Paper 058-2012

Inventory Your Files Using SAS®

Brian Varney, Experis Business Analytics Practice, Portage, Michigan

ABSTRACT

Whether you are attempting to figure out what you have when preparing for a migration or you just want to find out which files or directories are taking up all of your space, SAS is a great tool to inventory and report on the files on your desktop or server. This paper intends to present SAS code to inventory and report on the location you want to inventory.

INTRODUCTION

Trying to get a handle on the number of different types of files on a server or network drives can be daunting. Every year a server is in operation, there are opportunities for users to drop programs, data and other types of files across many directories. After a few years there can be thousands of files and many gigabytes of data. At some point the time will come for cleaning up or migrating to a new server. When this time comes, SAS can be a handy tool to inventory your files, summarize files by age, size, directory, etc. SAS can also be used to search through SAS programs for references to servers or statements that interact with Microsoft Excel that need to be changed. Depending on the details of the migration, there may be different results needed from the inventory.

The examples in this paper will mostly be using Microsoft Windows in the examples but the concepts will certainly extend to UNIX and LINUX.

CONCEPTS

Building a Database of Files

Often, the first step in getting a handle on what files are on your server is to load the files and attributes into a SAS data set. Using pipes and operating system commands, SAS can interrogate a server or network drive and load the files and their attributes into a SAS data set. The following code is an example of building a SAS data set containing all of the files on the c:\myfiles\ directory of a Microsoft Windows desktop.

```
filename pipedir pipe ' dir "c:\myfiles" /S' lrecl=5000;
data indata:
   infile pipedir truncover;
   input line $char1000.;
   length directory $1000;
   retain directory;
   if line =' ' or
     index(upcase(line),'<DIR>')
     left(upcase(line))=:'VOLUME'
                                    then
    delete:
   if left(upcase(line))=:'DIRECTORY OF' then
   directory=left(substr(line,index(upcase(line),'DIRECTORY OF')+12));
   if left(upcase(line))=:'DIRECTORY OF' then
      delete;
   if input(substr(line,1,10),?? mmddyy10.) = . then
     substr(line, 1, 10) = '12/31/2999';
   date=input(substr(line,1,10),?? mmddyy10.);
   format date mmddyy10.;
run:
proc sort data=indata;
  by directory descending date;
```

```
data Directory_Summary(drop=i line);
  set indata;
   by directory:
  length filename $75;
  retain number_of_files_in_directory directory_size;
  if first.directory then
     number_of_files_in_directory=input(scan(line, 2, ' '), 32.);
    directory_size=input(scan(line, 4, ' '), comma32.);
   file_size=input(scan(line,4,' '),comma32.);
  filename=' ';
   do i=5 to 100;
     filename=trim(left(filename))||' '||scan(line,i,' ');
     if scan(line,i,'')='' then
        leave;
   if index(upcase(line),'FILE(S)') then
     delete;
   if date ge '30DEC2999'd then
     delete;
run:
```

Figure 1: Excerpt from directory_summary data set

			number_of_		
			files		
Directory	date	filename	_in_directory	directory_size	file_size
c:_mystuff\VTPUdrive\e-mail archive	01/21/2011	archive2010.pst	9	5058871296	1165149184
c:_mystuff\VTPUdrive\e-mail archive	01/21/2011	archive2009.pst	9	5058871296	878691328
c:_mystuff\VTPUdrive\e-mail archive	01/21/2011	archive2008.pst	9	5058871296	754254848
c:_mystuff\VTPUdrive\e-mail archive	01/21/2011	archive2007.pst	9	5058871296	660800512
c:_mystuff\VTPUdrive\e-mail archive	01/21/2011	archive2006.pst	9	5058871296	573694976
c:_mystuff\VTPUdrive\e-mail archive	02/24/2009	archive2005_2.pst	9	5058871296	511984640
c:_mystuff\VTPUdrive\e-mail archive	08/30/2007	archive 2004.pst	9	5058871296	507282432
c:_mystuff\VTPUdrive\e-mail archive	03/21/2005	archive (bvarney v1).pst	9	5058871296	4964352
c:_mystuff\VTPUdrive\e-mail archive	12/20/2007	archive2005.pst	9	5058871296	2049024

Loading Programs into a SAS Data Set

Another useful thing to do is to load all of the SAS programs into a data set. This will allow us to search for strings and if brave enough, alter the programs programmatically. The code below will loop over each distinct directory from the directory summary data set created above (see Figure 1) and load the programs into one data set. Each line of the program will be a record in the data set.

```
proc sql noprint;
   select distinct directory into :dir1 - :dir9999
   from directory_summary
   where scan(lowcase(filename),-1,'.')='sas';
quit;
%let numdirs=&sqlobs.;
%put &numdirs.;

proc datasets nolist lib=work;
   delete allprgs;
quit;
```

```
%macro getsasprgs;
%do i=1 %to &numdirs.;
data prgs;
  length line sasprogram f $300;
  infile "&&dir&i.\*.sas" FILENAME=f;
  input;
  sasprogram =f;
  linenum+1;
  if lag(sasprogram) ne sasprogram then linenum=1;
  line=_infile_;
run;
proc append base=allprgs data=prgs;
run;
%end;
%mend getsasprgs;
```

Figure 2: Excerpt from allprgs data set

linenum	sasprogram	Line	
1	c:\junk.sas	libname mydat "\\servername\shareddrive\";	
2	c:\junk.sas	proc options long;run;	
3	c:\junk.sas	proc print data=sashelp.class;	
1	c:\junkcsv.sas	data a;	
2	c:\junkcsv.sas	infile "c:\junk.csv" dsd;	
3	c:\junkcsv.sas	input a b c;	
4	c:\junkcsv.sas	run;	

Application #1: Creating a list of unneeded files

After running the code for creating the database of files on the location that you passed into the program, you will have a data set with the fields listed below:

Directory \$1000 Filename \$75

Date numeric w/ mmddyy10.

Number_of_Files_in_Directory numeric

Directory_Size numeric (in bytes)
File_Size numeric (in bytes)

A simple SQL query can be specified to find the old (older than January 1st, 2009) and large (approximately larger than 10GB) files:

Application #2: Searching for references to a macro call.

After running the code for creating the database of SAS programs, you will have a data set with the fields listed below:

SASProgram \$300 LineNum 8 Line \$300

A simple SQL query can be specified to find any references to a macro called experis:

```
proc sql;
    select *
    from allprgs
    where lowcase(line) ? '%experis' or
        lowcase(line) ? '%macro experis';
quit;
```

Application #3: Find all of the SAS Enterprise Guide Projects

After running the code for creating the database of files on the location that you passed into the program, you will have a data set with the fields listed below:

```
Directory $1000
Filename $75
```

Date numeric w/ mmddyy10.

Number_of_Files_in_Directory numeric

Directory_Size numeric (in bytes)
File_Size numeric (in bytes)

A simple SQL guery can be specified to find the SAS Enterprise Guide projects:

```
proc sql;
    select *
    from directory_summary
    where scan(lowcase(filename),-1,'.') = 'egp';
quit:
```

Application #4: Searching for programs related to protocol x/0001/0001.

After running the code for creating the database of SAS programs, you will have a data set with the fields listed below:

```
SASProgram $300
LineNum 8
Line $300
```

A simple SQL query can be specified to find any references to protocol x/0001/0001.:

```
proc sql;
    select *
    from allprgs
    where lowcase(line) ? 'x/0001/0001' or
        (lowcase(sasprogram) ? 'x' and
        lowcase(sasprogram) ? '0001' and
        lowcase(sasprogram) ? '0001');
quit;
```

CONCLUSION

SAS is a great tool to interrogate and report on data retrieved from your operating system regarding to the files on your disk drives. Whether you are preparing for a migration, want to find older large files not needed any more or need to search through your SAS programs for specific strings, SAS is a powerful tool at your disposal.

REFERENCES

SAS Technical Support Website www.support.sas.com

CONTACT INFORMATION

Your comments and questions are valued and encouraged. The author may be contacted at:

Brian Varney

Experis Analytics Practice a Manpower Company Business Analytics Practice 5220 Lovers Lane Suite 200

Portage, Michigan 49002

Work Phone: (269) 553-5185 Fax: (269) 553-5101 Email: Brian.Varney@Experis.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.