endtime-&starttime;
 put time= time.;
 time=round(time);
 call symput("time",time);
run;

proc print data=original;title1 "Problem # &Q. was not be able to be solved.";
 title2 "No. of Repetitions of Running
'puzzle_solve_final.sas': &new_round";
 title3 "Run Time: &time. Seconds"; run;

%abort;
 %end; %*======;
%mend output;
*===;

%macro all; %* Solving Engine;
%* Operation (1) starts;
%all_filter; %if &wrong=1 %then %goto another_one;
%solve(row_no);
%all_filter; %if &wrong=1 %then %goto another_one;
%solve(col_no);
%all_filter; %if &wrong=1 %then %goto another_one;
%solve(box_no);
%find_check;

%* Operation (2) starts;
%repeat;
%find_check;
%verify;

%another_one: %*label;
%* Operation (3) starts;

%once_again3;

%output;
%mend all;
*===;

Programming: Beyond the BasicsSAS Global Forum 2012

	2012 Table of Contents

