
1 

Paper 162-2012 

Using SAS® to Measure Airport Connectivity: An Application of Weighted 
Betweenness Centrality for the FAA National Plan of Integrated Airport 

Systems (NPIAS) 

Hector Rodriguez-Deniz, University of Las Palmas de Gran Canaria, Canary Islands, Spain 

 

ABSTRACT 

The US Federal Aviation Administration (FAA) estimates that $52.2 billion will be available over the next five years 
(2011-2015) to fund airport infrastructure developments. Because one of the main objectives is to reduce congestion 
and delays, there is a need to acknowledge the importance of connectivity (measured with a centrality indicator) 
when establishing funding priorities. Currently, the FAA does not do this. In this paper, we expand an existing 
SAS/IML® implementation of betweenness centrality to handle passenger-weighted airport networks, construct a 
graphical representation of the US air transport network from airline ticketing data, test the module to identify hub 
airports, and produce stylish output using SAS® GMAP. Performance and complexity considerations of the new 
algorithm are addressed. 

INTRODUCTION  

The US Federal Aviation Administration (FAA) estimates that $52.2 billion will be available over the next 5 years 
(2011-2015) to fund infrastructure developments for all segments of civil aviation under the Airport Improvement 
Program (AIP). The National Plan of Integrated Airport Systems (NPIAS) is used by the FAA in administering the AIP. 
In the NPIAS (FAA, 2011), investment requirements and funding priorities are set according to a decades-old airport 
typology based on the proportions over total US passenger enplanements

1
.  While the merit (and simplicity) of such 

an approach are not questioned, the existing literature widely agrees that the importance of a single airport within a 
network needs to take into account its hubbing potential (i.e. connectivity), which the FAA does not. Since one of the 
main objectives of the AIP is to fund airport capacity expansions in order to reduce congestion and delays, from a 
social perspective it seems only reasonable that funding priority should be given to airports playing a central role in 
the network, not just because they process a significant proportion of US traffic but also because passengers and 
airlines are connecting through them to other destinations, which will also benefit from any delay reductions at the 
hub. Hence, there is a potential for the FAA, as a public agency, to optimize the social benefits from any AIP 
investment by improving the NPIAS airport classification with a hubbing/connectivity measure, such as, for example, 
the weighted betweenness centrality.   

Taking into account the significant amount of data involved in such calculations (i.e. down to flight coupon level), SAS 
is clearly a suitable software for the task. In this study, we will expand a previous SAS implementation (Ellis, 2009) of 
the betweenness centrality to deal with weighted networks, construct a graph-like structure representing the US air 
transport network using detailed airline ticketing data, test the implementation to discover relevant airports in terms of 
centrality and finally produce a stylish output using the PROC GMAP graphical utility and Annotate data sets. Many 
other SAS tools such as the SQL and IML procedures were used in order to accomplish other stages of the process.  

Since Freeman (1977) defined a set of indices to discover relevant actors within a social network, centrality measures 
have been increasingly used in a variety of academic and practitioner circles. In the air transport literature, a wide 
range of models for measuring airport connectivity have been proposed (See e.g. Burghouwt and Redondi, 2009), 
and betweenness centrality has become a popular approach in this context. In spite of that, the applicability of this 
topological indicator to the proposed NPIAS problematic is very limited because it does not take into account the 
importance of the different passenger markets served through each airport, which, in the end, is the key factor to 
determine how “central” the airport is to the US network. In order to solve that, this paper proposes a slight variation 
of betweenness centrality to incorporate market-based weightings. An extension of the Ellis (2009) SAS 
implementation, which allow the computation of a weighted betweenness centrality, is presented based on the 
suggestions of Brandes (2008). This new approximation will allow us to take into account  the relevance of each 
market in terms of connecting passengers  without worsening the algorithm time complexity with respect to the 
original Ellis (2009) module. A performance test on a set of synthetic networks, and a few brief remarks on complexity  
conclude the paper. 

 

                                                           

1
 Large hubs are those airports that each account for at least 1% of total US passenger enplanements. Medium and Small hubs are 

defined  as airports that each account  for between 0.25-1 and 0.05-0.25 %, respectively (FAA, 2011). 
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DATABASE DESCRIPTION 

Data comes from the Bureau of Transportation Statistics of the Research and Innovative Technology Administration
2
 

(US Department of Transportation). The Airline Origin and Destination Survey (BTS, 2011) is a sample of airline ticket 
information from more than 30 US carriers such as American Airlines, JetBlue and Delta, among others

3
. The survey 

covers about 10% of tickets from reporting carriers. Detailed information of each domestic itinerary (e.g. origin and 
destination airport, miles flown) is provided in several tables to analyze air traffic patterns, airline dominance or 
passenger flows. Data is available on a quarterly basis since 1993. In our case we focus on indentify potential airline 
hubs (i.e. airports) using network centrality measures, so detailed stopover information between origin and 
destination is required. The DB1BMarket

4
 table contains such information, which comes in the form of a string 

variable that indicates the origin and destination airport for every flight segment within a single itinerary, allowing us to 
proceed with the calculation of centrality measures in a straightforward way. Our sample period (fourth quarter 2010 
to third quarter 2011

5
) contains more than 20,000,000 records representing individual itineraries. In order to process 

this amount of data, several Macro definitions, DATA steps, PROC SQL and PROC IML were used throughout the 
data load and preparation process in SAS. 

BETWEENNESS CENTRALITY OF THE US AIR TRANSPORT NETWORK 

THEORETICAL BACKGROUND 

As noted before, betweenness centrality quantifies the prominence of an actor in terms of connectivity within a 

network (Freeman, 1977; Brandes, 2001). It is common to represent networks as a graph , where  is the 

set of vertices or nodes, and  the set of edges, which represent connections between nodes. The number of 

vertices and edges in the network are given by  and , respectively. For the sake of simplicity, 

undirected connections are assumed, and this clearly applies to our problem since we are looking for potential hubs 

regardless the direction of individual flights. We denote  as the weight function of a network. In a weighted network, 

we assume that  for all , while  in the case of unweighted networks. Consequently, the 

length of a path between any two vertices of the network will be either the sum of the weights of its edges, or the 

number of steps in an unweighted network. The shortest distance  between two nodes  and  is the 

minimum length of any path in  that connects  and . The betweenness centrality measure is given by: 

 

 

 

Where  is the number of minimum length paths connecting nodes  and , and  is the number of 

such paths in which some  lies on. It is also clear that , and  by convention. 

 
From an air transport perspective, this measure presents some drawbacks. Since the calculation of the index for a 

vertex  involves all the shortest paths between any combination of nodes  except  on the graph, each 

origin-destination pair will contribute to a vertex  centrality regardless of either distance or relationship between 

them, as long as  lies on any shortest path. Consequently, a well positioned but irrelevant airport (e.g. in terms of 

passenger traffic) could be highly ranked even though it lies on paths which do not represent any real market
6
. 

Another difficulty, even when considering weighted networks, comes up when it comes to quantifying the relative 
prominence of a specific route. Certainly, weights can be employed to represent distances, travel time and many 
other interesting features in a network, but once the length and number of shortest paths have been calculated, each 

of them contribute identically to the betweenness centrality of  , given some , Note that the use of weights is 

restricted to finding the shortest paths but not to estimate it relative importance with respect to e.g. the number of 
enplanements (Skiena, 2008).  Therefore, that means that well-established markets (e.g. New York LGA to Orlando 
via Atlanta) and routes on which scheduled traffic is insignificant would sum up equally to the centrality index if they 
lie in the shortest paths, provided certain criteria such as origin-destination distance were met. 

 

 

                                                           

2
 http://www.bts.gov 

3
 For a comprehensive list of the recent reporting carriers, visit: http://www.transtats.bts.gov/ReleaseInfo.asp?tb=247&display=data 

4
 http://www.transtats.bts.gov/TableInfo.asp?Table_ID=247&DB_Short_Name=Origin%20and%20Destination%20 

Survey&Info_Only=0 
5
Latest data available at February 2012. 

6
 We define a market as a specific origin-destination journey, thus aggregating all possible routings. 
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These shortcomings are closely related to the fact that betweenness centrality has a strong topological motivation. 
However, we need some mechanism to identify key airports in an air transport network according to both their 
topological position (i.e. connectivity potential) and the relevance of the markets they serve in terms of traffic density

8
. 

Considering that our market definition is not point-to-point oriented, traditional weighted betweenness centrality does 
not seem to be a suitable choice in this case. A number of variants of the standard algorithm have been proposed to 
tackle the problem of shortest paths weighting (see e.g. Borgatti and Everett, 2006; Brandes, 2008). A common 
approach is to weight all shortest paths inversely proportional to their length, so the contribution of the shorter 
shortest paths to centrality index is increased, to the detriment of the longer ones. Then, the new indicator is defined 
as: 

 

 
In the present study, the shortest paths between every origin-destination   will be weighted similarly, according 

to the “importance” of said market, which is calculated as the total number of passengers that travelled on that market 
( ), divided by the total number of passengers in the sample ( ), as follows: 

 

 

 
This variation will allow us to identify major airline hubs (i.e. airports) by taking into account not only their central 
position within the network but also the importance of the markets they serve in terms of transit, providing an 
additional dimension to the betweenness centrality while the original properties of the index remains unchanged. As a 
result, top ranked airports are likely to play an important role within the US network by combining a central location 
with relevant market service. Airports lacking of either characteristic will be probably mid-ranked. Airports with similar 
traffic levels will be classified according to their centrality. 
 
Ellis (2009) presented a PROC IML module for the calculation of an unweighted betweenness centrality, given an 
input adjacency matrix, using the Brandes (2001) algorithm. In this paper, we extended the original module to include 

the weight matrix ( ) as an additional input parameter, as well as to update the pair-dependencies accumulation 

consequently, following the guidelines specified in Brandes (2008). Minor changes were made to the previous code in 
order to complete this task, as is shown below in an extract of the final part of the new module. Additionally, this 
approach will permit us to apply weighting to the betweenness centrality and compute the algorithm in time , as 

is corroborated in the following sections. 
 
 
... 

do while (%isempty(stack)^=1); /* while stack is not empty */ 

 %pop(stack,ww);  /* use double-w; this is distinct from */ 

     /* the w used for neighbors-to-v above */ 

 vv=loc(p[ww,]);  /* indices of vertices on ww's list of predecessors*/  

     /* use vv - this is a new v, too */ 

 do k=1 to ncol(vv); 

 /* the addition of weights is straightforward in this case */ 

 /* Q[s,t] represents the relative importance of the S-T market */ 

 delta[vv[k]]=delta[vv[k]]+(sigma[vv[k]]/sigma[ww])*(Q[s,ww]+delta[ww]); 

 end; 

 if ww ^= s then cb[ww]=cb[ww]+delta[ww]; 

 end; 

end; 

cb=cb/2;    /* undirected -> divide by 2 */  

cb=cb/max(cb);   /* and normalize */ 

return(cb);  

finish; 

  

                                                           

8
 It is widely known that traffic connecting through hubs supports high-frequency services in a hub and spoke model (Doganis, 

2001). 
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DATA PREPARATION
9
 

Data from the BTS Airline Origin and Destination Survey (DB1Market table) needs some preprocessing prior to the 
calculation of the betweenness centrality using the PROC IML module mentioned in the previous section. We need to 
obtain a graph representation of the database, that is, an adjacency matrix, and in the present case, a weight matrix 

as well. The adjacency matrix is a zero-one square matrix of order which indicates which vertices are 

connected. The weight matrix has a similar structure but having positive values representing the relevance of each 
market (total transit passengers). Both matrices should be symmetric if the connections are undirected, as in the 
current approach.   

The data set resulting from merging data of the selected quarters (4th 2010 to 3rd 2011) contains nearly 23 million 
records

10
 and 39 attributes. However, we just need two variables as the starting point to construct the adjacency and 

weight matrices for our air transport analysis: AirportGroup and Passengers. The AirportGroup attribute is a record of 
each point (i.e. airport) in the itinerary in which a passenger has stopped, and fits our purposes perfectly. 
Nonetheless, it comes in the form of a colon-separated concatenation of IATA codes (see Figure 1) which needs to 
be partitioned into individual origin-destination segments. DATA steps, SQL and IML procedures were employed for 
the most part of this process, and the adjacency matrix was obtained easily. An extract of the PROC IML that creates 
an array of segments out of the previously divided AirportGroup attribute (using SUBSTR functions) is listed at the 
end of the page. Regarding the weight matrix, we just need a PROC SQL to group the data by origin and destination, 
aggregating the number of passengers of each itinerary without taking into account the number of segments on every 
route. After some additional operations, e.g. transposing the data, the final matrices were generated. They 
characterize a 446x446 low-density

11
 (0.18) air transport network with vertices and edges representing airports and 

connectivity between airports, respectively. In the next section, we will put everything into practice measuring the 
degree of centrality of the US airports for the specified sample period. 

 

 

Figure 1. Sample data from the 2011's DB1BMarket table displaying the AirportGroup attribute 

 

*Creates a data set of individual origin-destination segments; 

proc iml; 

 use sasgf.mkt20113; 

 read all var _char_ into segmentMatrix; 

 read all var _num_ into itineraryLength; 

 nRow = NROW(segmentMatrix); 

 output = J(nRow*3,2,'aaa'); 

 count = 1; 

 do i=1 to nRow; 

  *1 stopover itinerary (2 O/D segments); 

  if itineraryLenght[i]=11 then; do; 

   output[count,1]=segmentMatrix[i,1];  

   output[count,2]=segmentMatrix[i,2];count = count+1; 

   output[count,1]=segmentMatrix[i,2];  

   output[count,2]=segmentMatrix[i,3];count = count+1; 

  end; 

...  

                                                           

9
 Refaat (2007) is an excellent reference for data preprocessing in SAS, as well as Delwiche and Slaughter (2008). 

10
 Point-to-point services were deleted from the sample since our study is focused on connecting traffic, resulting in 13 million 

observations after all.   
11

 The global density of a network indicates how saturated it is in terms of number of edges and vertices. It is given by the number of 

edges, , divided by  (Brandes, 2001). 
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RESULTS AND DISCUSSION 

Results for the normalized centrality index ( ) are shown in Table 1 and Figure 2. For comparative purposes, 

estimates of the standard betweenness centrality (topological index) are shown in Table 2. With a few exceptions, 
top-ranked airports combine large passenger traffic with a central location that allows them to appear in a significant 
number of shortest-path connections in high-density routes. As expected, the introduction of the market-based 
weighting has led to different results from previous implementations of betweenness centrality in airport networks. For 
example, while Anchorage (ANC) was ranked 2

nd
 worldwide by Guimerà et al. (2005), the same airport moves down 

to the 92th position in the present study. The explanation is very simple: ANC’s central location as sole gateway to 
Alaska’s airport network led to a very high degree of “topological” centrality. This privileged location, however, does 
not translate into significant hubbing activity because very low density of the O/D markets served through ANC (e.g. 
Juneau-Fort Lauderdale). From a purely topological perspective, Denver was the most centrally-located airport in our 
study. Nevertheless, once the market-based weights were applied, Atlanta (ATL) claimed the first position as the 
largest and indeed most central airport in the US.  

Table 1. Most central airports in the US air transportation network in 2010/2011.  

Rank  IATA State City Airport 

1 1,00000 ATL GA ATLANTA HARTSFIELD-JACKSON ATLANTA INTL 
2 0,97810 ORD IL CHICAGO CHICAGO O'HARE INTL 
3 0,93606 DFW TX DALLAS-FW DALLAS/FORT WORTH INTL 
4 0,92675 DEN CO DENVER DENVER INTL 
5 0,85406 LAX CA LOS ANGELES LOS ANGELES INTL 
6 0,79663 MSP MN MINNEAPOLIS MINNEAPOLIS-ST PAUL INTL/WOLD-CHAMBERL. 
7 0,77810 MCO FL ORLANDO ORLANDO INTL 
8 0,77628 DTW MI DETROIT DETROIT METROPOLITAN WAYNE COUNTY 
9 0,77385 LAS NV LAS VEGAS MC CARRAN INTL 

10 0,75765 IAD DC WASHINGTON WASHINGTON DULLES INTL 
11 0,72849 PHX AZ PHOENIX PHOENIX SKY HARBOR INTL 
12 0,70818 IAH TX HOUSTON GEORGE BUSH INTERCONTINENTAL/HOUSTON 
13 0,69749 BOS MA BOSTON GENERAL EDWARD LAWRENCE LOGAN INTL 
14 0,69610 DCA DC WASHINGTON RONALD REAGAN WASHINGTON NATIONAL 
15 0,67078 SEA WA SEATTLE SEATTLE-TACOMA INTL 
16 0,66501 CLT NC CHARLOTTE CHARLOTTE/DOUGLAS INTL 
17 0,66049 STL MO ST LOUIS LAMBERT-ST LOUIS INTL 
18 0,65586 BNA TN NASHVILLE NASHVILLE INTL 
19 0,65487 LGA NY NEW YORK LA GUARDIA 
20 0,64985 PHL PA PHILADELPHIA PHILADELPHIA INTL 
21 0,64946 BWI MD BALTIMORE BALTIMORE/WASHINGTON INTL THURGOOD MR. 
22 0,64281 EWR NJ NEWARK NEWARK LIBERTY INTL 
23 0,64253 TPA FL TAMPA TAMPA INTL 
24 0,62367 MCI MO KANSAS CITY KANSAS CITY INTL 
25 0,61461 SFO CA SAN FRANCISCO SAN FRANCISCO INTL 

 Source: Own elaboration. 

 
Table 3 shows the important differences between FAA’s top-25 implicit ranking (i.e. those airports labelled as “large 
hubs” based on passenger enplanements - see Figure 3) and the one based on weighted betweenness centrality. 
First, note that JFK, MIA, and SFO drop quite significantly, 28 and 37 places, respectively, from the original FAA 
ranking. This is clearly related to their status as international gateways, which cannot be properly characterized by 
the proposed indicator because of the absence of international passenger movements in the BTS database. Another 
significant drop is that of Honolulu Airport (HNL). Similarly to ANC, HNL is the major gateway to the Hawaiian airport 

system and thus it scores very high in the topological component of . However, given its isolated location, HNL 

does not participate in a large number of O/D markets between other airport pairs in the mainland, where the bulk of 
US traffic is located. Thus, even though it is one of the busiest airports in the US, HNL’s low ranking makes sense 
from a policy perspective. The reason is that any investment aimed at reducing congestion and delays at this airport 
will not lead to maximum social benefits because only a small portion of the network will be affected, which is exactly 
what the proposed centrality indicator aims to measure.  

The case of SLC, which dropped 6 places and moved out of the top-25, is particularly interesting because it shows 
the impact of airline networks on airport connectivity. Even though it scores high in the topological measurement, the 
introduction of market-based weights penalizes the airport for not being a “central” hub in Delta’s network, which is by 
far the dominant carrier at SLC (approx. 73% market share). Thus, passengers travelling on Delta will be less likely to 
transfer at SLC than in e.g. Atlanta. The impact of hub competition between different airlines is clearly seen in the 
case of IAH, largest hub of United/Continental, yet sharing importance with its second largest hub ORD. This network 
configuration leads to a significant loss of centrality to DFW, which concentrates a significant share of the operations 

of American Airlines. The remaining airports that have dropped in the  ranking are located in either coast and 
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thus, are evidently less central for their respective dominant carriers (LAX, CLT, EWR, PHL, FLL). The opposite 
applies to airports such as DTW or MSP which score very high in a topological sense. Finally, we can also identify a 
number of apparently non-central airports, such as BOS or IAD, that participate in a significant number of high density 
coast-to-coast markets. The resulting airport classification is proposed as a new reference to allocate funding for 
capacity investments as airports are now ranked according to their importance and influence over the rest of the 
network. 

Table 2. Top 25 central airports according to standard betweenness centrality in 2010. 

Rank  IATA State City Airport 

1 1,00000 DEN CO DENVER DENVER INTL 
2 0,73311 ANC AK ANCHORAGE TED STEVENS ANCHORAGE INTL 
3 0,59819 MSP MN MINNEAPOLIS MINNEAPOLIS-ST PAUL INTL/WOLD-CHAMBERL. 
4 0,37392 BOS MA BOSTON GENERAL EDWARD LAWRENCE LOGAN INTL 
5 0,33728 ATL GA ATLANTA HARTSFIELD - JACKSON ATLANTA INTL 
6 0,32180 LAS NV LAS VEGAS MC CARRAN INTL 
7 0,31153 SEA WA SEATTLE SEATTLE-TACOMA INTL 
8 0,28222 IAH TX HOUSTON GEORGE BUSH INTERCONTINENTAL/HOUSTON 
9 0,27379 DTW MI DETROIT DETROIT METROPOLITAN WAYNE COUNTY 

10 0,23330 LAX CA LOS ANGELES LOS ANGELES INTL 
11 0,23170 IAD DC WASHINGTON WASHINGTON DULLES INTL 
12 0,23038 DFW TX DALLAS-FW DALLAS/FORT WORTH INTL 
13 0,21537 SLC UT SALT LAKE CITY SALT LAKE CITY INTL 
14 0,21314 MCI MO KANSAS CITY KANSAS CITY INTL 
15 0,19984 STL MO ST LOUIS LAMBERT-ST LOUIS INTL 
16 0,19072 ORD IL CHICAGO CHICAGO O'HARE INTL 
17 0,18168 SFO CA SAN FRANCISCO SAN FRANCISCO INTL 
18 0,16859 CLE OH CLEVELAND CLEVELAND-HOPKINS INTL 
19 0,16121 ABQ NM ALBUQUERQUE ALBUQUERQUE INTL SUNPORT 
20 0,15632 MEM TN MEMPHIS MEMPHIS INTL 
21 0,14908 PHX AZ PHOENIX PHOENIX SKY HARBOR INTL 
22 0,12776 BWI MD BALTIMORE BALTIMORE/WASHINGTON INTL THURGOOD MR. 
23 0,12402 EWR NJ NEWARK NEWARK LIBERTY INTL 
24 0,11816 HNL HI HONOLULU HONOLULU INTL 
25 0,10848 ALB NY ALBANY ALBANY INTL 

Source:  Own elaboration. 
 
 

Table 3. FAA Large Hubs 2010 versus Most Central Airports 2010/2011. 

Rank FAA Rank  Change IATA State City Hub/Focus City for 

1 1 0 ATL GA ATLANTA DELTA, SOUTHWEST 
2 2 0 ORD IL CHICAGO UNITED, AMERICAN 
3 5 -2 LAX CA LOS ANGELES AMERICAN, SOUTHWEST, UNITED 
4 3 1 DFW TX DALLAS-FW AMERICAN 
5 4 1 DEN CO DENVER UNITED, SOUTHWEST, FRONTIER 
6 34 -28 JFK NY NEW YORK JETBLUE, DELTA, AMERICAN 
7 12 -5 IAH TX HOUSTON UNITED 
8 25 -17 SFO CA SAN FRANCISCO VIRGIN AMERICA, UNITED 
9 9 0 LAS NV LAS VEGAS SOUTHWEST 
10 11 -1 PHX AZ PHOENIX USAIRWAYS, SOUTHWEST 
11 16 -5 CLT NC CHARLOTTE USAIRWAYS 
12 49 -37 MIA FL MIAMI AMERICAN 
13 7 6 MCO FL ORLANDO SOUTHWEST, DELTA, JETBLUE 
14 22 -8 EWR NJ NEWARK UNITED 
15 8 7 DTW MI DETROIT DELTA 
16 6 10 MSP MN MINNEAPOLIS DELTA 
17 15 2 SEA WA SEATTLE ALASKA 
18 20 -2 PHL PA PHILADELPHIA USAIRWAYS 
19 13 6 BOS MA BOSTON JETBLUE 
20 19 1 LGA NY NEW YORK DELTA, AMERICAN 
21 10 11 IAD DC WASHINGTON UNITED 
22 21 1 BWI MD BALTIMORE SOUTHWEST  
23 40 -17 FLL FL FT LAUDERDALE SOUTHWEST, SPIRIT, JETBLUE 
24 30 -6 SLC UT SALT LAKE CITY DELTA 
25 98 -73 HNL HI HONOLULU HAWAIIAN 

Source: FAA (2011), Own elaboration. 
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Figure 2. Block US City Map of the most central airports in 2010/2011 using PROC GMAP 
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Figure 3. Large airport hubs in the US air transportation network (FAA, 2011)
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Figure 2 graphically depicts the results presented in Table 1. The PROC GMAP utility along with Annotate data sets 
were employed to represent the values of the betweenness centrality of the top 25 airports in a stylish manner. PROC 
GMAP is intended to produce two- or three-dimensional maps (e.g. block maps) that display the value of a variable 
between different areas.  In this work we altered the SAS’s US City map for our particular purposes in order to 
generate a block map representing the centrality index of each airport. A plain map without any additional indications 
would not be very informative so an Annotate data set containing airport IATA codes as labels was prepared to be 
used in the PROC GMAP. With the purpose of enhancing the visual discrimination between airports in the resulting 
map, the centrality values of the top 25 airports were normalized to the range [0.25,1] using the STDIZE procedure, 
which standardizes a set of variables using a variety of criteria following: 
 

 

 

Where  are the input and standardized value,  the minimum and maximum input values,  the 

minimum value for the standardized range and the width of the standardized range (i.e. ). Sample 

code of range normalization, labels and map generation is presented below. 

*Range Normalization to [0.25,1]; 

proc stdize data=sasgf.output2011 out=sasgf.output2011  

  method=RANGE add=0.25 mult=0.75; var col1; 

run; 

... 

*Top 25 airport labels and map; 

data label; 

    length function $ 8 text $ 20; 

    retain function 'label' xsys ysys hsys '3' size 2; 

    position='4'; color="RED"; style="SWISSX";  

 x=93; y=72; text='BOS'; output;  x=50; y=71; text='MCI'; output;    

    x=59; y=68; text='STL'; output; x=63; y=79; text='ORD'; output;  

 x=83; y=33; text='MCO'; output; x=77; y=63; text='CLT'; output;  

 x=94; y=59; text='LGA'; output; x=93; y=57; text='EWR'; output;  

 x=92; y=55; text='PHL'; output; x=91; y=52; text='BWI'; output;  

 x=90; y=50; text='IAD'; output; x=89; y=48; text='DCA'; output;  

 x=18; y=37; text='PHX'; output; x=71; y=72; text='DTW'; output;  

 x=16; y=62; text='LAS'; output; x=38; y=29; text='DFW'; output;     

 x=76; y=28; text='TPA'; output; x=70; y=31; text='ATL'; output;  

 x=63; y=29; text='BNA'; output; x=55; y=30; text='IAH'; output;  

 x=54; y=76; text='MSP'; output; x=13; y=80; text='SEA'; output; 

 x=3;  y=54; text='SFO'; output; x=7;  y=44; text='LAX'; output;  

    x=35; y=73; text='DEN'; output;  

run; 

 

goptions reset=all cback=lightgray; 

pattern value=mempty; 

title1 'Betweenness Centrality of U.S. Airports 2010/2011 - Top 25' 

height=10; 

footnote1 j=r "* Normalized to [0.25,1] for displaying purposes"; 

footnote2 j=r "University of Las Palmas de Gran Canaria, 2012"; 

 

proc gmap data=sasgf.airportsmap map=sasgf.airportsmap; 

 id city; 

 block bcent /blocksize=0.8 levels=6 area=state relzero annotate=label; 

run; 
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COMPUTATIONAL PERFORMANCE 

In this section, we present a simple performance simulation of the betweenness centrality to ensure that our variant 
does not affect the  running time of the original Brandes' algorithm for unweighted networks (Brandes, 2001). A 

set of 60 random networks (both adjacency and weight matrices) with 100 to 1500 vertices and {0.2, 0.4, 0.6, 0.8} 
densities were generated and tested. We used PROC IML procedures, encapsulated in a macro, to perform this task. 
Sample code of the macro and execution time results are shown below (Figure 4). It was easy to prove that execution 
time was on the order of , with a linear OLS regression model. The tests were performed on an Intel i7-920 

with 6 GB of main memory running SAS v9.2 (32 bits) on Windows 7 professional. This approximation has allowed us 
to take into account a significant feature of the field (the relevance of the routes in terms of transit) without worsening 

the algorithm time complexity (standard weighted betweenness is computed in ), with respect to the 
original approach. 

%macro benchmark(dens=,nver=); 

%put BENCHMARK STARTED FOR DENSITY = &dens AND NUMBER OF VERTICES = &nver; 

proc iml; 

 x = J(&nver,&nver,0); 

 y = J(&nver,&nver,0); 

 m = round((&dens*&nver*(&nver-1))/2); 

 *Adjacency matrix; 

 do k=1 to m; 

  hit=0; 

  do while (hit^=1); 

   i = ceil(rand("Uniform")*&nver); 

   j = ceil(rand("Uniform")*&nver); 

   if x[i,j]=0 & (i^=j) then; do;  *Add a link between a;  

    x[i,j]=1; x[j,i]=1;  *pair of nodes [i,j];   

    hit=1;end;end;end; 

 *Weight matrix; 

 seed = 12345;  

    w = j(&nver,&nver,seed);  

    y = uniform(w);  *Random; 

 do i=1 to &nver; 

  do j=1 to &nver; 

   if i=j then y[i,j]=0;end;end;    

 y=y/max(y);  *Normalized weights; 

 create benchadj from x; append from x; 

 create benchwgt from y; append from y; 

quit; 

... 

 

 

Figure 4. Benchmarking results for the betweenness centrality (D = network density) 
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SUMMARY 

The US Federal Aviation Administration uses a very simple airport typology (based on passenger enplanements) in 
order to set investment requirements and funding priorities while administering the Airport Improvement Program.  
Taking into account that one of the main objectives of the AIP is to reduce congestion and delays, the consideration 
of the airport’s hubbing potential would help in allocating said investments to the most important nodes in the 
network, leading to maximum social welfare. Thus, this paper aims at developing a new variation of the well-known 
betweenness centrality index in order to measure hub connectivity in the US airport network. Evidence from previous 
studies suggested that the purely topological measure of betweeness centrality was not an appropriate indicator of 
hubbing activity as it does not take into account the importance of the passenger markets served through the airport. 
This information was added to our indicator via market-based weights at a city-pair level. 

Results show significant improvement from previous studies. Airports with a high level of centrality in isolated regions 
(such as Alaska or Hawaii) are no longer considered central hubs in the US network. By comparing the FAA’s implicit 
ranking of top-25 “large hubs” with the one resulting from the modified betweeness centrality, several major 
differences can be observed. Many airports located in either coast, or otherwise serving as non-central hubs for their 
respective dominant carriers, dropped significantly in the ranking. The existence of multiple hub configurations and 
even hub competition between different airlines is also shown to reduce centrality. The resulting airport classification 
is proposed as a new reference to allocate funding for capacity investments as airports are now ranked according to 
their importance and influence over the rest of the network. 

A range of SAS technologies and procedures (e.g. DATA step, PROC IML, PROC SQL, PROC GMAP, SAS Macro) 
were employed to integrate and preprocess a set of airline ticketing databases, extend a previous SAS 
implementation of the betweenness centrality index to analyze the hubbing potential of the US airports, produce a 
stylish output using SAS map graphical utilities and finally test the computational performance of the new algorithm.  
This project demonstrates how SAS can be used not only as a set of built-in analytical solutions, but also as a 
suitable framework for the implementation of state-of-the-art algorithms from almost any field of study. 
 
Future research should study the evolution of these indicators during the last decades (data is publicly available 
online) in order to analyze the impact of airline decisions on airport hubbing and network connectivity. If airport 
rankings are not the preferred option to set funding priorities, the application of clustering techniques combining the 
topological and market-based measurements would be a suitable option to generate an alternative airport typology. 
All of these procedures can be easily implemented in SAS. 
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