
Paper 036-2012

Excelling with Excel

Tim Beese and Greg Granger, SAS Institute Inc., Cary, NC

ABSTRACT

Microsoft Excel is the most widely used tool for data analysis, and it is the default entry point for many consumers

wanting to explore and analyze data. While Excel is suitable for basic analysis, it does not provide the powerful

analytics available in SAS®. With the SAS® Add-In for Microsoft Office, users of Excel can seamlessly leverage the

power of SAS analytics while providing secure access to data and IT resources previously unavailable through Excel.

In this paper, the use of SAS Add-In for Microsoft Office running under Microsoft Excel is demonstrated. This paper

also discusses the use of cell values and ranges in Excel worksheets as input and output to SAS® Stored Processes.

WORKING WITH SAS - FOR THE UNINITIATED

The initiated should feel free to skip this section.

The SAS system is a large and powerful collection of tools designed to analyze data. It is based around the SAS

programming language. Fully describing this language is well beyond this or any single paper. If you are unfamiliar

with SAS, “trust us.” In this paper, we will show simple programs and explain them well. The heritage of SAS is

rooted in statistical analyses and views data as collections of “observations.” A single observation contains related

data. For example, a person’s name, age, phone number, ZIP code, and eye color are grouped into a single

observation for an individual. A collection of observations is called a “data set” or “table.” SAS organizes these data

sets by manipulating them in a “DATA step,” (which acts as a template of how to treat an observation) or by using a

“proc”, short for procedure. For example, , “PROC PRINT;” prints a data set.

SAS also uses the concept of “libraries” and “files,”, which are often referred to as “librefs” and “filerefs” respectively.

A library is a collection of files, usually data sets. A file is a collection of information that can be in a large range of

formats.

When SAS code runs, the code generally produces some form of result and a SAS “log” file. The log file shows the

flow of the program and shows any warnings or errors that occurred while SAS tried to run the code.

Here is a very simple SAS program:

libname _ALL_ List;

run;

In this program, the first line requests that all library names be listed. The second line requests that the program (up

to that point) run. The code is actually run when the program is “submitted,” (which means that you are asking SAS

to process the given code). This submission process results in a log. The following display is an abridged version of

the SAS log that is generated by the previous code:

Applied Business IntelligenceSAS Global Forum 2012

1 libname _ALL_ LIST;

NOTE: Libref= SASHELP

 Scope= Kernel

 Levels= 1

 -Level 1-

 Engine= V9

 Physical Name= C:\SASv9\en\sashelp

 Filename= C:\SASv9\en\sashelp

NOTE: Libref= MAPS

 Scope= Kernel

 Access= READONLY

 Levels= 1

 -Level 1-

 Engine= V9

 Access= READONLY

 Physical Name= C:\SASv9\en\maps

 Filename= C:\SASv9\en\maps

NOTE: Libref= SASUSER

 Scope= Kernel

 Engine= V9

 Physical Name= c:\atemp\sasuser

 Filename= c:\atemp\sasuser

NOTE: Libref= WORK

 Scope= Kernel

 Engine= V9

 Access= TEMP

 Physical Name= C:\...\SAS Temporary Files_TD7280

 Filename= C:\...\SAS Temporary Files_TD7280

2 run;

 Log Output 1: Listing Library Names

In the log, the numbers on the left are the line numbers for the log. The numbers generally match the line numbers in

the original SAS program. You can see the log shows that the previous program contained four default library

references: SASHELP, MAPS, SASUSER, and WORK. If you ran this code in SAS® Enterprise Guide® , the

LIBNAME statement would not appear in the log until line 15 because SAS Enterprise Guide adds additional lines of

code before and after any submitted code. If this program were run as a stored process (that you created in SAS

Enterprise Guide), the LIBNAME statement would not appear in the log until line 30. Again, additional code is

automatically added to the submitted code. In the original program if you replace LIBNAME with FILENAME, you get

a list of files that were opened, or an empty list if no files have been opened.

WHAT IS A SAS STORED PROCESS?

SAS provides a way of packaging code along with the metadata that describes the code into an executable bundle

called a SAS Stored Process. These stored processes enable you to execute SAS code by providing inputs and

consuming outputs without worrying (too much) about the implementation process.

Applied Business IntelligenceSAS Global Forum 2012

HOW DOES EXCEL SEND SAS DATA?

Consider the following very simple Excel worksheet:

Display 1. Sample Data in Excel

If you run a stored process that accepts range input and you specify the range A1:B4 for the input data source, the

SAS Add-In for Microsoft Office would convert this range information into an XML document that looked like this:

<DATA>

 <EXCEL_TABLE>

 <Column1>My Numbers</Column1>

 <Column2>My Letters</Column2>

 </EXCEL_TABLE>

 <EXCEL_TABLE>

 <Column1>1</Column1>

 <Column2>X</Column2>

 </EXCEL_TABLE>

 <EXCEL_TABLE>

 <Column1>2</Column1>

 <Column2>Y</Column2>

 </EXCEL_TABLE>

 <EXCEL_TABLE>

 <Column1>3</Column1>

 <Column2>Z</Column2>

 </EXCEL_TABLE>

</DATA>

Each row is wrapped in an “EXCEL_TABLE” element, and each column is wrapped in a numbered “Column” element.

This XML is then “streamed” to the SAS server.

Applied Business IntelligenceSAS Global Forum 2012

WHAT IS A ‘STREAM’ (AND IS THERE A FIELD NEAR IT)?

A stream is just an ordered flow of data from a source to a destination. For example, the data would flow from the

SAS Add-In for Microsoft Office to a SAS Server. For the previous XML, think of the stream as a “bucket brigade”

that moves the characters from the client (Excel) to the server.

HOW DOES SAS USE A STREAM?

To SAS, a stream looks like any other file. As a simple instructional example, the following program echoes the

information sent to it over the stream named ‘instream’.

1

2

3

4

5

6

7

8

9

data foo;

 infile instream length=lineLen ;

 input @; * assign lineLen;

 input lin $varying500. lineLen;

 put lin;

run;

proc print data=foo noobs;

run;

The first line is a DATA step that creates a data set named ‘foo.’ The second line says use the contents of the
‘instream’ file as input, and when you read a line from this file, put the length of the line into the variable ‘lineLen’.
The third line requests a zero length input, which has the effect of setting the ‘lineLen’ variable (thereby telling us how
long a line we should read). The fourth line requests the line be read into the variable ‘lin’ using a varying format
(because the lines are of varying lengths) and accept only ‘lineLen’ number of characters. The fifth line outputs the
contents of the ‘lin’ variable to the SAS log. The sixth line says run all of the previous the code statements before
continuing to the next line in the program. The eighth line uses the PRINT procedure to print the data set ‘foo.’ (The
NOOBS option says do not print the observation numbers on each line.) The ninth line requests that SAS run the
eighth line before continuing.

OK, BUT I DO NOT LIKE XML. I JUST WANT TO START WITH A DATA SET!

Absolutely! And using the LIBNAME engine you can. If you start your program with this line:

LIBNAME instream xml;

Your stream will look like a library. Remember how in the XML each row was wrapped in an “EXCEL_TABLE”
element? When the LIBNAME engine examines the stream, it will put all these “EXCEL_TABLE” elements together
and make them look like a library member. As a result, you can address your Excel data using
‘instream.EXCEL_TABLE’. The SAS Add-In for Microsoft Office sets the macro variable ‘_WEBIN_SASNAME’ to the
value “EXCEL_TABLE.” It is recommended that you use this macro variable to specify your data.

DATA EXCELDATA;

 SET instream.&_WEBIN_SASNAME;

Applied Business IntelligenceSAS Global Forum 2012

CREATING A STORED PROCESS

Display 2. Create New Stored Process Wizard

To start the Create New Stored Process wizard from SAS Enterprise Guide, select File->New->Stored Process .

On the first page of the wizard, you define information (also referred to as the metadata) about the stored process ,

such as its name, location, description, associated keywords, responsibilities, compatibility, and visibility. Click Next

to move to the next page of the wizard.

Applied Business IntelligenceSAS Global Forum 2012

Display 3. SAS Code Page in the Create New Stored Process Wizard

The second page of the wizard shows the SAS source code, which is editable. If this had been a task-based stored

process (a stored process created from the code of a SAS task), the source code would not be shown. This code is

shown when you have a code node as part of your SAS Enterprise Guide process flow.

The Stored Process Wizard will only show seven pages if there is a disk based library reference that the code

depends on. This information is given as page five. If no such dependency exists, then page five will be the “Data

Sources and Targets” page and the wizard will only contain six pages total.

Applied Business IntelligenceSAS Global Forum 2012

Display 4. Execution Options Page in the Create New Stored Process Wjzard

The third page of the wizard describes the name and type of SAS server to use to execute the stored process, the

location of the code, and the capabilities of the results. To create a stored process that uses an input steam from

Excel, the Stream check box must be checked.

For this stored process, the fourth and fifth pages are not needed, so we can skip them. We will come back to look at

page five when we discuss prompts and output in the ‘Defining an Input Prompt' section.

The sixth page of the wizard defines the input and output streams. As previously discussed, the SAS Add-In for

Microsoft Office uses an input stream to communicate Excel information to SAS. Click New in the Data Sources

area to open the Create a New Data Source dialog box.

Applied Business IntelligenceSAS Global Forum 2012

Display 5. Creating a New Data Source

The Create a New Data Source dialog box enables you to define and describe a data source. In this case, we are

defining the ‘instream’ data source, which SAS will see as a file that SAS can reference under the name “instream.”

The Form of Data and Expected content type options tell SAS to expect XML data. Important to the functioning of

the SAS LIBNAME engine is the Allow rewinding stream check box. This option must be checked when using the

LIBNAME engine to dynamically interpret XML data. The LIBNAME engine must make multiple passes over the

data, and these multiple passes can occur only if the stream allows its contents to be “rewound” (restarted from the

beginning).

It is also very useful to provide a description of the data that you are expecting. When the user is prompted in Excel

to provide the location of the input data, the user can see the description of the data source as a tooltip in the

selection dialog box. If the stored process expects data that has columns with specific names, the user can get this

Applied Business IntelligenceSAS Global Forum 2012

information from the tooltip and make sure that the data for the stored process meets the criteria needed for the

stored process to execute correctly.

Display 6. Data Sources and Targets Page in the Create New Stored Process Wizard

After you click OK in the Create a New Data Source dialog box, page six is updated to show the instream data source

(stream) .

Applied Business IntelligenceSAS Global Forum 2012

Display 7. Summary Page in the Create New Stored Process Wizard

The last page of the stored process wizard is a summary page that lists the various choices you made when creating

the stored process.

EXECUTING THE STORED PROCESS IN EXCEL

Now that you have created a stored process that takes an input stream and produces some output, it is time to run

this stored process in Excel. Excel is the only Microsoft Office application where stored processes with input streams

are supported. (This restriction is because Excel is the only application where it makes sense to store your data.)

To run the stored process, open Excel and navigate to the SAS tab on the ribbon. The first group on this tab is the

Insert group, which contains the options for inserting different types of content into your Office document. Stored

Applied Business IntelligenceSAS Global Forum 2012

processes are considered a report, so click Reports to open a a dialog box that lets you choose the report to open.

Stored processes are stored in SAS Folders. Navigate to the folder where you created your stored process and open

it.

Display 8. Opening a Stored Process in Excel

In the previous section, we created a stored process called ‘Echo Instream.’ Now, we want to open that stored

process into Excel. Before the stored process runs, the SAS Add-In for Microsoft Office examines the stored process

and discovers that it requires an input data source. The SAS add-in prompts the user for the input data source.

Applied Business IntelligenceSAS Global Forum 2012

Display 9. Using the Range Selector Button

From the dialog box for the input stream (in this example, the Echo Instream dialog box), you can use the range

selector button to open the Choose Location dialog box. The Choose Location dialog box enables you to click in the

Excel worksheet and choose a range of cells. The Choose Location dialog box will figure out the cell address for you.

Display 10. Using the Choose Location Dialog Box

If you do not have a range selector button in the Echo Instream dialog box, your security settings in Microsoft Office

might be denying the SAS add-in access to the Visual Basic project. This access is needed to display the Choose

Location dialog box. If the range selector button is not available in the dialog box for the input stream, there should

be a link at the bottom of the dialog box that says ‘Why am I unable to specify the location in Excel by clicking in a

worksheet?’ Click that link to open a help page that gives instructions for how to change this security setting.

After you have provided the range for the input stream, you can also choose where the SAS add-in will insert the

results of the stored process. You can choose to put the results into a new worksheet and provide the name of that

worksheet, or you can choose an existing worksheet. If you choose the existing worksheet, you can then use another

Applied Business IntelligenceSAS Global Forum 2012

range selector button to select the cell where the SAS add-in will begin displaying the results. You can also type a

cell address directly in the text box. Because we want to show these results on the same worksheet, we simply type

F1, and the SAS add-in will use cell F1 on the active worksheet as the insertion point for these results.

When all of the locations have been selected, click OK to run the stored process. At this point, the stored process

runs on the SAS server, and when the input stream is requested, the data from those cells will be sent upstream to

the stored process and used in the execution. After the job has finished , the results will be sent back to the SAS

add-in and displayed in the worksheet.

Display 11. XML Output in Excel

This stored process simply writes out the XML structure that is used by the XML LIBNAME engine to create a data

set that represents the Excel data. The SAS Add-In for Microsoft Office tracks the data that was used as the input for

this stored process, so if you were to refresh the stored process after the data had changed, the new cell values

would automatically be used in the stored process.

For example, if we were to change the numbers and letters in the Excel data and then click Refresh in the SAS tab,

the stored process would run again. This time, we would not be prompted (because the SAS add-in knows where the

data came from), and the new values would appear in the results.

Applied Business IntelligenceSAS Global Forum 2012

Display 12. Changing the Input Data

MACRO VARIABLES AS PARAMETERS

SAS programs use a concept called “macro variables” to extend the SAS language. Macro variables enable SAS

programs to symbolically name arbitrary blocks of text. In your SAS programs, these macro variables are

placeholders that will be replaced at run time by their current text content. These variables can contain data or code,

and are processed appropriately at run time. Stored processes use macro variables to provide input (known as a

prompt) or produce output (known as an output parameter). The values of the input prompts can impact the

execution your SAS code in limitless ways. When the execution of the program is complete, the state (value) of the

macro variable can be returned as an output parameter.

A MORE COMPLEX EXAMPLE

To demonstrate input streams, input prompts, and output parameters more thoroughly, here is a more complex

example. The following code takes data describing NFL football players and their receiving statistics. It creates a

report, ranking the players in various categories. Here is the SAS code:

/* options to put more information in the SAS Log */

 OPTIONS MLOGIC MPRINT;

/* Define an xml libname. This is how the data is passed from Excel

into the stored process. */

LIBNAME instream xml;

/* Create a new data set that will serve as the working input data source

throughout the stored process. Create this data set by applying the filter

that might have been passed in as a prompt. */

DATA EXCELDATA;

 SET instream.&_WEBIN_SASNAME;

 WHERE TEAM = "&team";

RUN;

/* This macro will open a data set and verify that it has at least one

observation. If it has 0, then we will recreate the working input

data set so that no filter is applied to the input stream data.

Applied Business IntelligenceSAS Global Forum 2012

Basically, if the filter was not provided or an invalid filter was

provided, then we want to avoid using it. */

%macro validateDataFilter(ds);

 %let dsid = %sysfunc(open(&ds));

 %let nobs = %sysfunc(attrn(&dsid, NOBS));

 %let rc = %sysfunc(close(&dsid));

 %if &nobs = 0 %then %do;

 DATA EXCELDATA;

 SET instream.&_WEBIN_SASNAME;

 run;

 %end;

%mend;

/* Check to make sure that the working input data set exists and has at

least one observation. If it does not, this macro will clear the filter */

%validateDataFilter(EXCELDATA);

/* Rank the receivers by receptions, yardage, and touchdowns.Create

three temporary data sets that we will continue to work with. */

PROC RANK DATA=EXCELDATA

 DESCENDING

 TIES=LOW

 OUT=BASERANKS(LABEL="Top ranked receivers");

 VAR RECEPTIONS YARDS TD;

 RANKS RANK_REC RANK_YDS RANK_TDS;

RUN;

/* Take the final rankings and put them in order, using a simple formula that

adds all three rankings for each player and puts the player with the lowest

sum at the top. This way the highest ranked players find their way to the

top of the list. */

PROC SQL;

 CREATE TABLE FINALRANKS AS

 SELECT PLAYER, RANK_REC, RANK_YDS, RANK_TDS

 FROM BASERANKS

 ORDER BY (RANK_REC + RANK_YDS + RANK_TDS);

RUN;

/* The only ODS output that we have from this stored process is a PROC print

of the table that shows all of the rankings. */

TITLE;

TITLE1 "&title";

FOOTNOTE;

FOOTNOTE1 "Generated by the SAS System (&_SASSERVERNAME, &SYSSCPL) on

%TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), TIMEAMPM12.))";

PROC PRINT DATA=FINALRANKS

 (OBS=&numrows)

 OBS="Rank"

 LABEL;

 VAR PLAYER RANK_REC RANK_TDS RANK_YDS;

RUN;

/* Finally, we need to assign the values of the output parameters. To do this, we

want to find the player(s) that are ranked the highest in each category. In case

there are ties, we want to separate them by commas. */

PROC SQL NOPRINT;

 SELECT PLAYER INTO :topRec separated by ", " FROM FINALRANKS WHERE RANK_REC=1;

 SELECT PLAYER INTO :topYds separated by ", " FROM FINALRANKS WHERE RANK_YDS=1;

 SELECT PLAYER INTO :topTds separated by ", " FROM FINALRANKS WHERE RANK_TDS=1;

RUN;

QUIT;

Applied Business IntelligenceSAS Global Forum 2012

DEFINING AN INPUT PROMPT

Input prompts can be easily defined. If you are working with existing SAS code, the Create New Stored Process

Wizard will assist you by locating macro variables in the SAS code that can be used as possible prompts.

Display 13. Creating Input Prompts

Applied Business IntelligenceSAS Global Forum 2012

Note in the previous screen shot that four different variables are offered as possible input prompts, including the

previously discussed _WEBIN_SASNAME (which does not need to be defined as an input prompt because the SAS

Add-In for Microsoft Office will automatically set its value). The other three prompts (team, title, and numrows) are all

values that we want the user to provide.

After you select a variable to use or request that a new prompt be created, a dialog box will appear that lets you

provide the name of the macro variable (“title” in this case) and a label to be used to describe the value for the macro

variable in the Displayed text field. On the Prompt Type and Values tab, you can choose the type of prompt and

the default value when they are presented with the prompts as they execute the stored process.

Display 14. Creating a New Output Parameter

New output parameters are even easier to create. The first entry is the name of the macro, followed by the expected

type of the macro. Remember that all macro values are really just text. The expected type is a hint to the client

application that this text might represent a different data type (such as numeric, date, and so on). As with input

prompts, the Displayed Text and Description fields provide descriptive information that is used at run time to help

identify the purpose of the returned value.

In this example, we will be setting the three output parameters to reflect the leader in each of the statistical

categories.

PROVIDING PROMPTS FROM EXCEL

Now, you have a stored process that combines all of these features: input streams, prompts, and output parameters.

It is time to put this stored process to work. First, you will need to have an Excel worksheet that contains your data.

For the NFL Receivers stored process, we have a worksheet that contains receiving data for around 500 players in

the National Football League (NFL).

To run this stored process in Excel, click Reports in the SAS tab and find the stored process that we just created.

The first thing that we are prompted for is the prompts. The input prompts are shown in a separate dialog box since

the prompts themselves are shared between several SAS applications.

The “Show top N” prompt lets us choose how many players to include in our final report. We also have the ability to

filter so that we just have the prompts for a specific team. Finally, we can choose the name of the report. For the first

run, we will use all of the default values.

Applied Business IntelligenceSAS Global Forum 2012

Next, we are presented with a dialog box to select the input data source, the location for the stored process results,

and the location of the output parameters. We have to provide the input data because the stored process cannot run

without it. Using the range selector button, we can use the Choose Location dialog box to select our input data. If

you hover over the input data source name or text box, the description of the data source will be shown as a tooltip.

If the stored process author provided any description of the data, this tooltip might tell you what column names are

expected with the input data.

To keep the results separate from the input data, we will put the results on a new worksheet called “NFL Receivers.”

For the output parameters, we might not be ready to choose their output location. It is usually a good idea to see

what the results look like first and then decide where the output parameters should go. We can leave the output

parameters unchecked for our first pass. We can always access these later on.

Display 15. Supplying Input Data Sources from Excel

 We run the stored process to see our results. The stored process runs on the stored process server and returns a

top 10 list of receivers in a simple report.

Applied Business IntelligenceSAS Global Forum 2012

Display 16. Sample Output in Excel

LINKING PROMPTS TO EXCEL CELLS

Now that we have the report output in Excel, we want to link the prompts to values in the Excel worksheet. We had

three prompts before: one for the number of players to include, another for a team filter, and a third for the title of the

report. We want to be able to change these prompts by simply modifying our worksheet. To do this, we need to add

the values that we want to use for the report to our worksheet. We add those values to the side of the results.

Display 17. Providing Prompt Values in the Worksheet

To link these values to the stored process, we need to run the stored process again. There are two ways to re-run a

stored process. The first is to simply ‘refresh’ the stored process, which will run the stored process again without

prompting the user. The same values are used for prompts and input streams as the previous run of the the stored

process. The other way is to ‘modify’ the stored process, which will run the stored process again but show the

prompts so that the user can change them. To wire up our cell values, we need to use the Modify option, which is in

the Selection group on the SAS tab.

Applied Business IntelligenceSAS Global Forum 2012

Display 18. Using the Range Selector Buttons

When we select Modify, the prompts dialog box appears again. Notice the range selector buttons on the prompts

dialog box. These buttons will be available only in Excel and only for prompts that use simple text, numeric, or date

types. To link a specific prompt value to a cell, click the range selector button and choose the cell in the Excel

worksheet that contains the input value.

Display 19. Linking Input Prompts to Cell Values

The SAS Add-In dialog box tells you the name of the prompt that you are assigning, and after you select the cell with

the input value, it displays the cell address. You can also type in the SAS Add-In dialog box to specify the cell

address. After you click OK in the SAS Add-In dialog box, the prompt dialog box will be updated to show the cell

address of the input data you selected. The SAS add-in will update the value in the prompt dialog box based on the

contents of that cell each time that the dialog is shown.

Applied Business IntelligenceSAS Global Forum 2012

Display 20. Prompts Dialog Box with Linked Excel Values

Now in the prompts dialog box, you see the fully qualified cell address where the value is being retrieved , and the

SAS Add-In for Microsoft Office will track that location. Even if you insert new cells or move cells around your

worksheet, the SAS add-in will know where to find the prompt values the next time the stored process runs.

If you want to break the link with the cell, simply type the new cell address in the text box (to indicate that you want to

provide a specific value), and the cell reference is removed. In the screen shot above, we have wired in all three

prompts to their corresponding cells. Notice we still do not need to provide a value for the team filter if we do not

want to, but we can still map to that cell so that if we provide a value later, it will be picked up. Now that our prompts

are linked, click Run to continue.

Applied Business IntelligenceSAS Global Forum 2012

INCLUDING OUTPUT PARAMETERS

Now we are prompted with the input data and output parameter dialog box again. There is no need to re-specify the

input data source because the SAS add-in remembers where the data was before and will reuse the same cells.

Display 21. Providing Output Parameters from Excel

Now we can insert our output parameters. We have the ability to control which output parameters we want to include

in the report. We do not have to include any, or we can include specific ones. For each output parameter, we need

to choose the cell location where they will be placed. We use the same mechanism with the range selector button to

choose the location where each output parameter is displayed when the stored process runs.

Display 22. Choosing Excel Cells for Output Parameters

The title of the Choose Location dialog box tells you which output parameter you are choosing the location for. We

will put the values of the output parameters in cells H9 through H11, choosing one cell for each output parameter.

Now when we run the stored process, we will see all of our results in the worksheet.

Applied Business IntelligenceSAS Global Forum 2012

Display 23. Sample Report with Output Parameters in Excel

We do not quite have the report that we want yet. Perhaps we want to add headings for the three output parameters

so we know what they mean. We might also want to move those cells to the right so that they line up with our input

prompts. If you select H9 through H11 and drag them over to the right, the cells are moved.The SAS add-in will

recognize that the cells have moved, and when the stored process is refreshed, the SAS add-in will look in column I

for where to put the output parameters.

Now we can add our headings and change some cell values for our input prompts. After we do this, since everything

is linked to our worksheet, we can simply use the Refresh button on the SAS tab to run the stored process again,

and we will not be prompted. The SAS add-in will look in the worksheet to the linked cells for the values to send to the

stored process.

Display 24. Modified Report with Output Parameters in Excel

At this point, the stored process is fully interactive with the worksheet. You can simply update your worksheet with

the values you want to see, and when you refresh the stored process, SAS will update your results.

Applied Business IntelligenceSAS Global Forum 2012

CHANGING THE INPUT DATA

Another way that this becomes even more powerful is that when you modify the stored process, you can choose to

change the input data source. The example we used was based off of 2011 data. Suppose you have other

worksheets with 2010 and 2009 data. When you choose to modify the stored process, you can change the input data

that you reference. In the Choose Location dialog box, you can select data on a different worksheet by simply

navigating to that worksheet and choosing your input data. The new range will be tracked, and when the stored

process runs, the SAS add-in will use the new range of data.

Display 25. Changing the Input Data Source in Excel

REFRESHING FROM VISUAL BASIC FOR APPLICATIONS (VBA)

Using the scripting capabilities in the SAS Add-In for Microsoft Office, you can make this report even more interactive

with the Excel worksheet. Instead of selecting Refresh from the SAS tab, you might want to have an Excel button in

the worksheet that you can click that will refresh the result. Doing this is very easy with a little bit of VBA.

To do this, go to the Developer tab in Microsoft Excel and choose Visual Basic to access the VB Editor. Select

Insert->Module, and a new code module is added to the workbook. You also need to add the SAS Add-In for

Microsoft Office as a reference. To add this reference, select Tools->References and select the SAS Add-In 5.1 for

Microsoft Office reference.

Applied Business IntelligenceSAS Global Forum 2012

Display 26. Assigning a Reference to the SAS Add-In 5.1 for Microsoft Office

Using VBA to refresh the content will also work with the SAS Add-In 4.3 for Microsoft Office if you are using that

release. After the reference to the SAS Add-In for Microsoft Office is added, you can write a macro that will refresh

the content. Here is what that macro would look like:

Sub RefreshContent()

 Dim sas As SASExcelAddIn

 Set sas = Application.COMAddIns.Item("sas.exceladdin").Object

 sas.Refresh ("NFL_Receivers")

End Sub

To find out the name of the stored process to refresh on the “sas.Refresh” call, select the results you want to refresh

and select Properties from the SAS tab. The Properties dialog box appears and shows the object name of the

results. Specify the value of the object name in the Refresh method to make sure that this method refreshes the

specified results.

After you have created the macro, the next step is to add a button in the Excel worksheet that calls it. On the

Developer tab, select a button from the Insert drop-down list. Draw the button on your worksheet. When you are

done you are prompted to assign a macro to the button. The RefreshContent macro that we just ran is available in

the list, so if you select this macro, then you will have all of the wiring that you need.

Applied Business IntelligenceSAS Global Forum 2012

Display 27. Assigning a macro to a button in Microsoft Excel

Now you can click the button in the worksheet to refresh the stored process. At this point, the user does not need to

be aware that they are actually working with SAS. The user is simply interacting with the Excel worksheet, but

leveraging the power of SAS through a stored process.

If you are interested in more VBA functionality, see “Tips and Tricks for Automating the SAS Add-In for Microsoft

Office using Visual Basic for Applications.” This paper was written for SAS Global Forum 2011 and shows many

examples of scripting using the SAS add-in.

OTHER POSSIBILITIES - CHAIN STORED PROCESSES TOGETHER

Now that you have seen some examples of how to create stored processes and use input streams, prompts, and

output parameters, you can begin to put together stored processes that blend the power of SAS with the environment

of Excel and create a rich user experience.

One possibility is chaining stored processes together. Chaining stored processes can be achieved by having the

output of one stored process feed into another stored process. You can do this with an output parameter from the

first stored process being written to a particular cell in Excel. Then, the next stored process can read that cell as the

input value of a prompt . Now you have stored processes that chain together.

Using the SAS Add-In for Microsoft Office, you can control the order in which these stored processes are refreshed.

In the Manage Content dialog box, you can use the up and down arrows to set the order of the stored processes, and

then select the check box to refresh the analyses in order. Then it is as easy as choosing to refresh them all from the

Manage Content dialog box. The result is an experience similar to a process flow.

Applied Business IntelligenceSAS Global Forum 2012

OTHER POSSIBILITIES - AUTOMATING REFRESHES BASED ON EXCEL
EVENTS

Another way that you can leverage Excel to use the power of SAS is to use VBA to listen for events in Excel. You

could listen for a SheetChange event to tell you that the cell containing your prompt for a stored process was

changed. When you detect that the cell changed, you could use the automation interface for the SAS add-in to force

the stored process to refresh itself, which would pull in your new prompt values.

Doing this is quite simple. After you have your results and your prompts linked to cells, you can create a new named

range that maps to the cells where your input prompts exist. Then, in the Visual Basic editor, find “ThisWorkbook” in

your project tree and add the following code. The following example assumes that the name of the range that you

defined is “StpInputPrompts,” and the object name of your results is “NFL_Receivers”.

Display 28. VBA to Automatically Refresh SAS Content

CONCLUSION

Microsoft Excel is a widely used application. Everyone is familiar with the environment, and many users store their

data there. SAS is a very powerful application and can provide insight and knowledge about your data. Tying these

two applications together provides a familiar environment with the accessibility of high-powered analytics. Stored

processes and the SAS Add-In for Microsoft Office is the bridge to bring these two applications together.

The examples in this paper are just the tip of the iceberg. With the ability to get data from Excel and return data to

Excel, stored process authors can write customized processes to deliver an Excel-like experience to their consumers.

REFERENCES

Beese, Tim. 2011. “Tips and Tricks for Automating the SAS Add-In for Microsoft Office using Visual Basic for

Applications”. Proceedings of the SAS Global Forum 2011 Conference, Cary, NC: SAS Institute Inc. Available at

http://support.sas.com/resources/papers/proceedings11/012-2011.pdf

Applied Business IntelligenceSAS Global Forum 2012

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Tim Beese

SAS Campus Drive

SAS Institute Inc.

tim.beese@sas.com

Greg Granger

SAS Campus Drive

SAS Institute Inc.

greg.granger@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applied Business IntelligenceSAS Global Forum 2012

mailto:tim.beese@sas.com
mailto:greg.granger@sas.com

	2012 Table of Contents

