
1

Paper 117-2012

Reordering Values within Observations: Beyond CALL SORTC(N)

Adish Jain and Kate Bachtell, NORC at the University of Chicago, Chicago, Illinois, USA

ABSTRACT

PROC SORT orders SAS
®

dataset observations by the values of one or more variables. CALL SORTC/N are new

CALL routines in SAS 9.2 and above that reorder values within each observation (in ascending order only) for the
entire dataset. In short, PROC SORT orders dataset observations vertically, while CALL SORTC(N) orders values
horizontally within the observation. Although these new routines can be useful in some situations, this paper deals
with a more complex data management task: sorting multiple groups of variables horizontally in descending order. In
our case, these groups of variables are items for every child living in a household, which also must be linked back to
household data using the child’s age and position in the household.

INTRODUCTION

Making Connections is a survey conducted in 10 low-income neighborhoods across the U.S. It is part of a larger
initiative funded by the Annie E. Casey Foundation designed to assess the needs of families and children and to
foster supportive communities that meet those needs. NORC interviewers conducted interviews by telephone and in
person using paper questionnaires. For every case, the interviewer used at least two questionnaires to gather data:

1. A “Roster Booklet,” in which demographic information about each household member is enumerated in
descending age order.

2. A main questionnaire, which includes survey questions about the neighborhood, mobility, services and
amenities, income and assets, child well-being, and other topics.

If there are children under age 18 living in the household (HH), the interviewer also asked a series of questions about
each child. Two different versions were used: one for children ages 0-6 (the “younger child booklet”) and one for
children ages 7-17 (the “older child booklet”). Interviewers were trained to administer these questionnaires in the
same order in which the children appear in the child roster, from oldest to youngest. However, the paper-and-pencil
administration of the survey made it difficult to ensure that the protocol described above was always carried out as
requested. When the child-specific data were not collected in the desired order, we needed to rearrange the values in
the analytic data sets so that the child data fell in the correct order by age.

This paper’s focus is on the resequencing of data collected for household members under age 18 in the child roster
and the related data items that are collected in the child booklet(s). We also describe how we connect related data in
the child booklets by appropriately moving around the values in the group of related variables in the child booklets.

The data from these child booklets are spread across 30 loops. A loop is defined as a set of questions asked about
each child living in the household. the computer-assisted data entry (CADE) instrument was programmed to allow the
same set of questions to be asked regarding up to 15 children across 30 sets of looped variables) – 15 for the older
child data (also referred to as “T loops 1-15”) and 15 for the younger child data (also referred to as “C loops 1-15”).
The CADE clerk begins entering data from a given booklet after selecting either the 7-17 path or the 0-6 path. A
given case cannot have data in the corresponding loop for both an older child and a younger child. If the older child
variables are populated in the first loop, for example, the younger child variables must all be “empty” in the respective
first loop, or legitimately skipped.

We also need to deal with what we will call “kid administrative data” that begins each younger/older child booklet
loop. These data are copied directly from the child roster and serves to prompt the data entry clerk to key the
booklets in a certain order (described above). While the booklet data is split into 30 loops (15 for younger children
and 15 for older children), there are only 15 loops of kid administrative data.

Data ManagementSAS Global Forum 2012

Reordering Values within Observations: Beyond CALL SORTC(N), Continued

2

PROBLEM BY EXAMPLE

Here is an example based on real data in which the children were enumerated out of proper descending age order.
The youngest child, Jonah, should have been listed last, rather than first.

Child Roster

R2. Row R11. Please tell me the
first name of each
person under age 18
living in this household
starting with the oldest
child.

R12. Is
NAME male
or female?

R13. What was
[NAME’s] age at
(his/her) last
birthday?

IF CHILD IS 14 OR OLDER
ASK:

R14. Is this person
employed or not employed?

EMPLOYED = 1
NOT EMPLOYED = 2

1 Jonah M F 1

2 Kyle M F 9

3 Katie M F 8

Figure 1. Improper Enumeration of Children on the Child Roster

Untreated, the Child Roster data would appear as follows in the “raw” data:

Child Roster Loop
1

Child Roster Loop
2

Child Roster Loop
3

Child Roster Loop
4…

Data from Jonah’s
row

Data from Kyle’s
row

Data from Katie’s
row

(Empty)…

Figure 2. Untreated Sequence of Child Roster Data

Continuing this example, the kid administrative and older/younger child booklet data would appear as follows in the
raw data:

Kid Admin.
Loop 1

Older
Child Loop

1

Younger
Child Loop

1

Kid Admin.
Loop 2

Older
Child Loop

2

Younger
Child Loop

2

Kid Admin.
Loop 3

Older
Child Loop

3
 a
…

Younger
Child loop

3
a
…

Copy of
Jonah’s Child
Roster Data

(empty)
Data from
Jonah’s
booklet

Copy of
Kyle’s Child
Roster Data

Data from
Kyle’s
booklet

(empty)
Copy of

Katie’s Child
Roster Data

Data from
Katie’s
booklet

(empty)

a
There are actually 15 loops each of younger child and older child data. Only the first three are shown here for
simplicity. Loops with no data are not shown.

Figure 3. Untreated Sequence of Child Booklet Data

Data ManagementSAS Global Forum 2012

Reordering Values within Observations: Beyond CALL SORTC(N), Continued

3

GOALS

We want to create a “clean” data set that looks like this:

Child
Roster
Loop 1

Child
Roster
Loop 2

Child
Roster
Loop
3…

Kid
Admin.
Loop 1

Older
Child

Loop 1

Younge
r Child
Loop 1

Kid
Admin.
Loop 2

Older
Child

Loop 2

Younge
r Child
Loop 2

Kid
Admin.
Loop 3

Older
Child
Loop
3a…

Younge
r Child
Loop
3a…

Oldest
child

(Kyle)

2nd
oldest
child

(Katie)

3rd
oldest
child…

(Jonah)

Copy of
oldest
child’s
Child

Roster
data

(Kyle)

Oldest
child’s
Booklet

(Kyle)

(empty)
b

Copy of 2nd
oldest
child’s
Child

Roster
data

(Katie)

2nd
Oldest
child’s
Booklet
(Katie)

(empty)b

Copy of 3rd
oldest
child’s
Child

Roster
data

(Jonah)

(empty)

b

3rd oldest
child’s

Booklet…
(Jonah)

a
There are actually 15 loops each of younger child and older child data. Only the first three are shown here for
simplicity. Loops with no data are not shown.

b
Values will only be populated in older or younger child loop 1. Similarly, values will only be populated in the older or
younger child loop 2 and in older or younger child loop 3.

Figure 4. Desired Sequence of Child Roster, Kid Administrative, and Child Booklet Data

Figure 5 below continues the example from above and depicts the desired reordering of data in each of the four data
sections. Variable names written in bold text would contain valid values in the data, while names appearing in regular
font would be “empty”, or legitimately skipped. The rows before the arrows represent the raw data and the rows after
the arrows represent the “clean” (post-ordering) data.

1. Here is what would need to happen for the Child Roster data:

Child Roster Loop 1 (Jonah) Child Roster Loop 2 (Kyle) Child Roster Loop 3 (Katie)

Child Roster Loop 1 (Kyle) Child Roster Loop 2 (Katie) Child Roster Loop 3 (Jonah)

2. Here is what would need to happen for the Kid Administrative data:

Kid Admin Loop 1 (Jonah) Kid Administrative Loop 2 (Kyle) Kid Administrative Loop 3 (Katie)

Kid Administrative Loop 1 (Kyle) Kid Administrative Loop 2 (Katie) Kid Admin Loop 3 (Jonah)

3. Here is what would need to happen for the Older child Booklet data:

Older Child Booklet Loop 1 Older Child Booklet Loop 2 (Kyle) Older child Booklet Loop 3 (Katie)

Older Child Booklet Loop 1 (Kyle) Older Child Booklet Loop 2 (Katie) Older Child Booklet Loop 3

4. Here is what would need to happen in the Younger Child Booklet data:

Younger Child Booklet Loop 1 (Jonah) Younger Child Booklet Loop 2 Younger Child Booklet Loop 3

Younger Child Booklet Loop 1 Younger Child Booklet Loop 2 Younger Child Booklet Loop 3 (Jonah)

Figure 5. Reordering to Achieve Desired Sequence of Child Roster, Kid Administrative, and Child Booklet Data in
Clean Data

The values from the first younger child booklet loop should be moved to populate the 3rd loop of the younger child
booklet data. This will leave null values in the first and second loops of the younger child booklet.

Data ManagementSAS Global Forum 2012

Reordering Values within Observations: Beyond CALL SORTC(N), Continued

4

SOLUTION

The solution we devised is broken into four main steps: 1) divide the entire dataset into four smaller datasets, 2)
independently process each of the four smaller datasets, 3) merge the independently processed smaller datasets,
and 4) generate a quality control report to compare the original and final dataset. These steps are described in detail
below.

1. Divide the entire dataset into four smaller datasets:

o Child Roster
o Younger Child Booklet
o Older Child Booklet
o Kid Administrative

This step involves keeping the variables of interest in the respective section by using the KEEP statement.
The outcome of this step is four smaller datasets. Each one has the same number of records as the original
one, but with variables split into the four new datasets. Each dataset includes the original unique case
identifier, along with other variables. Age is present in all these datasets, as that will be the driver variable
for the reordering process.

ORIGINAL MASTER DATASET

Child Roster

(WIDE DATASET)
Younger Child booklet

(WIDE DATASET)
Older child booklet

(WIDE DATASET)
Kids Admin

(WIDE DATASET)

C
it

y
 1

…
..

N
a

m
e

 2

A
g

e
 2

C
it

y
 2

…
..

N
a

m
e

 3

A
g

e
 3

C
it

y
 3

…
..

K
 A

d
m

in
 1

…
.

Y
o

u
n

g
e

r
1

…
..

O
ld

e
r

1

…
.

K
 A

d
m

in
 2

…
.

Y
o

u
n

g
e

r
2

…
..

O
ld

e
r

2

…
.

K
 A

d
m

in
 3

…
.

Y
o

u
n

g
e

r
3

…
..

O
ld

e
r

3

…
.

C
H
I

…
..

K
Y
L
E 9

N
Y
C

…
..

K
A
T
I
E 8

S
F
O

…
.. 1 1

L
O
O
P 9 9

B
R
O
N
X 8 8

B
R
I
D
G
E

Gets divided into:

City 1 ….. Name 2 Age 2 City 2 ….. Name 3 Age 3 City 3 …..

CHI ….. KYLE 9 NYC ….. KATIE 8 SFO …..

K Admin 2 …. K Admin 3 ….

9

8

Younger 1 ….. Younger 2 ….. Younger 3 …..

1 LOOP

Older 1 …. Older 2 …. Older 3 ….

9 BRONX 8 BRIDGE

Figure 6. Division of Dataset into Four Smaller Datasets

Data ManagementSAS Global Forum 2012

Reordering Values within Observations: Beyond CALL SORTC(N), Continued

5

2. Independently process each of the four datasets produced in Step 1. This process involves the actual horizontal

sorting of values in each of the datasets. Extensive use of the SAS macro facility and data step was involved, as

the process is very repeatable for group of variables and datasets. However, rather than focusing on showing the

technical details of macro use, this step describes how the problem was solved at the process level. This step is

explained below in sub-steps by carrying over the example we used in the previous section. Please note that

only one observation from the roster is shown below, although in the actual dataset there were thousands of

observations.

WIDE DATASET

LONG
DATA
SET
FOR

VAR1

LONG
DATA
SET
FOR

VAR2

LONG
DATA
SET
FOR

VAR3

LONG
DATA
SET
FOR

VAR4

N...DATASETS

LONG
DATASET
FOR ALL

VARS

LONG
DATASET

WITH
VARIABLE

NAMES

LONG
DATASET

WITH
VALUES

PROC
SORT

LONG DATASET
WITH ALL VALUES

AND VARIABLE
NAMES

WIDE DATASET
FOR VAR1

Multiple instances of
PROC TRANSPOSE

Multiple instances of
PROC TRANSPOSE

MERGE

MERGE

WIDE DATASET
FOR VAR2

WIDE DATASET
FOR VAR3

WIDE DATASET
FOR VAR4

N...DATASETS

MERGE

WIDE DATASET WITH
ALL VARS

IS THIS
YOUNGER CHILD

DATASET

IS THIS
YOUNGER CHILD

DATASET

DELETE THE
ROWS FROM
THE BOTTOM

OF THE
DATASET

DELETE THE
ROWS FROM
THE TOP OF

THE DATASET

NO
NO

YES YES

Figure 7. Independent Processing of Four Smaller Datasets

Data ManagementSAS Global Forum 2012

Reordering Values within Observations: Beyond CALL SORTC(N), Continued

6

2.1. Using PROC SQL, create one macro variable that contains all the loop variables, separated by spaces, for

a specific variable. For example, Loop_age1-loop_age15 is stored in one age macro variable, while

loop_name1-loop_name15 is stored in a different macro variable.

2.2. Transpose each of these variables using PROC TRANSPOSE by the unique case identifier to create a long

dataset. We are going from wide to long – that is, to a dataset with only three columns (unique case

identifier, original variable name, value of the variable). In a sense we have collapsed the loop_name1-

loop_name15 into one variable and fifteen records for each original row. The outcome of this step is that we

have converted one wide dataset into multiple long datasets and collapsed the loop variables into a single

variable while creating each long dataset.

City 1 ….. Name 2 Age 2 City 2 ….. Name 3 Age 3 City 3 …..

CHI ….. KYLE 9 NYC ….. KATIE 8 SFO …..

Gets transposed into:

ID Name
Variable

Name
ID Age

Variable
Name

ID City
Variable

Name

1 JONAH NAME1

1 1 AGE1

1 CHI CITY1

1 KYLE NAME2

1 9 AGE2

1 NYC CITY2

1 KATIE NAME3

1 8 AGE3

1 SFO CITY3

…and

Younger 1 ….. Younger 2 ….. Younger 3 …..

1 LOOP

Gets transposed into:

ID Younger
Variable

Name

ID Address
Variable

Name

1 1 YOUNGER1

1 LOOP ADDRESS1

1

YOUNGER2

1

ADDRESS2

1

YOUNGER3

1

ADDRESS3

Figure 8. Transposing Variables to Create Long Dataset

Data ManagementSAS Global Forum 2012

Reordering Values within Observations: Beyond CALL SORTC(N), Continued

7

2.3. Merge all these long datasets together by the unique case identifier using the DATA step MERGE

statement, so that we have the values of each set of loop variables in one column and the variable names

in another column for all the variables. The outcome of this step is one dataset.

Gets merged into:

ID Name
Variable

Name
Age

Variable
Name

City
Variable

Name

1 JONAH NAME1 1 AGE1 CHI CITY1

1 KYLE NAME2 9 AGE2 NYC CITY2

1 KATIE NAME3 8 AGE3 SFO CITY3

…and:

ID Younger
Variable

Name
Address

Variable
Name

1 1 YOUNGER1 LOOP ADDRESS1

1

YOUNGER2

ADDRESS2

1

YOUNGER3

ADDRESS3

Figure 9. Transposing Variables to Create Long Dataset

Data ManagementSAS Global Forum 2012

Reordering Values within Observations: Beyond CALL SORTC(N), Continued

8

2.4. Divide this dataset into two datasets: one that includes the variables which store the original variable name,

and the other that includes the values associated with these variable names. Each output data set has the

same number of records as the original input data set but just a subset of the variables, as well as an ID

variable that is kept on each of the data sets. Sort the dataset with values using age as the key within the

unique case identifier, using PROC SORT.

Gets divided into:

ID Name Age City

ID
Variable

Name
Variable

Name
Variable

Name

1 JONAH 1 CHI

1 NAME1 AGE1 CITY1

1 KYLE 9 NYC

1 NAME2 AGE2 CITY2

1 KATIE 8 SFO

1 NAME3 AGE3 CITY3

Gets sorted into:

ID Name Age City

1 KYLE 9 NYC

1 KATIE 8 SFO

1 JONAH 1 CHI

…and gets divided into:

ID Younger Address

ID Variable Name Variable Name

1 1 LOOP

1 YOUNGER1 ADDRESS1

1

1 YOUNGER2 ADDRESS2

1

1 YOUNGER3 ADDRESS3

…and sorted into:

ID Younger Address

1 1 LOOP

1

1

Figure 10. Dividing the Long Dataset into Separate Variable and Value Datasets

Data ManagementSAS Global Forum 2012

Reordering Values within Observations: Beyond CALL SORTC(N), Continued

9

2.5. At this point we have the values sorted with the unique case identifier. We could merge the two datasets

with variable name and sorted values and re-transpose the values back in the horizontal format using

PROC TRANSPOSE, but we still haven’t achieved the goal of having only either child or older child in a

loop number. In order to achieve this we count the number of children in the older child dataset and move

that many records in the younger child dataset. We will demonstrate how this is achieved in the next bullet.

 For the older child booklet dataset, start by calculating the number of older children

per household from the older child booklet. This will help us determine from what

position we need to start filling in the child booklet when we are working with the child

booklet.

 For the younger child booklet dataset, we use the dataset that was created in a

previous step, which stores the number of older children in the household. We use

that dataset to move the child data in the younger child booklet dataset by the number

of older children in the household. We achieve this movement by deleting the number

of rows from the top within the unique case identifier from the variable name dataset

in the younger child booklet dataset. This way the values are not moved but the

variable names have moved up. In order to match up the number of records per the

unique case identifier in both variable and value dataset we delete the bottom data

records within the unique case identifier from the value dataset equal to the number

of older children present in the household.

Gets sorted into after deletion:

ID Younger Address

ID
Variable

Name
Variable

Name

1 1 LOOP

1 YOUNGER3 ADDRESS3

Figure 11. Deleting Records in Both Datasets

Data ManagementSAS Global Forum 2012

Reordering Values within Observations: Beyond CALL SORTC(N), Continued

10

2.6. Merge the two datasets together using the unique case identifier as the key. We have now completed the

sorting/movement of data in the vertical dataset. The previous variable names now have the sorted values.

Gets merged into:

ID Name Age City
Variable

Name
Variable

Name
Variable

Name

1 KYLE 9 NYC NAME1 AGE1 ADD1

1 KATIE 8 SFO NAME2 AGE2 AGE2

1 JONAH 1 CHI NAME3 AGE3 AGE3

…and into:

ID Younger Address Variable Name Variable Name

1 1 LOOP YOUNGER3 subADD3

Figure 12. Merging the Datasets

2.7. Transpose each of these variables by the unique case identifier to create a wide dataset. From long to

wide…. In a sense we have expanded the one variable into loop_name1-loop_name15 variables and 1 row

for each original unique case identifier.

Gets transposed into:

ID
Name

1
Name

2
Name

3

ID Age 1 Age 2 Age 3

ID
City

1
City

2
City

3

1 KYLE KATIE JONAH

1 9 8 1

1 NYC SFO CHI

…and into:

ID Younger 3

ID Address 3

1 1

1 LOOP

Figure 13. Transposing by each variable

2.8. Now merge this wide datasets per loop variables and create a combined dataset.

Gets merged into:

ID Name 1 Name 2 Name 3 Age 1 Age 2 Age 3 City 1 City 2 City 3

1 KYLE KATIE JONAH 9 8 1 NYC SFO CHI

…and into:

ID Younger 3 Address 3

1 1 LOOP

Figure 14. Merging the Datasets

Data ManagementSAS Global Forum 2012

Reordering Values within Observations: Beyond CALL SORTC(N), Continued

11

3. Merge the individually processed datasets in step 2 to get a final dataset. This final dataset has the same

number of records and variables but is sorted per our requirements.

RE-ORDERED MASTER DATASET

Reordered Child Roster

(WIDE DATASET)

Reordered Younger

child booklet

(WIDE DATASET)

Reordered Older
child booklet
(WIDE DATASET)

Reordered Kids
Admin
(WIDE DATASET)

Figure 15. Final Merge of Individually Processed Datasets to Create Final Clean Dataset

4. Generate a quality control (QC) report to compare the original dataset and the final dataset to see how many

cases were resequenced and to examine those values that were moved in the process of resequencing. This

was generated by using PROC COMPARE on the original dataset and the resequenced dataset on a limited

number of variables.

CONCLUSION

SAS software provides a variety of tools that can be used to handle complex data management problems like the one
described in this paper. Although there is not a single function and/or call routine to solve this problem directly, there
is a range of tools and techniques that can be combined to solve these kinds of problems. The technique described in
this paper can be used by others if they have a similar “horizontal sorting” problem, where they need to move a group
of variables instead of only one.

ACKNOWLEDGMENTS

We would like to thank Mike Rhoads.

RECOMMENDED READING

For more details about some of the techniques mentioned in this paper, refer to the SAS documentation for PROC
SORT and the SORTC and SORTN call routines SAS help for Base SAS

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Name: Adish Jain
Enterprise: NORC at the University of Chicago
Address: 55 E Monroe St
City, State ZIP: Chicago
Work Phone: 312-759-5071
E-mail: jain-adish@norc.org

Name: Kate Bachtell
Enterprise: NORC at the University of Chicago
Address: 55 E Monroe St
City, State ZIP: Chicago
Work Phone: 312-759-5095
E-mail: bachtell-kate@norc.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Data ManagementSAS Global Forum 2012

	2012 Table of Contents

