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ABSTRACT 
In this paper, we set out to compare several techniques that can be used in the analysis of imbalanced credit scoring 

data sets. In a credit scoring context, imbalanced data sets frequently occur as the number of defaulting loans in a 

portfolio is usually much lower than the number of observations that do not default.  As well as using traditional 

classification techniques such as logistic regression, neural networks and decision trees, this paper will also explore 

the suitability of gradient boosting and memory based reasoning (k-NN) in SAS® Enterprise Miner™ for loan default 

prediction. Five real-world credit scoring data sets are used to build classifiers and test their performance. In our 

experiments, we progressively increase class imbalance in each of these data sets by randomly under-sampling the 

minority class of defaulters, so as to identify to what extent the predictive power of the respective techniques is 

adversely affected. The performance criterion chosen to measure this effect is the area under the receiver operating 

characteristic curve (AUC); Friedman's statistic and Nemenyi post-hoc tests are used to test for significance of AUC 

differences between techniques. 

 

The results from this empirical study indicate that the Gradient Boosting performs very well in a credit scoring context 

and are able to cope comparatively well with pronounced class imbalances in these data sets. We also found that, 

when faced with a large class imbalance, the decision tree algorithm, quadratic discriminant analysis and k-nearest 

neighbours perform significantly worse than the best performing classifiers. 

Keywords: credit scoring; imbalanced datasets; classification; benchmarking 
 

INTRODUCTION 

The aim of credit scoring is essentially to classify loan applicants into two classes, i.e. good payers (i.e., those who 

are likely to keep up with their repayments) and bad payers (i.e., those who are likely to default on their loans). In the 

current financial climate, and with the recent introduction of the Basel II Accord, financial institutions have even more 

incentives to select and implement the most appropriate credit scoring techniques for their credit portfolios. It is stated 

in Henley and Hand (1997) that companies could make significant future savings if an improvement of only a fraction 

of a percent could be made in the accuracy of the credit scoring techniques implemented. However, in the research 

literature, portfolios that can be considered as very low risk, or low default portfolios (LDPs), have had relatively little 

attention paid to them in particular with regards to which techniques are most appropriate for scoring them. The 

underlying problem with LDPs is that they contain a much smaller number of observations in the class of defaulters 

than in that of the good payers. A large class imbalance is therefore present which some techniques may not be able 

to successfully handle. Typical examples of low default portfolios include high-quality corporate borrowers, banks, 

sovereigns and some categories of specialised lending (Van Der Burgt, 2007) but in some countries even certain 

retail lending portfolios could turn out to have very low numbers of defaults compared to the majority class. In a recent 
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FSA publication regarding conservative estimation of low default portfolios, regulatory concerns were raised about 

whether firms can adequately asses the risk of LDPs (Benjamin, Cathcart and Ryan, 2006). 

A wide range of classification techniques have already been proposed in the credit scoring literature, including 

statistical techniques, such as linear discriminant analysis and logistic regression, and non-parametric models, such 

as k-nearest neighbour and decision trees. But it is currently unclear from the literature which technique is the most 

appropriate for improving discrimination for LDPs. TABLE 1 provides a selection of techniques currently applied in a 

credit scoring context, along with references showing some of their reported applications in the literature. 

 

Classification Techniques Application in a credit scoring context 

Logistic Regression (LOG) Arminger, Enache and Bonne  (1997),  

Baesens et al., (2003), Desai, Crook and Overstreet 

(1996), Steenackers and Goovaerts (1989), West 

(2000), Wiginton (1980) 

Decision Trees (C4.5, CART, etc.) Arminger, Enache, and Bonne (1997), Baesens et al., 

(2003), West (2000), Yobas, Crook and Ross (2000) 

Neural Networks (NN) Altman E (1994), Arminger, Enache, and Bonne (1997), 

Baesens et al., (2003), Desai, Crook and Overstreet 

(1996), West (2000), Yobas, Crook and Ross (2000) 

Linear Discriminant Analysis (LDA) Altman 1968), Baesens et al., (2003), Desai, Crook and 

Overstreet (1996), West (2000), Yobas, Crook and 

Ross (2000) 

Quadratic Discriminant Analysis (QDA) Altman (1968), Baesens et al., (2003) 

k-Nearest Neighbours (k-NN) Baesens et al., (2003), Chatterjee and Barcun (1970),  

West (2000) 

Support Vector Machines (SVM, LS-SVM, etc.) Baesens et al., (2003), Yang (2007) 

TABLE 1 – Credit scoring techniques and their applications 

 

Hence, the aim of this paper is to conduct a study of various classification techniques based on five real-life credit 

scoring data sets. These data sets will then have the size of their minority class of defaulters further reduced by 

decrements of 5% (from an original 70/30 good/bad split) to see how the performance of the various classification 

techniques is affected by increasing class imbalance.  

The five real-life credit scoring data sets used in this empirical research study include two data sets from Benelux 

(Belgium, Netherlands and Luxembourg) institutions, the German Credit and Australian Credit data sets which are 

publicly available at the UCI repository (http://kdd.ics.uci.edu/), and the fifth data set is a behavioural scoring data set, 

which was also obtained from a Benelux institution. 

The techniques that will be applied in this paper are logistic regression (LOG), linear and quadratic discriminant 

analysis (LDA, QDA), decision trees (C4.5), neural networks (NN), nearest-neighbour classifiers (k-NN10, k-NN100) 

and a gradient boosting algorithm. We are especially interested in the power and usefulness of the gradient boosting 

classifier which has yet to be thoroughly investigated in a credit scoring context.  

All techniques will be evaluated in terms of their Area Under the Receiver Operating Characteristic Curve (AUC). This 

is a measure of the discrimination power of a classifier without regard to class distribution or misclassification cost 

(Baesens et al., 2003).  
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To make statistical inferences from the observed difference in AUC, we followed the recommendations given in a 

recent article (Demšar, 2006) that looked at the problem of benchmarking classifiers on multiple data sets. The 

recommendations given were for a set of simple robust non-parametric tests for the statistical comparison of the 

classifiers (Demšar, 2006). The AUC measures will therefore be compared using Friedman's average rank test, and 

Nemenyi's post-hoc test will be employed to test the significance of the differences in rank between individual 

classifiers. Finally, a variant of Demšar's significance diagrams will be plotted to visualise their results. 

 
The organisation of this paper is as follows. Section 2 will begin by providing a literature review of the work that has 

been conducted on the topic of classification for imbalanced data sets. A brief explanation will then be given for the 

eight classification techniques to be used in the analysis of the data sets. Secondly, the empirical set up and criteria 

used for comparing the classification performance will be described. Thirdly, the results of our experiments are 

presented and discussed. Finally, conclusions will be drawn from the study and recommendations for further research 

work will be outlined. 

 

 

OVERVIEW OF TECHNIQUES 
This study aims to compare the performance of a wide range of classification techniques within a credit scoring 

context, thereby assessing to what extent they are affected by increasing class imbalance. For the purpose of this 

study, eight classifiers have been selected which provide a balance between well-established credit scoring 

techniques such as logistic regression, decision trees and neural networks, and newly developed machine learning 

techniques such as gradient boosting. A brief explanation of each of the techniques applied in this paper is presented 

below. 

 

 LOGISTIC REGRESSION 
For this paper, we will be focusing on the binary response of whether a creditor turns out to be a good or bad payer 

(i.e. non-defaulter vs. defaulter). For this binary response model, the response variable, , can take on one of two 

possible values; i.e.,  if the customer is a bad payer, 

y

0y  1y   if he/she is a good payer. Let us assume  is a 

column vector of 

x

M  explanatory variables and Pr(y 1| )   x  is the response probability to be modelled. The 

number of observations is denoted by . The logistic regression model then takes the form: N

 logit( ) log
1

T  


     
x  (1) 

where  is the intercept parameter and T  contains the variable coefficients (Hosmer and Stanley, 2000).  

 
(PROC DISCRIM) LINEAR AND QUADRATIC DISCRIMINANT ANALYSIS 

Discriminant analysis assigns an observation to the response, (y {0,1}y ), with the largest posterior probability; 

i.e., classify into class 0 if , or class 1 if the reverse is true. According to Bayes' theorem, these 

posterior probabilities are given by: 

  0 | 1|p px x
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Assuming now that the class-conditional distributions  | 0p y x ,  | 1p y x  are multivariate normal 

distributions with mean vector 0 , 1 , and covariance matrix 0 , 1 , respectively, the classification rule becomes: 

classify as  if the following is satisfied: 0y 

 
       

      

1 1

0 0 1 10 1

1 0

  

2 log 0 log 1 log log

T T

P y P y

    
    

      

 x x x x


 (3) 

 

Linear discriminant analysis is then obtained if the simplifying assumption is made that both covariance matrices are 

equal, i.e. , which has the effect of cancelling out the quadratic terms in the expression above. 0 1    

 

 NEURAL NETWORKS 
Neural networks (NN) are mathematical representations modelled on the functionality of the human brain (Bishop, 

1995). The added benefit of a NN is its flexibility in modelling virtually any non-linear association between input 

variables and target variable. Although various architectures have been proposed, our study focuses on probably the 

most widely used type of NN, i.e. the Multilayer Perceptron (MLP). A MLP is typically composed of an input layer 

(consisting of neurons for all input variables), a hidden layer (consisting of any number of hidden neurons), and an 

output layer (in our case, one neuron). Each neuron processes its inputs and transmits its output value to the neurons 

in the subsequent layer. Each such connection between neurons is assigned a weight during training. The output of 

hidden neuron  is computed by applying an activation functioni (1)f  (for example the logistic function) to the 

weighted inputs and its bias term : (1)
ib

  (4)    1 1

1

M

i i ij
j

h f b x


 
 

 
W j 

 

where W represents a weight matrix in which  denotes the weight connecting input ijW j  to hidden neuron i . For 

the analysis conducted in this paper, a binary prediction will be made; hence, for the activation function in the output 

layer, we will be using the logistic (sigmoid) activation function,    2 1

1
f

e
 x

x  to obtain a response probability: 

    2 2

1

hn

j j
j

f b


 
 

 
 v h   (5) 
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with  the number of hidden neurons and  the weight vector where  represents the weight connecting hidden 

neuron 

hn v jv

j  to the output neuron. 

During model estimation, the weights of the network are first randomly initialised and then iteratively adjusted so as to 

minimise an objective function, e.g. the sum of squared errors (possibly accompanied by a regularisation term to 

prevent over-fitting). This iterative procedure can be based on simple gradient descent learning or more sophisticated 

optimisation methods such as Levenberg-Marquardt or Quasi-Newton. The number of hidden neurons can be 

determined through a grid search based on validation set performance. 

 

 DECISION TREES 
A decision tree consists of internal nodes that specify tests on individual input variables or attributes that split the data 

into smaller subsets, and a series of leaf nodes assigning a class to each of the observations in the resulting 

segments. For our study, we chose the popular decision tree classifier C4.5, which builds decision trees using the 

concept of information entropy (Quinlan, 1993). The entropy of a sample S of classified observations is given by: 

 1 2 1 0 2 0( ) log ( ) log ( ),Entropy S p p p p    (6) 

 

where 1 0( )p p  are the proportions of the class values 1 (0) in the sample S, respectively. C4.5 examines the 

normalised information gain (entropy difference) that results from choosing an attribute for splitting the data. The 

attribute with the highest normalised information gain is the one used to make the decision. The algorithm then recurs 

on the smaller subsets. 

 

 K-NN (MEMORY BASED REASONING)  
The k-nearest neighbours algorithm (k-NN) classifies a data point by taking a majority vote of its k most similar data 

points (Hastie, Tibshirani and Friedman, 2001). The similarity measure used in this paper is the Euclidean distance 

between the two points: 

    
1/ 2

( , ) .
T

i j i j i j i jd        
x x x x x x x x  (7) 

 

 GRADIENT BOOSTING 
Gradient boosting (Friedman, 2001, Friedman, 2002) is an ensemble algorithm that improves the accuracy of a 

predictive function through incremental minimisation of the error term. After the initial base learner (most commonly a 

tree) is grown, each tree in the series is fit to the so-called “pseudo residuals” of the prediction from the earlier trees 

with the purpose of reducing the error. This leads to the following model: 

    (8)   0 1 1 2 2( ) ( ) ( )n nF G T T T    x x x    x
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where  equals the first value for the series,  are the trees fitted to the pseudo-residuals, and 0G 1, , nT T i  are 

coefficients for the respective tree nodes computed by the Gradient Boosting algorithm. A more detailed explanation 

of gradient boosting can be found in Friedman, 2001 and Friedman, 2002. The Gradient Boosting classifier requires 

tuning of the number of iterations and the maximum branch size used in the splitting rule.  

 

EMPIRICAL SET-UP AND DATA 

The characteristics of the data sets used in evaluating the performance of the aforementioned classification 

techniques are given below in TABLE 2. The Bene1 and Bene2 data sets were obtained from two major financial 

institutions in the Benelux region. For these two data sets, a bad customer was defined as someone who had missed 

three consecutive months of payments. The German credit data set and the Australian Credit data set are publicly 

available at the UCI repository (http://kdd.ics.uci.edu/). The Behav data set was also acquired from a Benelux 

institution. As all the data sets used have a reasonable number of observations they will each be split into a training 

(two thirds) and a test set (one third). This test set will remain unchanged throughout the analysis of the techniques. 

 

 Inputs Data set size Training set size Test set size Goods/Bads 

Bene1 27 2974 1984 990 70/30* 

Bene2 27 7190 4795 2395 70/30 

Austr 14 547 366 181 70/30* 

Behav 60 1197 799 398 70/30* 

Germ 20 1000 668 332 70/30 

TABLE 2: Characteristics of credit scoring data sets 

 

* Altered data set class distribution, Bene1 original distribution was 66.6% good observations, 33.3% bad 

observations, Austr original distribution was 55.5% good observations, 44.5% bad observations and the Behav 

original distribution was 80% good observations, 20% bad observations. 

 

RE-SAMPLING SETUP AND PERFORMANCE METRICS 
In order for the percentage reduction in the bad observations, in each data set, to be relatively compared, the Bene1 

set, Australian credit and the Behavioural Scoring set have first been altered to give a 70/30 class distribution. This 

was done by either under-sampling the bad observations (from a total of 1041 bad observations in the Bene1 data 

set, only 892 observations have been used; and from a total of 307 bad observations in the Australian credit data set, 

only 164 observations have been used) or under-sampling the good observations in the behavioural scoring data set, 

(from a total of 1436 good observations, only 838 observations have been used). 

 

For this empirical study, the class of defaulters in each of the training data sets was artificially reduced, by a factor of 

5% up to 95% then by 2.5% and 1%, so as to create a larger difference in class distribution. As a result of this 

reduction, eight data sets were created for each of the five original data sets. The percentage splits created were 

75%, 80%, 85%, 90%, 95%, 97.5%, 99% good observations. For this empirical study our focus is on the performance 

of classification techniques on data sets with a large class imbalance. Therefore detailed results will only be presented 
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for the data set with the original 70/30 split, as a benchmark, and data sets with 85%, 90% and 99% splits. By doing 

so, it is possible to identify whether techniques are adversely affected in the prediction of the target variable when 

there is a substantially lower number of observations in one of the classes. The performance criterion chosen to 

measure this effect is the area under the receiver operator characteristic curve (AUC) statistic as proposed by 

Baesens et al., (2003). 

The receiver operating characteristic curve (ROC) is a two-dimensional graphical illustration of the trade-off between 

the true positive rate (sensitivity) and false positive rate (1-specificity). The ROC curve illustrates the behaviour of a 

classifier without having to take into consideration the class distribution or misclassification cost. In order to compare 

the ROC curves of different classifiers, the area under the receiver operating characteristic curve (AUC) must be 

computed. The AUC statistic is similar to the Gini coefficient which is equal to 2 ( 0.5)AUC  . An example of an 

ROC curve is depicted in FIGURE 1: 

 
FIGURE 1: Example ROC curve 

 

The diagonal line represents the trade-off between the sensitivity and (1-specificity) for a random model, and has an 

AUC of 0.5. For a well performing classifier the ROC curve needs to be as far to the top left-hand corner as possible. 

In the example shown in Figure 1, the classifier that performs the best is the 1ROC  curve. 

 

PARAMETER TUNING AND INPUT SELECTION 
The linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and logistic regression (LOG) 

classification techniques require no parameter tuning. The LOG model was built in SAS using proc logistic and using 

a stepwise variable selection method. Both the LDA and QDA techniques were run in SAS using proc discrim. Before 

all the techniques were run, dummy variables were created for the categorical variables. The AUC statistic was 

computed using the ROC macro by De Long et al, 1988, which is available from the SAS website 

(http://support.sas.com/kb/25/017.html).  

The NN classifiers were trained after selecting the best performing number of hidden neurons based on a validation 

set. The neural networks were trained in SAS® Enterprise Miner™ using a logistic hidden and target layer activation 

function. 
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The confidence level for the pruning strategy of C4.5 was varied from 0.01 to 0.5, and the most appropriate value was 

selected for each data set based on validation set performance. The k-Nearest Neighbours technique was applied for 

both k=10 and k=100. For the Gradient Boosting classifier a partitioning algorithm was used as proposed by 

Friedman, 2001. The number of iterations was varied in the range [10, 50, 100, 250, 500, 1000], with a maximum 

branch size of two selected for the splitting rule. 

 

STATISTICAL COMPARISON OF CLASSIFIERS 
We used Friedman's test (Friedman, 1940) to compare the AUCs of the different classifiers. The Friedman test 

statistic is based on the average ranked (AR) performances of the classification techniques on each data set, and is 

calculated as follows: 

2
2 2

1

12 ( 1)

( 1) 4

K

F j
j

D K K
AR

K K 

 
    

  where 
1

1 D
j

j i
i

AR r
D 

   (9) 

 

In (13), D denotes the number of data sets used in the study, K is the total number of classifiers and  is the rank of 

classifier j on data set i. 

j
ir

2
F  is distributed according to the Chi-square distribution with  degrees of freedom. If 

the value of 

1K 

2
F  is large enough, then the null hypothesis that there is no difference between the techniques can be 

rejected. The Friedman statistic is well suited for this type of data analysis as it is less susceptible to outliers 

(Friedman, 1940). The post-hoc Nemenyi test (Nemenyi, 1963) is applied to report any significant differences between 

individual classifiers. The Nemenyi post-hoc test states that the performances of two or more classifiers are 

significantly different if their average ranks differ by at least the critical difference (CD), given by: 

, ,

( 1

12K

K K
CD q

D

)
   (10) 

 

In this formula, the value , ,Kq  is based on the studentized range statistic. 

Code used to calculate Nemenyi critical difference, where K and D can be varied depending on the number of 

classifiers and datasets respectively: 

 

DATA NEMEN I_CDY ; 
   DO K = 2 to 10; 
       D = 5; 
  Q95 = PROBMC('RANGE', ., 0.95, ., K)/SQRT(2); 
     Q90 = PROBMC('RANGE', ., 0.90, ., K)/SQRT(2); 
  CDN22Q95 = Q95*SQRT(K*(K+1)/(6*D)); 
  CDN22Q90 = Q90*SQRT(K*(K+1)/(6*D)); 
  OUTPUT; 
   END; 
RUN; 

 

Finally, the results from Friedman's statistic and the Nemenyi post-hoc tests are displayed using a modified version of 

Demšar's (Demšar, 2006) significance diagrams (Lessmann et al., 2008). These diagrams display the ranked 
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performances of the classification techniques along with the critical difference to clearly show any techniques which 

are significantly different to the best performing classifiers. 

 

RESULTS 

The table on the following page (TABLE 3) reports the AUCs of all eight classifiers on the five credit scoring data sets 

at varying degrees of class imbalance. For each level of imbalance, the Friedman test statistic and corresponding p-

value is shown. As these were all significant (p<0.005) a post-hoc Nemenyi test was then applied to each class 

distribution. The technique achieving the highest AUC on each data set is underlined as well as the overall highest 

ranked technique. TABLE 3 shows that the gradient boosting algorithm has the highest Friedman score (average rank 

(AR)) on two of the five different percentage class splits. However at the extreme class split (99% good, 1% bad) 

decision trees, gradient boosting and k-NN100 all provide comparable average rankings across the five data sets.  

 
 

9

)

In the majority of the class splits, the AR of the QDA classifier are statistically worse than the AR of the Gradient 

Boosting classifier at the 5% critical difference level ( 0.05  , as shown in the significance diagrams included 

next. Note that, even though the differences between the classifiers are small, it is important to note that in a credit 

scoring context, an increase in the discrimination ability of even a fraction of a percent may translate into significant 

future savings (Henley and Hand, 1997). 

 

The following significance diagrams display the AUC performance ranks of the classifiers, along with Nemenyi's 

critical difference (CD) tail. The CD value for all the following diagrams is equal to 4.70. Each diagram shows the 

classification techniques listed in ascending order of ranked performance on the y-axis, and the classifier’s mean rank 

across all five data sets displayed on the x-axis. Two vertical dashed lines have been inserted to clearly identify the 

end of the best performing classifier’s tail and the start of the next significantly different classifier.  

The first significance diagram (see FIGURE 2) displays the average rank of the classifiers at the original class 

distribution of a 70% good, 30% bad split:   

0 2 4 6 8 10 12 14

LDA

Gradient Boosting

LOG

NN

k-NN100

k-NN10

QDA

Decision Trees

Classifiers' mean ranks across five datasets

 
FIGURE 2: AR comparison at a 70/30 percentage split of good/bad observations 
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 30% bad 15% bad 10% bad 

 Friedman test statistic = 31.86 
(p<0.005) 

Friedman test statistic = 29.23 
(p<0.005) 

Friedman test statistic = 26.37  
 (p<0.005) 

 Bene1 Bene2 Germ Aus Behav AR Bene1 Bene2 Germ Aus Behav AR Bene1 Bene2 Germ Aus Behav AR 
LOG 79.6 78.7 76.7 90.6 63.4 3.6 79.4 78.0 74.0 91.8 67.8 3.4 78.1 78.8 76.6 50.0 65.4 3.2 

Decision 
Trees 

71.4 71.0 71.2 91.8 61.9 7.1 69.7 60.9 65.2 91.6 61.6 6.8 64.7 64.0 64.1 91.9 50.3 7.2 

NN 78.6 78.1 72.7 92.1 72.1 3.9 75.5 77.6 70.1 92.1 70.0 4.3 75.1 76.4 72.4 89.7 68.8 4.4 

Gradient 
Boosting 

78.2 81.2 77.2 94.9 72.1 2.3 79.8 80.3 75.0 94.8 70.7 1.6 78.0 80.2 75.3 93.8 63.3 2.4 

LDA 79.2 78.0 79.1 94.4 75.6 2.2 78.6 77.4 76.0 93.8 76.6 2.4 77.9 77.3 74.2 94.5 70.1 2.4 

QDA 75.4 73.7 71.8 85.5 63.0 6.5 68.4 72.5 59.7 65.4 51.4 7.6 67.2 70.8 52.8 84.9 50.7 7 

k-NN10 76.2 71.0 75.0 92.8 61.8 5.7 75.5 68.1 71.7 90.3 58.7 6.3 70.4 64.4 68.8 92.5 56.3 5.6 

k-NN100 75.4 73.9 79.3 93.0 56.0 4.7 75.8 73.6 78.1 92.6 62.9 3.6 75.3 72.9 78.5 92.3 61.7 3.8 

                  

 5% bad 2.5% bad 1% bad 

 Friedman test statistic = 26.29  
(p<0.005) 

Friedman test statistic = 27.43  
(p<0.005) 

Friedman test statistic = 30.86  
(p<0.005) 

 Bene1 Bene2 Germ Aus Behav AR Bene1 Bene2 Germ Aus Behav AR Bene1 Bene2 Germ Aus Behav AR 
LOG 75.0 75.4 75.7 50.0 50.0 4.6 72.7 73.9 55.1 50.0 50.0 5.4 50.0 64.7 50.0 50.0 50.0 6.3 

Decision 
Trees 

58.6 64.9 56.5 75.4 55.0 6.4 65.8 67.9 61.4 58.7 53.9 5.8 50.0 55.5 64.2 50.0 50.0 5.6 

NN 68.4 70.7 68.3 89.4 64.4 4.2 71.2 70.2 59.2 70.0 62.3 3.8 50.0 62.5 54.2 86.7 54.0 4.5 

Gradient 
Boosting 

70.8 78.0 76.6 93.1 52.7 2.8 68.1 74.7 71.4 88.3 55.6 2.4 58.1 69.1 59.4 74.5 51.0 2.7 

LDA 74.1 76.1 73.8 93.5 63.5 2.4 75.7 72.2 62.6 81.8 60.6 2.4 50.2 69.0 58.3 86.8 54.6 2.6 

QDA 63.8 72.0 50.0 59.7 50.5 6.6 66.5 65.3 50.0 51.6 50.5 7 50.0 50.0 50.0 52.0 50.7 6.6 

k-NN10 65.2 62.0 67.1 88.6 53.5 6 59.0 56.3 59.3 72.8 54.7 6 52.5 52.3 54.8 67.2 50.0 5.4 

k-NN100 74.7 71.3 75.8 92.3 59.8 3 70.6 68.8 69.3 87.8 58.3 3.2 67.2 63.2 63.6 90.0 51.0 2.3 

TABLE 3 – Area under the receiver operating characteristic curve (AUC) results on test set data sets 
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At this original 70/30 percentage split, the LDA is the best performing classification technique with an AR 

value of 2.2. This diagram shows that the decision trees technique performs significantly worse than the best 

performing classifier with a values of 7.1. 

 

At a 90% good, 10% bad class split the significance diagram shown in FIGURE 3 indicates that the C4.5 

and QDA algorithms are significantly worse than the gradient boosting and LDA classifiers. 

0 2 4 6 8 10 12 14

Gradient Boosting
LDA
LOG

k-NN100
NN

k-NN10
QDA

Decision Trees

Classifiers' mean ranks across five datasets

FIGURE 3: AR comparison at a 90/10 percentage split of good/bad observations 

 

The final split, displaying a 99% good, 1% bad class split, indicates that, at the most extreme class 

distribution analysed, no classification techniques are significantly worse than the best performing technique 

(k-NN100). 
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FIGURE 4: AR comparison at a 99/1 percentage split of good/bad observations 

 

In summary, when considering the AUC performance measures, it can be concluded that the gradient 

boosting classifier yields a very good performance at extreme levels of class imbalance. However, the 

simpler, linear classification techniques such as LDA and LOG also give a relatively good performance, 

which is not significantly different from that of the gradient boosting classifier. This finding seems to confirm 

the suggestion made in Baesens et al., (2003) that most credit scoring data sets are only weakly non-linear. 

However, techniques such as QDA and decision trees perform significantly worse than the best performing 

classifiers at most percentage reduction. The majority of classification techniques yielded classification 

performances that are quite competitive with each other.  
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CONCLUSIONS 

In this comparative study we have looked at a number of credit scoring techniques, and studied their 

performance over various class distributions in five real-life credit data sets. Two techniques that have yet to 

be fully researched in the context of credit scoring, i.e. Gradient Boosting, were also chosen to give a 

broader review of the techniques available. The classification power of these techniques was assessed 

based on the area under the receiver operating characteristic curve (AUC). Friedman's test and Nemenyi's 

post-hoc tests were then applied to determine whether the differences between the average ranked 

performances of the AUCs were statistically significant. Finally, these significance results were visualised 

using significance diagrams for each of the various class distributions analysed. 

The results of these experiments show that the Gradient Boosting classifier performed well in dealing with 

samples where a large class imbalance was present. It does appear that in extreme cases the ability of 

gradient boosting to concentrate on ‘local’ features in the imbalanced data is useful. The most commonly 

used credit scoring techniques, linear discriminant analysis (LDA) and logistic regression (LOG), gave 

results that were reasonably competitive with the more complex techniques and this competitive 

performance continued even when the samples became much more imbalanced. This would suggest that 

the currently most popular approaches are fairly robust to imbalanced class sizes. On the other hand, 

techniques such as QDA and C4.5 were significantly worse than the best performing classifiers.  

Further work that could be conducted, as a result of these findings, would be to firstly consider a stacking 

approach to classification through the combination of multiple techniques. Such an approach would allow a 

meta-learner to pick the best model to classify an observation. Secondly, another interesting extension to 

the research would be to apply these techniques on much larger data sets which display a wider variety of 

class distributions. It would also be of interest to look into the effect of not only the percentage class 

distribution but also the effect of the actual number of observations in a data set. 

Finally, as stated in the literature review section of this paper, there have been several approaches already 

researched in the area of oversampling techniques to deal with large class imbalances. Further research 

into this and their effect on credit scoring model performance would be beneficial.  
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