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Batch Production of Driving Distances and Times Using SAS® and Web Map APIs 
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ABSTRACT 

This is a new methodology of using SAS® URL access method and Web APIs to run queries on an interactive Web 
site. This method will capture driving distances and times from a Web map based on points marked by postal codes. 

INTRODUCTION 

Distance analysis has become a growing need in health and consumer businesses in order to determine how far 
patients or customers are from a hospital or service centre. SAS® 9.2 has added some new tools for distance 
analysis and map functionality which make distance analyses and map visualizations easier. The new tools are 
based on the spatial relationships between the coordinates of latitudes and longitudes. These calculations give us 
straight line distances (i.e. “as the crow flies” distances). With complex road systems, we want to know the fastest 
driving time or the shortest driving route to reach a nearby hospital or service centre. 

In a healthcare delivery system, especially in cases of serious injuries, the time taken to arrive at an emergency 
department has a significant impact on the treatment plan and its outcome. Therefore in planning health facilities, it is 
advantageous to take into account driving distances and travel durations for patients to reach hospitals or health 
services. 

In this paper, we will describe the SAS® URL access method to parse an XML (Extensible Markup Language) file 
returned from an interactive website. This method is applicable to APIs for MapQuest, Google Maps, Yahoo Maps or 
Bing Maps. For the purpose of this paper, we will explore the possibilities of using SAS and MapQuest APIs. Please 
refer to the MapQuest website for complete API documentations.  

Nowadays, before setting off for an unfamiliar place, we usually consult web applications e.g. Google Map or 
MapQuest for travel information. In cars, we use satellite navigation (Global Positioning System) to direct us to our 
destinations. Either in web map or in GPS, postal codes or full street addresses are widely used to determine 
distances between two or more points. Some tools offer the option of using latitude and longitude coordinates instead 
of postal codes or address as there are many places with no postal codes e.g. non-residential areas, highways etc.  

SPATIAL DISTANCE  

Let us take a quick look at the present method of straight line distance analysis. So far, we are using coordinates of 
latitudes and longitudes to find out the distances between two or more points. There are ways to convert postal code 
to latitude-longitude coordinate or vice versa. For example,  we can use Statistics Canada‟s Postal Code Conversion 
File (PCCF)  to perform such conversion. We use the following macro to calculate distances either in miles (MI) or in 
kilometers (KM).  This is known as the Great Circle Distance Formula.  

%MACRO geodist (lat1,long1,lat2,long2, unit) ; 

        %local ct ; 

        %let ct = constant('pi')/180 ; 

        %if %upcase(&unit) = KM %then %let radius = 6371 ; 

        %else %if %upcase(&unit) = MI %then %let radius = 3959 ; 

        &radius * ( 2 * arsin(min(1,sqrt( sin( ((&lat2 - &lat1)*&ct)/2 )**2 + 

                cos(&lat1*&ct) * cos(&lat2*&ct) * sin( ((&long2 - &long1)*&ct)/2 )**2) 

))); 

%MEND; 

For example, the following dataset (Figure 1) name PCS has a pair of postal codes with their coordinates. 

The above macro calculates the distance between these two postal codes using their geographical coordinates.  

The codes are as follows: 

DATA pcs_dist; 

 set pcs; 

 distance = %geodist (lat1,long1,lat2,long2, KM); 

RUN; 

Figure 1. A Pair of Postal Codes with Coordinates of Latitudes and Longitudes 
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And the output dataset contains the distance. The distance between M4C5L8 and M2P2B7 was found to be 
10.840573649 km. 

 

Figure 2. Output Dataset Containing Distance 

However, to travel from M4C5L8 to M2P2B7, we cannot fly like a crow. To reach the destination from the starting 
point we have to take a feasible route e.g. by driving, walking, biking etc. This macro cannot give us the actual driving 
distance which is obviously different from the above straight-line distance.  

WEB MAP 

Let us look at the MapQuest web map to see the driving distance and time. One of the options from a suggested 
routes found the distance to be 17.76 km and 21 minutes driving time (this time varies and it is an estimate based on 
certain given factors but not all road conditions are considered). Please note that the web query takes a few seconds 
to figure out the route options and draws lines on the map. The SAS URL method can parse the distance and time 

from web maps as described by Mike Zdeb in SAS Global Forum 2010. Our test found that it took about a minute to 
parse one pair of distance and time in this method using SAS. In fact, this reading depends on the distance between 
two points. The longer the distance, the longer the time it takes to calculate. Moreover, same SAS® code may not 
work over a period of time due to changes in the underlying HTML codes. 

APPLICATION PROGRAMMING INTERFACE (API) 

An application programming interface (API) is a particular set of rules ('code') and specifications that software 
programs can follow to communicate with each other. It serves as an interface between different software programs 
and facilitates their interaction, similar to the way the user interface facilitates interaction between humans and 
computers. 

MapQuest, Google Map, Yahoo Map and Bing Map have provided many powerful and functional APIs for 
programmers to develop various applications. For driving distance calculation purposes, we found all of them have 
similar kind of API functionalities. We have used MapQuest APIs to demonstrate how it works using its Community 
Key which is free of charge. They have other available options available. 

Please refer to the MapQuest API documentation website for detailed descriptions of key words and codes.  

 

Figure 3. Travel Distance on a Traditional Web Map 
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UNDERSTANDING MAPQUEST APIS  

With a valid API key (without the bracket), if we submit the following address in a browser: 
http://www.mapquestapi.com/directions/v1/route?key=(key)&outFormat=xml&unit=k&routeType=shortest&narrativeTy
pe=none&from=m4c5l8&to=m2p2b7 , then the output would be as follows in XML: 

 

Output 1. XML Output of Web Map Query 

Let‟s take a closer look at the following options in the query string: 

 outFormat=xml (the other option is JSON) 

 unit=k (k for kilometer and m for mile) 

 routeType=shortest (it could be fastest, if preferred) 

 narrativeType=none (to get minimum data in the XML file) 

 from=m4c5l8 (beginning postal code) 

 to=m2p2b7 (end postal code) 

In the XML output file, distance and time are identified in <distance> </distance> and <time> </time> tags. The time 
is in seconds and also in the formatted value. Reading in the distance and time values by positioning the pointer with 
a character variable technique is much faster, which takes less than a second.  

WRITING THE MACRO 

Step 1: Checking Dataset (optional) 

Although our dataset contains valid postal codes but it is always prudent to check postal codes‟ formats. Any wrong 
or incomplete values in the dataset would give rise to unwanted results. The first step in this macro is to check that 
the postal codes have valid formats e.g. 6-character long with a format CNCNCN, where C is a character and N is a 
number for Canadian postal codes. If the postal codes are checked by other means, this step may be omitted. Invalid 
postal codes will be excluded to save time when querying MapQuest. 

Step 2: Counting the Number of Postal Codes 

This step counts the number (by creating a macro variable using call symputx function) of valid postal codes in the 
input dataset created by previous step. This number defines how many loops are needed. 

Step 3: Looping Through Postal Code Pairs 

The vital step starts here. This step will go through each pair of postal codes, construct an API query string for 
submission and processing. Step 4: URL Access to API 

This step of SAS® URL access method connects to the MapQuest API, submits the query string and reads the output 
XML file. It is a good idea to check the returned XML file from the API on a browser to see the layout and structure. 
Before actually reading in the XML file, we first “peek” into the URL file reference using the sequential input mode to 
make sure that the Internet connection is available. This will avoid connection failure “hard error” and catch a “soft 
error” so that the program can exit gracefully  

Please note the use of %nrstr to mask “&”in the query string.  
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Step 5: Parsing the XML 

The program reads in the XML file one character at a time to calculate the file size, then it uses the “input” statement 
by positioning the pointer at „<statusCode>”, “<distance>” and “<time>” to fetch their values. If the return status is not 
“OK”, an error code (-2) will be written to the final data set. There could be several reasons when the status is not 
“OK” even after valid format of postal codes e.g. invalid or retired postal codes. When both the postal codes are same 
then the distance and time values would „0‟ (zero). 

In this step, XML file is read in infile statement and the values of distance and time are fetched in input statement 
using the XML tags as position pointers. As the values of drive distance and time are appearing at the beginning so it 
stops as soon as it captures the first values after given XML tag. 

Finally, it creates a clean dataset that contains the postal codes, distance and time values. 

This parsing cannot be done so easily without the power of the API. The complete macro would appear as follows: 

%MACRO distance_time(ds=, pc1=, pc2=,  out=); 

     %local j  npc filesize p1 p2; 

     PROC DATASETS lib=WORK memtype=data nolist; 

       delete &out _pc_; 

     QUIT; 

/* Step 1: validate postal codes format */ 

     PROC SQL; 

        create table _pc_ as 

        select &pc1, &pc2 

        from &ds 

        where prxmatch('/[a-zA-Z]\d[a-zA-Z]\s?\d[a-zA-Z]\d/', &pc1) 

          and prxmatch('/[a-zA-Z]\d[a-zA-Z]\s?\d[a-zA-Z]\d/', &pc2); 

     QUIT; 

/* Step 2: Count number of valid postal code pairs */ 

    DATA _null_; 

       if 0 then set _pc_ nobs=obs; 

       call symputx('npc',obs); 

    RUN; 

/* Step 3: Loop through each pair */ 

    %do j=1 %to &npc; 

       DATA _null_; 

          nrec = &j; 

          set _pc_ point=nrec; 

          call symputx('p1',&pc1); 

     call symputx('p2',&pc2); 

          stop; 

       RUN; 

/* Step 4: URL access to API */ 

       filename x url 

"http://www.mapquestapi.com/directions/v1/route?key=(key)%nrstr(&outFormat=xml&narrati

veType=none&unit=k)%nrstr(&from)=&p1.%nrstr(&to)=&p2"; 

       filename z temp; 

  %let url_flag = 0; 

       DATA _null_; 

          fid = fopen('x','S'); /* Check if Internet is available */ 

          if fid <= 0 then do; /* Internet is not available */ 

      time = datetime(); 

           stop = datetime() + 30; /* Max time to try connect */ 

           do while (fid <= 0 and time <=stop ); /* Loop while waiting... */ 

            fid = fopen('x','S'); /* Check if Internet is available */ 

            time = datetime(); /* Reset current time */ 

           end; 

      if fid>0 then do; 

            call symputx('url_flag',1); 

            rc = fclose(fid);  

      end; 

     end; /* End if Internet is not available */  

          else do; 

           call symputx('url_flag',1); 

  rc = fclose(fid); 
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          end; 

       RUN; 

    %if &url_flag=1 %then %do; 

/* Read in XML file 1 character at a time, calculate the file size */ 

       DATA _NULL_; 

          infile x recfm=f lrecl=1 end=eof;  

          file z recfm=f lrecl=1; 

          input @1 char $char1.;  

          put @1 char $char1.; 

          if eof; 

          call symputx('filesize',_n_); 

       RUN; 

 /* Step 5: Parsing the XML */ 

       DATA tmp; 

     keep p1 p2 distance_val time_val; 

     p1="&p1"; 

     p2="&p2"; 

          infile z recfm=f lrecl=&filesize. eof=done dlm='<' scanover; 

          input @'<statusCode>' status_code  

                @'<distance>' distance_val  

                @'<time>' time_val; 

       if status_code ^= 0 then do; 

            distance_val=-2; 

       time_val=-2; 

       end; 

          output;  

          stop; 

          done: 

          output; 

       RUN; 

 filename x clear; 

       filename z clear; 

       PROC APPEND base=&out data=tmp; 

       RUN; 

       PROC DATASETS lib=WORK memtype=data nolist; 

     delete tmp; 

       RUN; 

       quit; 

    %end; 

 %else %do; 

  filename x clear; 

     filename z clear;  

     %put ERROR: Cannot connect to Internet; 

  %goto exit; 

 %end; 

    %end; 

 %exit: 

    PROC DATASETS lib=WORK memtype=data nolist; 

    delete _pc_; 

    RUN; 

    QUIT; 

%MEND; 

 

RUNNING THE MACRO 

The following SAS® dataset has 10 pairs of postal codes. Our goal is to determine the driving distances and times of 
these pairs of postal codes by using the above macro. Please note that these postal codes are randomly taken from 
the web for this paper only. The name of the dataset is “pc” and variable names are “p1” as origin and “p2” as 
destination postal codes.   

Note that if origin and destination postal codes are reversed, the results may be different. 
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 Let’s run the above macro on this dataset of 10 pairs of postal codes and look at the output file. We found the 

desired values of distances and times.  

%distance_time (ds=pc, pc1=p1, pc2=p2 out=dist_time); 

EXAMINING THE OUTPUT 

The final output is a clean dataset containing all the desired values. Please note that the unit of distance can be 
controlled in the API in either kilometers or in miles. The value of time is in seconds, which could be converted to 
hours and minutes.  

DISCUSSIONS 

Injury data analysis which requires calculating driving distances and times has motivated us to explore the use of 
SAS to solve this problem. We found that this is an underutilized SAS analytical tool in our settings. When used with 
an appropriate API, this tool can assist us in obtaining answers to major research questions e.g. the strategic location 
of specialized medical facilities and its implications.  

The output can be used for further statistical analysis e.g. mean driving distance and time between patients‟ homes to 
the nearest treatment centers. This can also be linked to treatment outcomes by distance groups.  

We looked into various web APIs for this project – MapQuest, Google, Yahoo and Bing maps. Each has its own 
advantages and drawbacks. Our primary objective was to look for XML output option in one of these APIs that 
contained driving distance and time between a pair of points marked by postal codes. We used minimum options in 
this API query so that we could better understand the processes involved. 

Parsing XML in SAS is not new, but fetching data in XML from an interactive website is. This method uses the 
combined power of SAS® and an API with reasonable control over the web data. It is both fast and reliable. 

One potential limitation is related to web services. This method depends on reliable access to the Internet, so that 
Internet availability and its speed do matter. Some SAS® server deployments do not allow internet connection for 
privacy and security reasons. Another limitation is imposed by the API provider. For example, the MapQuest API 
Community Key limits 5,000 queries per day.   

CONCLUSION 

Nowadays, web APIs are used for many purposes ranging from complex visualizations to difficult calculations. 
Thanks to these APIs, many tasks are becoming easier in our data analyses. We have shown that by combining the 
power of an API and SAS®, it is possible to create a tool for the batch calculation of driving distances and times.  

Figure 4. Input Dataset 

Figure 5. Output Dataset 
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