
1

Paper 091-2012

Batch Production of Driving Distances and Times Using SAS® and Web Map APIs

Ash Roy and Yingbo Na, Canadian Institute for Health Information, Toronto, Canada

ABSTRACT

This is a new methodology of using SAS® URL access method and Web APIs to run queries on an interactive Web
site. This method will capture driving distances and times from a Web map based on points marked by postal codes.

INTRODUCTION

Distance analysis has become a growing need in health and consumer businesses in order to determine how far
patients or customers are from a hospital or service centre. SAS® 9.2 has added some new tools for distance
analysis and map functionality which make distance analyses and map visualizations easier. The new tools are
based on the spatial relationships between the coordinates of latitudes and longitudes. These calculations give us
straight line distances (i.e. “as the crow flies” distances). With complex road systems, we want to know the fastest
driving time or the shortest driving route to reach a nearby hospital or service centre.

In a healthcare delivery system, especially in cases of serious injuries, the time taken to arrive at an emergency
department has a significant impact on the treatment plan and its outcome. Therefore in planning health facilities, it is
advantageous to take into account driving distances and travel durations for patients to reach hospitals or health
services.

In this paper, we will describe the SAS® URL access method to parse an XML (Extensible Markup Language) file
returned from an interactive website. This method is applicable to APIs for MapQuest, Google Maps, Yahoo Maps or
Bing Maps. For the purpose of this paper, we will explore the possibilities of using SAS and MapQuest APIs. Please
refer to the MapQuest website for complete API documentations.

Nowadays, before setting off for an unfamiliar place, we usually consult web applications e.g. Google Map or
MapQuest for travel information. In cars, we use satellite navigation (Global Positioning System) to direct us to our
destinations. Either in web map or in GPS, postal codes or full street addresses are widely used to determine
distances between two or more points. Some tools offer the option of using latitude and longitude coordinates instead
of postal codes or address as there are many places with no postal codes e.g. non-residential areas, highways etc.

SPATIAL DISTANCE

Let us take a quick look at the present method of straight line distance analysis. So far, we are using coordinates of
latitudes and longitudes to find out the distances between two or more points. There are ways to convert postal code
to latitude-longitude coordinate or vice versa. For example, we can use Statistics Canada‟s Postal Code Conversion
File (PCCF) to perform such conversion. We use the following macro to calculate distances either in miles (MI) or in
kilometers (KM). This is known as the Great Circle Distance Formula.

%MACRO geodist (lat1,long1,lat2,long2, unit) ;

 %local ct ;

 %let ct = constant('pi')/180 ;

 %if %upcase(&unit) = KM %then %let radius = 6371 ;

 %else %if %upcase(&unit) = MI %then %let radius = 3959 ;

 &radius * (2 * arsin(min(1,sqrt(sin(((&lat2 - &lat1)*&ct)/2)**2 +

 cos(&lat1*&ct) * cos(&lat2*&ct) * sin(((&long2 - &long1)*&ct)/2)**2)

)));

%MEND;

For example, the following dataset (Figure 1) name PCS has a pair of postal codes with their coordinates.

The above macro calculates the distance between these two postal codes using their geographical coordinates.

The codes are as follows:

DATA pcs_dist;

 set pcs;

 distance = %geodist (lat1,long1,lat2,long2, KM);

RUN;

Figure 1. A Pair of Postal Codes with Coordinates of Latitudes and Longitudes

Coders' CornerSAS Global Forum 2012

2

And the output dataset contains the distance. The distance between M4C5L8 and M2P2B7 was found to be
10.840573649 km.

Figure 2. Output Dataset Containing Distance

However, to travel from M4C5L8 to M2P2B7, we cannot fly like a crow. To reach the destination from the starting
point we have to take a feasible route e.g. by driving, walking, biking etc. This macro cannot give us the actual driving
distance which is obviously different from the above straight-line distance.

WEB MAP

Let us look at the MapQuest web map to see the driving distance and time. One of the options from a suggested
routes found the distance to be 17.76 km and 21 minutes driving time (this time varies and it is an estimate based on
certain given factors but not all road conditions are considered). Please note that the web query takes a few seconds
to figure out the route options and draws lines on the map. The SAS URL method can parse the distance and time

from web maps as described by Mike Zdeb in SAS Global Forum 2010. Our test found that it took about a minute to
parse one pair of distance and time in this method using SAS. In fact, this reading depends on the distance between
two points. The longer the distance, the longer the time it takes to calculate. Moreover, same SAS® code may not
work over a period of time due to changes in the underlying HTML codes.

APPLICATION PROGRAMMING INTERFACE (API)

An application programming interface (API) is a particular set of rules ('code') and specifications that software
programs can follow to communicate with each other. It serves as an interface between different software programs
and facilitates their interaction, similar to the way the user interface facilitates interaction between humans and
computers.

MapQuest, Google Map, Yahoo Map and Bing Map have provided many powerful and functional APIs for
programmers to develop various applications. For driving distance calculation purposes, we found all of them have
similar kind of API functionalities. We have used MapQuest APIs to demonstrate how it works using its Community
Key which is free of charge. They have other available options available.

Please refer to the MapQuest API documentation website for detailed descriptions of key words and codes.

Figure 3. Travel Distance on a Traditional Web Map

Coders' CornerSAS Global Forum 2012

3

UNDERSTANDING MAPQUEST APIS

With a valid API key (without the bracket), if we submit the following address in a browser:
http://www.mapquestapi.com/directions/v1/route?key=(key)&outFormat=xml&unit=k&routeType=shortest&narrativeTy
pe=none&from=m4c5l8&to=m2p2b7 , then the output would be as follows in XML:

Output 1. XML Output of Web Map Query

Let‟s take a closer look at the following options in the query string:

 outFormat=xml (the other option is JSON)

 unit=k (k for kilometer and m for mile)

 routeType=shortest (it could be fastest, if preferred)

 narrativeType=none (to get minimum data in the XML file)

 from=m4c5l8 (beginning postal code)

 to=m2p2b7 (end postal code)

In the XML output file, distance and time are identified in <distance> </distance> and <time> </time> tags. The time
is in seconds and also in the formatted value. Reading in the distance and time values by positioning the pointer with
a character variable technique is much faster, which takes less than a second.

WRITING THE MACRO

Step 1: Checking Dataset (optional)

Although our dataset contains valid postal codes but it is always prudent to check postal codes‟ formats. Any wrong
or incomplete values in the dataset would give rise to unwanted results. The first step in this macro is to check that
the postal codes have valid formats e.g. 6-character long with a format CNCNCN, where C is a character and N is a
number for Canadian postal codes. If the postal codes are checked by other means, this step may be omitted. Invalid
postal codes will be excluded to save time when querying MapQuest.

Step 2: Counting the Number of Postal Codes

This step counts the number (by creating a macro variable using call symputx function) of valid postal codes in the
input dataset created by previous step. This number defines how many loops are needed.

Step 3: Looping Through Postal Code Pairs

The vital step starts here. This step will go through each pair of postal codes, construct an API query string for
submission and processing. Step 4: URL Access to API

This step of SAS® URL access method connects to the MapQuest API, submits the query string and reads the output
XML file. It is a good idea to check the returned XML file from the API on a browser to see the layout and structure.
Before actually reading in the XML file, we first “peek” into the URL file reference using the sequential input mode to
make sure that the Internet connection is available. This will avoid connection failure “hard error” and catch a “soft
error” so that the program can exit gracefully

Please note the use of %nrstr to mask “&”in the query string.

Coders' CornerSAS Global Forum 2012

4

Step 5: Parsing the XML

The program reads in the XML file one character at a time to calculate the file size, then it uses the “input” statement
by positioning the pointer at „<statusCode>”, “<distance>” and “<time>” to fetch their values. If the return status is not
“OK”, an error code (-2) will be written to the final data set. There could be several reasons when the status is not
“OK” even after valid format of postal codes e.g. invalid or retired postal codes. When both the postal codes are same
then the distance and time values would „0‟ (zero).

In this step, XML file is read in infile statement and the values of distance and time are fetched in input statement
using the XML tags as position pointers. As the values of drive distance and time are appearing at the beginning so it
stops as soon as it captures the first values after given XML tag.

Finally, it creates a clean dataset that contains the postal codes, distance and time values.

This parsing cannot be done so easily without the power of the API. The complete macro would appear as follows:

%MACRO distance_time(ds=, pc1=, pc2=, out=);

 %local j npc filesize p1 p2;

 PROC DATASETS lib=WORK memtype=data nolist;

 delete &out _pc_;

 QUIT;

/* Step 1: validate postal codes format */

 PROC SQL;

 create table _pc_ as

 select &pc1, &pc2

 from &ds

 where prxmatch('/[a-zA-Z]\d[a-zA-Z]\s?\d[a-zA-Z]\d/', &pc1)

 and prxmatch('/[a-zA-Z]\d[a-zA-Z]\s?\d[a-zA-Z]\d/', &pc2);

 QUIT;

/* Step 2: Count number of valid postal code pairs */

 DATA _null_;

 if 0 then set _pc_ nobs=obs;

 call symputx('npc',obs);

 RUN;

/* Step 3: Loop through each pair */

 %do j=1 %to &npc;

 DATA _null_;

 nrec = &j;

 set _pc_ point=nrec;

 call symputx('p1',&pc1);

 call symputx('p2',&pc2);

 stop;

 RUN;

/* Step 4: URL access to API */

 filename x url

"http://www.mapquestapi.com/directions/v1/route?key=(key)%nrstr(&outFormat=xml&narrati

veType=none&unit=k)%nrstr(&from)=&p1.%nrstr(&to)=&p2";

 filename z temp;

 %let url_flag = 0;

 DATA _null_;

 fid = fopen('x','S'); /* Check if Internet is available */

 if fid <= 0 then do; /* Internet is not available */

 time = datetime();

 stop = datetime() + 30; /* Max time to try connect */

 do while (fid <= 0 and time <=stop); /* Loop while waiting... */

 fid = fopen('x','S'); /* Check if Internet is available */

 time = datetime(); /* Reset current time */

 end;

 if fid>0 then do;

 call symputx('url_flag',1);

 rc = fclose(fid);

 end;

 end; /* End if Internet is not available */

 else do;

 call symputx('url_flag',1);

 rc = fclose(fid);

Coders' CornerSAS Global Forum 2012

5

 end;

 RUN;

 %if &url_flag=1 %then %do;

/* Read in XML file 1 character at a time, calculate the file size */

 DATA _NULL_;

 infile x recfm=f lrecl=1 end=eof;

 file z recfm=f lrecl=1;

 input @1 char $char1.;

 put @1 char $char1.;

 if eof;

 call symputx('filesize',_n_);

 RUN;

 /* Step 5: Parsing the XML */

 DATA tmp;

 keep p1 p2 distance_val time_val;

 p1="&p1";

 p2="&p2";

 infile z recfm=f lrecl=&filesize. eof=done dlm='<' scanover;

 input @'<statusCode>' status_code

 @'<distance>' distance_val

 @'<time>' time_val;

 if status_code ^= 0 then do;

 distance_val=-2;

 time_val=-2;

 end;

 output;

 stop;

 done:

 output;

 RUN;

 filename x clear;

 filename z clear;

 PROC APPEND base=&out data=tmp;

 RUN;

 PROC DATASETS lib=WORK memtype=data nolist;

 delete tmp;

 RUN;

 quit;

 %end;

 %else %do;

 filename x clear;

 filename z clear;

 %put ERROR: Cannot connect to Internet;

 %goto exit;

 %end;

 %end;

 %exit:

 PROC DATASETS lib=WORK memtype=data nolist;

 delete _pc_;

 RUN;

 QUIT;

%MEND;

RUNNING THE MACRO

The following SAS® dataset has 10 pairs of postal codes. Our goal is to determine the driving distances and times of
these pairs of postal codes by using the above macro. Please note that these postal codes are randomly taken from
the web for this paper only. The name of the dataset is “pc” and variable names are “p1” as origin and “p2” as
destination postal codes.

Note that if origin and destination postal codes are reversed, the results may be different.

Coders' CornerSAS Global Forum 2012

6

 Let’s run the above macro on this dataset of 10 pairs of postal codes and look at the output file. We found the

desired values of distances and times.

%distance_time (ds=pc, pc1=p1, pc2=p2 out=dist_time);

EXAMINING THE OUTPUT

The final output is a clean dataset containing all the desired values. Please note that the unit of distance can be
controlled in the API in either kilometers or in miles. The value of time is in seconds, which could be converted to
hours and minutes.

DISCUSSIONS

Injury data analysis which requires calculating driving distances and times has motivated us to explore the use of
SAS to solve this problem. We found that this is an underutilized SAS analytical tool in our settings. When used with
an appropriate API, this tool can assist us in obtaining answers to major research questions e.g. the strategic location
of specialized medical facilities and its implications.

The output can be used for further statistical analysis e.g. mean driving distance and time between patients‟ homes to
the nearest treatment centers. This can also be linked to treatment outcomes by distance groups.

We looked into various web APIs for this project – MapQuest, Google, Yahoo and Bing maps. Each has its own
advantages and drawbacks. Our primary objective was to look for XML output option in one of these APIs that
contained driving distance and time between a pair of points marked by postal codes. We used minimum options in
this API query so that we could better understand the processes involved.

Parsing XML in SAS is not new, but fetching data in XML from an interactive website is. This method uses the
combined power of SAS® and an API with reasonable control over the web data. It is both fast and reliable.

One potential limitation is related to web services. This method depends on reliable access to the Internet, so that
Internet availability and its speed do matter. Some SAS® server deployments do not allow internet connection for
privacy and security reasons. Another limitation is imposed by the API provider. For example, the MapQuest API
Community Key limits 5,000 queries per day.

CONCLUSION

Nowadays, web APIs are used for many purposes ranging from complex visualizations to difficult calculations.
Thanks to these APIs, many tasks are becoming easier in our data analyses. We have shown that by combining the
power of an API and SAS®, it is possible to create a tool for the batch calculation of driving distances and times.

Figure 4. Input Dataset

Figure 5. Output Dataset

Coders' CornerSAS Global Forum 2012

7

ACKNOWLEDGEMENT

The paper acknowledges the contribution of Claire Marie Fortin, Patricia Sidhom and Robert Williams of Clinical
Registries Department of Canadian Institute for Health Information (CIHI).

REFERENCES

SAS Institute Inc. 2008. “What’s New in SAS® 9.2.” Cary, NC: SAS Institute Inc. Available at

http://www.sas.com/offices/europe/denmark/pdf/whatsnew92.pdf

Okerson BB (2011). “Distance Mapping in Health and Health Care: SAS® as a Tool for Health Geomatics.”
Proceedings of SAS Global Forum Paper 299-2011. Cary, NC: SAS Institute Inc.

Zdeb M (2010). “Driving Distances and Times Using SAS® and Google Maps.” Proceedings of SAS Global Forum
Paper 050-2010. Cary, NC: SAS Institute Inc.

Shahid R, Bertazzon S, Knudtson ML, Ghali WA (2009). “Comparison of distance measures in spatial analytical
modeling for health service planning.” BMC Health Services Research. 9: 200. London, UK: BioMed Central.
Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781002/.

Wikipedia “Application programming interface” Wikipedia: The Free Online Encyclopedia. October 2011 Available at
http://en.wikipedia.org/wiki/Application_programming_interface.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Ash Roy/Yingbo Na

Canadian Institute for Health Information (CIHI)
4110 Yonge Street, Suite 300
Toronto, ON M2P 2B7
Phone: 416-481-2002
emails: ashoke.k.roy@gmail.com, yna@cihi.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2012

http://www.sas.com/offices/europe/denmark/pdf/whatsnew92.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781002/
http://en.wikipedia.org/wiki/Application_programming_interface
mailto:ashoke.k.roy@gmail.com
mailto:yna@cihi.ca

	2012 Table of Contents

