

1

Paper 194-2012

The Systems Development Life Cycle (SDLC) as a Standard:

Beyond the Documentation

Dianne Louise Rhodes, U.S. Census Bureau, Washington DC

ABSTRACT

Has your company adopted the Systems Development Life Cycle (SDLC) as a standard for benchmarking
progress on a project? Have they developed Word and other templates for documents created during
SDLC? In three of my most recent positions, the stress was on completing the documents according to
schedule, rather than emphasizing the work. The work involved cataloguing requirements, analyzing them
and developing a good design document, and thoroughly testing the resulting code. When I first started
programming in SAS®, I was lucky to get any users requirements at all; it was always “I’ll know it when I see
it.” But with the emphasis on the documentation, and not on the analytical work behind them, the project still
falls behind schedule because of missed requirements. If the requirements are not thoroughly complete
when coding begins, it is likely to fail in the testing phase, especially if the independent test team gets a
better, more complete version of the requirements than the development team. We discuss the work that is
involved in detail for producing sound requirements, design, and testing protocols. Consider the retirement
of legacy software as part of the SDLC.

INTRODUCTION

PHASES

The exact naming and components of the
phases can vary and are adapted to your
company’s specific needs and adjusted to the
scope of the project (Fulton 2003).

Traditional view of the SDLC is a waterfall
approach. One phase keys off the end of the
previous phase.

A more flexible and accurate description is of an interative
process. No one ever gets it exactly right the first time
and an iterative process depicts this.

Figure 1: Waterfall Approach

Figure 2: Iterative Process

Planning and SupportSAS Global Forum 2012

2

PLANNING

In this phase, the background and scope of the SAS and other programming to complete the project are

estimated. This is done to determine the size and level of effort, staffing plans and budget. The project
goals are set, and roles and responsibilities are identified. A project plan for performing the work and
managing the project is developed. This should include tasks, schedules, and assignments. The project
management will be implementing tracking and oversight mechanisms, configuration management activities,
training, and a test plan / strategy. (Helton 2002) At this phase, documentation and validation that will be

required are developed.

These efforts may be described as “proof of
concept.” The job is to identify risks and risk
assessment of assumptions and identify the
critical path (CPA) of the work. The critical
path is often identified using software such
as Microsoft Project. Within a project the
final project plan is often in the form of a
Gantt Chart (using Microsoft Project or other
software for projects of medium complexity

or an excel spreadsheet for projects of
low complexity).

The benefit of using CPA within the planning
process is to help you develop and test your

plan to ensure that it is robust. Critical Path Analysis identifies tasks which must be completed on time for
the whole project to be completed on time. It also identifies which tasks can be delayed if resource needs to
be reallocated to catch up on missed or overrunning tasks. The disadvantage of CPA, if you use it as the

Figure 3: Gantt Chart

Figure 4: Critical Path Analysis

Planning and SupportSAS Global Forum 2012

3

technique by which your project plans are communicated and managed against, is that the relation of tasks
to time is not as immediately obvious as with Gantt Charts. This can make them more difficult to understand.

A further benefit of Critical Path Analysis is that it helps you to identify the minimum length of time needed to
complete a project. Where you need to run an accelerated project, it helps you to identify which project steps
you should accelerate to complete the project within the available time.

An example of failure to identify the critical path to success – Building the Denver, Colorado airport and not
understanding that baggage handling was on the critical path. The airport's computerized baggage system,
which was supposed to reduce flight delays, shorten waiting times at luggage carousels, and save airlines in
labor costs, turned into an unmitigated failure. An airport opening originally scheduled for October 31, 1993,
with a single system for all three concourses turned into a February 28, 1995, opening with separate
systems for each concourse, with varying degrees of automation.

The system's $186 million original construction costs grew by $1 million per day during the months of
modifications and repairs. Incoming flights on the airport's B Concourse made very limited use of the
system, and only United, DIA's dominant airline, used it for outgoing flights. The automated baggage
system never worked as designed, and in August 2005, it became public knowledge that United would
abandon the system, a decision that would save them $1 million per month in maintenance costs.
(Wikipedia)

ANALYSIS – REQUIREMENTS. FOR CLINICAL TRIALS STATISTICAL ANALYSIS PLAN (SAP).

The requirements are developed by the end user of the software and not by the developer. There are a
number of templates for this work. One is the Use Case developed by Ivar Jacobson. Developed in 1986,
Ivar Jacobson, who went on to become an important contributor to both the Unified Modeling Language
(UML) and the Rational Unified Process (RUP), first formulated the visual modeling technique for specifying
use cases. Originally he used the terms usage scenarios and usage case, but found that neither of these
terms sounded quite right in English, and eventually he settled on the term use case. Since Jacobson
originated use case modeling, many others have contributed to improving this technique, including Kurt
Bittner, Ian Spence, Alistair Cockburn, Gunnar Overgaard, Karin Palmquist and Geri Schneider.

During the 1990’s use cases became one of the most common practices for capturing functional
requirements. This is especially the case within the object-oriented community where they originated, but
their applicability is not restricted to object-oriented systems, because use cases are not object-oriented in
nature.

Figure 5: Use Case Scenario

These are functional requirements and sometimes are more of a wish list then requirements analysis.
Rational Unified Process (RUP) is a package distributed by IBM. The Rational Unified Process (RUP) is an

Planning and SupportSAS Global Forum 2012

http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Visual_modeling
http://en.wikipedia.org/wiki/Use_case_model
http://en.wikipedia.org/wiki/Alistair_Cockburn
http://en.wikipedia.org/wiki/Functional_requirements
http://en.wikipedia.org/wiki/Functional_requirements
http://en.wikipedia.org/wiki/Object-oriented

4

iterative software development process framework created by the Rational Software Corporation, a division
of IBM. RUP is not a single concrete prescriptive process, but rather an adaptable process framework, which
is tailored by the development organizations and software project teams that will select the elements of the
process that are appropriate for their needs. The product includes a hyperlinked knowledge base with
sample artifacts and detailed descriptions for many different types of activities. RUP is included in the IBM
Rational Method Composer (RMC) product which allows customization of the process. RUP is based on a
set of building blocks, or content elements, describing what is to be produced, the necessary skills required
and the step-by-step explanation describing how specific development goals are to be achieved. The main
building blocks, or content elements, are:

 Roles (who) – A Role defines a set of related skills, competencies, and responsibilities.

 Work Products (what) – A Work Product represents something resulting from a task, including all
the documents and models produced while working through the process.

 Tasks (how) – A Task describes a unit of work assigned to a Role that provides a meaningful
result.

Within each iteration, the tasks are categorized into nine disciplines: six "engineering disciplines" (Business
Modeling, Requirements, Analysis and Design, Implementation, Test, Deployment) and three supporting
disciplines (Configuration and Change Management, Project Management, Environment).

The use of these tools is not standardized and is subject to interpretation. Some shops may prepare report
mock-ups. I have frequently seen these done in Excel. These could be part of the appendix to the
requirements documents. The requirements should be a description in non-technical terms (“English”) of the
business rules being implemented. These are considered detailed functional requirements. There should
also be a validation plan, which will help the testing team develop test cases and scenarios.

DESIGN

The Design document references what you are going to build to meet the requirements, and not how (Reap,
2005). This is described in broad terms: it can include pseudo code but not necessarily actual code
functionality. Design elements describe the desired software features in detail, and generally include
functional hierarchy diagrams, screen layout diagrams, tables of business rules, business process diagrams,
pseudocode, and a complete entity-relationship diagram with a full data dictionary. These design elements
are intended to describe the software in sufficient detail that skilled programmers may develop the software
with minimal additional input. At this phase the test plans are developed. The level of review under the test
plan depends on the level of risk to the project. The project gets system architect approval if it is going into
a legacy system, to ensure that the changes are not going to “break” software already in place.

IMPLEMENTATION AND ACCEPTANCE

To launch the coding phase, develop a shell program that is then put under some form of version control, for
example Source Control Management from SAS. This phase includes the set up of a development
environment, and use of an enhanced editor for syntax checking. It is at this phase that development testing
or unit testing occurs. Each developer insures that their code runs without warnings or errors and produces
the expected results.

User Acceptance Testing (UAT) is a second part of the acceptance phase, which is ideally conducted by an
independent test group. This includes the development of an Independent Test Plan put together by an
Independent Test Team. Ideally these would be programmers, but often they are not. This phase verifies
input/output and reviews the expected results. The Test Plan includes development of test data with test
cases and scenarios which exercise all logical paths. The results are the validation of the code. This phase
is also where regression testing and sign off occurs and the test team verifies that the development outputs
still match the production outputs where expected.

PRODUCTION / MAINTENANCE

User’s guides and training are developed to reflect any new functionality and changes which need to be
identified to the production staff. Any changes needed to operations and/or maintenance need to be
addressed. Every run in production needs to be verified. Any problems with production need to be
addressed immediately. Setting up a Change Request system allows for feedback for enhancements
(missed requirements).

Planning and SupportSAS Global Forum 2012

http://en.wikipedia.org/wiki/Iterative
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Rational_Software
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Artifact_%28software_development%29
http://en.wikipedia.org/wiki/IBM_Rational_Method_Composer
http://en.wikipedia.org/wiki/IBM_Rational_Method_Composer

5

RETIREMENT

When the legacy system has been completely replaced, it is time to retire the system. Users are warned
and explanations given of the new system. For example, we recently retired the use of FTP for Secured
FTP. This required notification to the users, and tracking to find which users were still using the old system.

REFERENCES

Axelrod, Elizabeth (2009). “Boot Camp for Programmers: Stuff you need to know that’s not in
the manual.” Proceedings of SAS Global Forum (SGF) 2009.

Brown, Rachel and Fulton, Jennifer (2008). “CSI: San Antonio – Common SAS Issues in Our
Programs and Tips for Better Investigation of your SAS code.” SGF 2008.

Fulton, Jennifer and Black, Stephen (2003). “Documentation and Accountablity: Why Your SAS
Programming Projects Can Benefit from Implementing a System Development Life Cycle
(SDLC).” SCSUG 2003 proceedings.

Helton, Edward, Halley, Patricia and Handelsman, David (2002). “SAS Solutions for Addressing
21 CFR Part 11 Compliance – the P21 Biomedical Knowledge Platform.” 2002 PharmaSUG
proceedings.

Howard, Neil (2003). “Beyond Debugging: Program Validation.” SUGI 28 proceedings.

Newhouse, Russell (1997). “Validation and SAS Programming: Benefits of Using the System
Life Cycle Method.” SUGI 22 proceedings.

Reap, Chuck (2005). “A Regulatory Compliant Process for Developing SAS-Based Reports.”
SUGI 30 proceedings.

Wikipedia “Systems Development Life Cycle (SDLC) Life-Cycle Phases.”

ACKNOWLEDGMENTS

I want to thank my colleagues at the Census Bureau for their support and timely feedback.

CONTACT INFORMATION

Comments, questions, and additions are valued and encouraged. Contact the author at:
Dianne Louise Rhodes
US Census Bureau
4600 Silver Hill Road
7K120B
Washington DC 20233
Work Phone: (301) 763-2093
Email: diannerhodes@comcast.net

TRADEMARKS

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trandemarks of
SAS Institute Inc. in the USA and other countries. ® Indicates USA registration. MS Office® is a registered
trademark of the Microsoft Corporation. Other brand and product names are registered trademarks or
trademarks of their respective companies.

Planning and SupportSAS Global Forum 2012

mailto:diannerhodes@comcast.net

	2012 Table of Contents

