
1

Paper 017-2012

SAS® IOM AND YOUR .NET APPLICATION MADE EASY

Karine Désilets, Statistics Canada, Ottawa, Ontario, Canada

ABSTRACT

At Statistics Canada, many statistical systems are implemented in a client-server development context allowing

maximum use of SAS

tools, software and solutions. This article focuses on development of Microsoft .Net client

applications using SAS Integrated Object Model (IOM) to take advantage of the processing, analysis, reporting and

data storage power of SAS.

This article covers a number of best practices such as the different communication modes between Microsoft .Net

and SAS, types of SAS

code execution, parameter management, libref and fileref management, error management

with raised event, data acquisition via Ado.Net, automated analysis of SAS log files and management of customized

return codes between SAS and Microsoft .Net. Finally, a few broader topics associated with this work and future

research projects are addressed.

INTRODUCTION

This article is intended for programmers who want to build applications in a Microsoft .Net environment that utilize

SAS technology via SAS IOM, a component of SAS Integration Technologies. This avenue has already been

explored in articles (2), (5), (6), (7) and (12), which deal with specific tasks.

The IOM’s full potential is exploited here by defining a class, called SasEasyIom, which manages the main elements

needed to build an application. This article’s unique contribution lies in the integrative impact of the SasEasyIom class

and the best practices associated with its use. It provides developers with everything they need to integrate SAS with

a client technology such as Microsoft .Net.

SASEASYIOM CLASS OVERVIEW

The SasEasyIom class is written in C# in a Microsoft .Net environment (the code is presented in Appendix A). It

contains all the properties, methods and events required to manage the SAS connection.

For convenience, mySasCon object, which is an instance of the SasEasyIom class, is referenced throughout the

examples presented in this article. This unique object contains the IOM’s main functionalities. Using the object makes

the IOM’s functionalities even more transparent and much simpler. The SasEasyIom class offers programmers the

following functionalities:

 Open and close a SAS session in local mode, client/server mode and client/server mode by logical

name (openWS and closeWS)

 Submit SAS code (submitSASCode)

 Submit stored processes (SubmitStoredProcess)

 Assign and deassign librefs and filerefs (using the FileService and DataService interfaces)

 Acquire data using Ado.Net (getDS, closeDS)

 Analyze the log automatically (log, analyzeLog)

 Return customized return codes between a SAS program and a Microsoft .Net environment

(getErrCode)

 Manage errors by events: StepError, SubmitComplete, ProcStart, ProcComplete, DatastepStart and

DatastepComplete

COMMUNICATION BETWEEN MICROSOFT .NET AND SAS

The foundation for communications between a Microsoft .Net client and SAS can be divided into three modes: local,

client/server by server name and client/server by logical name via a metadata server. Of course, it is preferable to

use the power of the SAS Metadata Server since that technology makes it possible to connect transparently to a

server without knowing its exact address on the network. A change in a server’s address has no impact on the .Net

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

2

application code. Finally, the server security is managed through the SAS Metadata Server.

Figure 1. Communication between Microsoft .Net application and SAS in the context of SAS Metadata Server

CONNECTION BY LOGICAL NAME

Connection by logical name requires two XML configuration files containing the connection metadata. The XML files

are read by the SetMetadataFile method. The system configuration file contains the following information: the port,

the server name, the connection type and the communication protocols. It may also contain the username and the

password, but if a user configuration file exists, it will take precedence over the system configuration file. The user’s

configuration file contains information about the user, the password and the domain.

Those configuration files can be created by either running the SAS Integration Technologies Configuration Wizard

(Itconfig2.exe) or by editing the two XML files directly. The first method provides special interfaces that allow the user

to change the connection configuration settings and save the results in XML files. It is recommended that the wizard

be used to test the connection with the XML files. It is also possible to automate the creation of the two XML files

directly in the .Net code. For more information about this technique, see (11). The two following examples show two

different instances of XML files, one containing information about the server and the other about the user.

XML file containing information about the server

<?xml version="1.0" encoding="UTF-8" ?>

<Redirect>

 <LogicalServer Name="Open Metadata Server"

 ClassIdentifier="0217E202-B560-11DB-AD91-001083FF6836">

 <UsingComponents>

 <ServerComponent Name="Open Metadata Server"

 ClassIdentifier="0217E202-B560-11DB-AD91-001083FF6836">

 <SourceConnections>

 <TCPIPConnection Name="Open Metadata Server" Port="8561"

HostName="disneysasmeta.statcan.ca"

ApplicationProtocol="Bridge" CommunicationProtocol="TCP">

 </TCPIPConnection>

 </SourceConnections>

 </ServerComponent>

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

3

 </UsingComponents>

 </LogicalServer>

</Redirect>

XML file containing information about the user

<?xml version="1.0" encoding="UTF-8" ?>

 <AuthenticationDomain Name="DefaultAuth">

 <Logins>

 <Login Name="statcan\mickey" UserID="statcan\mickey"

 Password="{base64}SnVzdGluTmF="></Login>

 </Logins>

 </AuthenticationDomain>

The SasEasyIom class uses these two XML files to connect. Below is an example of how it connects from the class

interface to the DISNEY - PROD - Logical Workspace Server:

SasEasyIom mySasCon = new SasEasyIom();

bool myConnect = false;

mySasCon.logicalName = "DISNEY - PROD - Logical Workspace Server";

mySasCon.ServerXmlInfo =

"C:\\ProgramData\\SAS\\MetadataServer\\oms_serverinfo.xml";

mySasCon.UserXmlInfo =

"C:\\Users\\mickey\\AppData\\Roaming\\SAS\\MetadataServer\\oms_userinfo.xml";

myConnect = mySasCon.openWS(2);

if (myConnect == true)

{

// program implementation

}

The C# code that establishes the connection uses the two metadata files (MyserverFileName and myUserFileName)

and the server’s logical name (MyLogicalName in the example below). That code is extracted from the OpenWS

method of the SasEasyIom class. The class also offers the option of connecting in local mode and client/server mode

by server name. Here is the code for a logical name connection in client/server mode:

obObjectFactory.SetMetadataFile(MyserverFileName, myUserFileName, false);

mySAS = (SAS.Workspace)obObjectFactory.CreateObjectByLogicalName(MyLogicalName,

 "");

Con.ConnectionString = "provider=sas.iomprovider.1;sas workspace ID=" +

 mySAS.UniqueIdentifier;

Con.Open();

SAS CODE EXECUTION

SAS code is executed through Microsoft .Net by calling the SubmitSASCode method of the SasEasyIom class. This

method allows running previously created SAS code. There are several ways of creating SAS code.

Executing dynamic SAS code directly in C# code

The first technique is to create the code dynamically in the .Net environment. This technique is advantageous for

short calls; however, maintenance of the code can quickly become cumbersome:

string SasCode = null;

SasCode = "data bestCharacters; name = 'Mickey'; rank = 1; run;";

mySasCon.SubmitSASCode(SasCode);

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

4

Executing SAS or macro code from an external (.sas) file

Another way is to include the code in an external .sas file. This makes it possible to add longer programs that are
independent of the .Net code. The presentation layer is separated from the processing layer. Furthermore, the code
may contain partial or complete programs or macros.

string SasCode = null;

SasCode = "%include 'C:\\Orlando\\programs\\helloMickey.sas';";

mySasCon.SubmitSASCode(SasCode);

Executing stored compiled macro

Calling stored compiled macros has a speed advantage over calling external SAS (.sas) files since they are already

compiled.

string SasCode = null;

SasCode = "libname disney 'C:\\Orlando\\programs'; " +

 "options mstored " + " sasmstore = disney; " + " %helloPluto; ";

mySasCon.SubmitSASCode(SasCode);

In general, the use of macros and stored compiled macros helps generate complex, dynamic, reusable and easily
maintainable code.

Executing stored process

The fourth way is to call stored processes. A stored process is a server-based program that is parameterized and

transparent to the client. As well, like calling compiled macros, calling stored processes separates the SAS

processing layer from the client layer. The key feature of stored processes is that they are called without using SAS

language (10):

mySasCon.SubmitStoredProcess("C:\\spRepository", "createDisneyGraph", "")

The above SubmitStoredProcess method takes three parameters. The first one is the directory where the stored

process is located, the second one is the stored process filename and the third one is the parameter’s name and his
associated value (ex: “param1 = 1”).

INPUT MANAGEMENT

In programming, it is essential to have techniques for parameterizing programs so that they are reused under various

circumstances. In a Microsoft .Net environment, a number of techniques are used to parameterize the SAS code.

One technique is to define SAS variables dynamically in the C# code. Again, this technique is for short calls and

should be used sparingly as maintenance of the code quickly becomes cumbersome.

Other methods include using the SYSPARM option, creating external files containing the variables, calling macros

(stored in .sas files or catalogues) and calling parameterized stored processes. Again, the last two techniques are

preferred because they separate the client layers from the processing layers.

LIBREF MANAGEMENT

In SAS, librefs are particularly useful because they serve as labels that are temporarily assigned to folders. For

example, the storage location, in the form of a file path, can be determined from the libref. Two forms of path

assignment are available. One creates the libref directly by submitting SAS code (9):

string SasCode = null;

SasCode = "libname disney 'C:\\Orlando\\programs';";

mySasCon.SubmitSASCode(SasCode);

This method is simple and direct. However, it does not provide access to the various configurations available with the

DataService class. Another technique uses the AssignLibref method available in the DataService class of a

Workspace:

mySasCon.obDataServ.AssignLibref("disney", "", "C:\\Orlando\\programs", "");

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

5

This approach is much more complete in the fact that it takes advantage of the classes available with the Workspace,

because it can check whether a libref has been correctly assigned and it can make use of the other options available

in that class. The interface is also transparent to the SAS

code.

Writing the contents of a Microsoft Excel file in a SAS data set

This example is a typical use case in which the DataService class can be frequently used:

mySasCon.obDataServ.AssignLibref("xlsData", "excel", "C:\\Orlando\\charac.xls","");

mySasCon.SubmitSASCode("data bestCharacters; set xlsData.'best$'n; run;");

mySasCon.obDataServ.DeassignLibref("xlsData");

Reading a Microsoft Excel file through the SAS

Excel libname engine is straightforward. The workbook (charac.xls)

acts as a library and the spreadsheet (best) acts as a data set. Once the Excel file is read (and not needed for other
purposes), the reference to the libref xlsData can be deassigned and the Excel file closed.

Assigning a macro catalogue and executing a stored compiled macro

As previously showed, macro catalogues are useful and have a speed advantage. The following example shows how
to use them correctly with the DataService class:

mySasCon.obDataServ.AssignLibref("disney", "", "C:\\Orlando\\programs", "");

SasCode = "options mstored sasmstore = disney; %helloPluto()";

mySasCon.submitSASCode(SasCode);

FILEREF MANAGEMENT

File handling and management are important steps in programming. In the IOM, there is a FileService class for the

management of files and filerefs. Each SAS Workspace that is created has its own FileService object. In fact, in this

interface, when direct references to the server are avoided, it is possible to create applications that will run properly

on a number of platforms (8).

Managing a temporary fileref and a permanent fileref

The TEMP and DISK devices are used in the following example. TEMP creates a temporary file, stored in the same

folder as the WORK library. The file exists only as long as it is assigned in a SAS session, which is useful when the

file’s location is unimportant and has to be temporary. The DISK device refers to a permanent location.

string fileRef1 = null;

string fileRef 2= null;

mySasCon.obFileServ.AssignFileref("park", "DISK", "C:\\Orlando\\data\\park.txt",

 "", out fileRef1);

mySasCon.obFileServ.AssignFileref("tmpPark", "TEMP", "", "", out fileRef2);

SasCode = "data wdwPark; infile park; input ParkId rank; run; ";

mySasCon.submitSASCode(SasCode);

SasCode = "data _null_; set wdwPark; file tmpPark; put parkId rank; run; ";

mySasCon.submitSASCode(SasCode);

mySasCon.obFileServ.DeassignFileref("park");

mySasCon.obFileServ.DeassignFileref("tmpPark");

Reading an XML file

The example below shows that it is sometimes necessary to use a combination of filerefs and librefs to access certain

files. Among the latter are the XML files:

mySasCon.obFileServ.AssignFileref("xmlData", "DISK",

 "C:\\Orlando\\data\\characters.xml", "", out MyName);

mySasCon.obFileServ.AssignFileref("xsd", "DISK",

 "C:\\Orlando\\data\\schemaChar.xsd", "", out MyName);

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

6

mySasCon.obDataServ.AssignLibref("xmlBest", "xml", "",

"xmlfileref = xmlData xmlschema = xsd xmltype = generic " +

"ODSCHARSET = 'utf-8' xmlmeta = schemadata");

SasCode = "data bestCharacters; set xmlBest.MICROVARIABLE_RECORD; run;";

mySasCon.submitSASCode(SasCode);

With the use of the SAS

XML libname engine, an XML document can be imported as a SAS

data set or a SAS

data

set can be exported as an XML document. In order to achieve that, the filerefs are used to assign the XML document

and its associated schema file and next, through the SAS

XML libname engine the XML document has the possibility

to be imported or exported.

Methods for managing and manipulating files

In this interface, there are several methods for managing and handling files in the .Net environment.

string result1 = null;

string result2 = null;

string fullName = null;

string mypath = null;

Making a directory

mypath = mySasCon.obFileServ.MakeDirectory("C:\\", "Orlando");

The directory "C:\\Orlando" is created.

Splitting a directory name

mySasCon.obFileServ.SplitName("C:\\Orlando", out result1, out result2);

Debug.Print(result1 + result2);

result1 = Orlando and result2 = C:\\

Splitting a file name

mySasCon.obFileServ.SplitName("C:\\Orlando\\hollywoodStd.sas", out result1,

out result2);

result1 = hollywoodStd.sas and result2 = C:\\Orlando

Renaming a file

mySasCon.obFileServ.RenameFile("C:\\Orlando\\magicK.sas7bdat",

"C:\\Orlando\\mKingdom.sas7bdat");

The final file is now called "C:\\Orlando\\mKingdom.sas7bdat".

Deleting a file

mySasCon.obFileServ.DeleteFile("C:\\Orlando\\epcot.sas7bdat");

The file "C:\\Orlando\\epcot.sas7bdat" has been deleted.

Creating a full name file

fullName = mySasCon.obFileServ.FullName("animalKingdom.sas7bdat", "C:\\Orlando");

The full name file "C:\\Orlando\\animalKingdom.sas7bdat" has been created.

ERROR MANAGEMENT WITH RAISED EVENTS

When a SAS program is run from a Microsoft .Net environment, events may be captured by the .Net application.

Errors arising in SAS programs are managed with the events StepError, DatastepStart, DatastepComplete, ProcStart,

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

7

ProcComplete and SubmitComplete, all available in the SasEasyIom class. They detect when an error occurs in the

code, when a DATA or PROC step begins or ends, and when submission of the program is completed. They are very

useful for validating proper execution of the code or detecting errors. They can be managed in various ways in the

.Net environment and depend on the application’s context.

When an error occurs in a SAS program, the reset or cancel methods can be used to manage the state of the

LanguageService (1) in the .Net environment. The reset method puts LanguageService back in its initial state. It is

useful for extricating LanguageService of an error associated with the execution of invalid syntax or an incomplete

program (1). The cancel method interrupts execution of the program submitted, and LanguageService executes the

reset method.

ACQUISITION OF DATA VIA ADO.NET

Running SAS programs also involves processing data files. The latter are stored permanently or temporarily in

libraries. They generally contain data in the form of data sets or SAS views. The data can be accessed in a Microsoft

.Net environment by connecting to the OLE DB data source via Ado.Net.

In this case, the connection to the data source is created with the opening of the Workspace and remains associated

with the Workspace through a unique identifier. With this unique identifier workspace property, the connection can

then be reused to acquire data, in the form of a data set object, with the getDS method. Please note that SQL

commands must be used to acquire the data when the getDS method is called.

Acquiring SAS data from the sashelp.class data set

SasCode = "select name from sashelp.class; ";

ds = mySASconnection.getDS(SasCode);

foreach (DataRow row in ds.Tables[0].Rows) // Loop over the rows.

{

 foreach (var name in row.ItemArray) // Loop over the items.

 {

 Debug.Print("Item: " + name); // Print label.

 }

}

It is important to keep in mind that when a Workspace is created in the Microsoft .Net environment, the SAS session

created is equivalent to one in batch mode. Consequently, the data available is in the Work, Sashelp or Sasuser

libraries or some other assigned library.

AUTOMATED ANALYSIS OF SAS LOG FILES

In a Microsoft .Net environment, the SAS log file is read using the FlushLog and FlushLogLines methods available

with the IOM’s APIs. FlushLog returns the log in the form of character strings, while FlushLogLines returns the log’s

components, or line types (including LineTypeError messages and LineTypeWarning messages), so that each line of

the log can be analyzed.

In the SasEasyIom class, two methods that implement these interfaces were developed. One of them, the log

function, reads the log and returns it in the form of character strings. The other, AnalyzeLog, is a procedure that

analyzes the SAS log and quickly identifies errors and warnings. It produces three output files: the log file, the error

file and the warning file for efficient debugging. This method is very useful after a SAS program is executed.

Calling the log and AnalyzeLog methods

logFile = "C:\\Orlando\\logs\\mylog.log";

warnFile = "C:\\Orlando\\logs\\warning.log";

errFile = "C:\\Orlando\\logs\\error.log";

mySasCon.ServerName = "localhost";

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

8

SasCode = "data bestCharacters; name = 'Mickey'; rank = 1 ; run; ";

myConnect = mySasCon.openWS(0);

if (myConnect == true)

{

 mySasCon.submitSASCode(SasCode);

 string saslog = (string) mySasCon.log();

 Debug.Print(saslog);

SasCode = "data bestCharacters; set minnie; rank = 2 ; run; ";

// Error if data set called minnie doesn’t exist

 mySasCon.submitSASCode(SasCode);

 mySasCon.analyzeLog(logFile, warnFile, errFile);

 mySasCon.closeWS();

}

The log and analyzeLog methods could be used in a completely different context. For more details on the interfaces

provided by the LanguageService object and the possibilities offered by the FlushLog and FlushLogLines methods,

see the documentation available under Integration Technologies (1).

CUSTOMIZED RETURN CODE FROM SAS TO MICROSOFT .NET

Using events to manage errors as described in section 6 has a finite set of use cases. It is here that the addition of a

return code between SAS and .Net becomes appropriate: it provides the SAS programmer with the flexibility to create

customized error codes. This approach requires the addition of the code in pink below in order to capture an error in a

SAS macro.

Template of a macro that permits customized return codes

%macro testErrCode(param=) ;

 %let procerr=;

 %if %substr(¶m,1,1) ne _ %then %do;

 %let procerr= 1;

 %put **********************ERROR**;

 %put ERROR : Parameters name must begin with an underscore(_ParameterName);

 %put ***;

 %end;

 %if (&procerr ne) %then %goto exit;

 %goto end;

 %EXIT: %abort cancel file &procerr;

 %END: %put "end testErrCode.sas";

%mend testErrCode;

The label %EXIT with %abort halts execution of the macro, the DATA step, the SAS program or the SAS session.

The addition of the Cancel option halts the elements that have just been submitted while the addition of the File

option prevents only the contents of the autoexec file or the %INCLUDE file from being erased by the %ABORT

element. The addition of the &procerr transfers the variable’s value to the automatic macro variable SYSINFO. At

this point, the client program can read the value of SYSINFO, which is stored in the sashelp.vmacro table. This

technique requires the SAS programmer to add error codes throughout the program and associate them with the

procerr variable. This approach makes it possible to create customized error types and transfer them to the client.

In order to avoid the addition of error codes throughout the program, the client program can also read the contents of

the automatic macro variable SYSERRORTEXT, which is also stored in the sashelp.vmacro table. This variable,

which is updated automatically, contains the text of the last error in the SAS program.

Finally, effective error management involves the use of several strategies, including raised events, automated log

analysis and customized error codes.

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

9

Calling the testErrCode macro from the Microsoft .Net environment

mySASCode = "%include 'C:\\Orlando\\programs\\testErrCode.sas'; ";

mySASconnection.SubmitSASCode(mySASCode);

mySASCode = "%testErrCode(param=_WaltDisney);";

mySASconnection.SubmitSASCode(mySASCode);

errCode = mySASconnection.GetErrCode();

System.Windows.Forms.MessageBox.Show("ERROR CODE VALUE :" + errCode);

//return 0 and no ls_StepError is raised

mySASconnection.closeWS();

CONCLUSION

In concrete terms, we have laid the foundation for the construction of client/server infrastructures and applications

that combine the power of the SAS IOM with Microsoft .Net and SAS technologies. A developer interested in

developing applications that link Microsoft .Net and SAS now has all the tools required to effectively manage those

technologies.

The work done so far with the SasEasyIom class has been in an R&D environment with the aim of validating the

methodologies. Other elements or variants may be added to what has already been developed. For example, the

class may need to be adjusted to reflect specific characteristics associated with the application’s domain. For that

reason, the documentation available in (1), (3), (8), (9) and (11) is very important and can be consulted to ensure that

the available classes can be judiciously exploited.

Furthermore, these technologies are interconnected, and when they combine and interact, the result is very powerful.

Depending on the domain, many other use cases are possible and should be dealt with specifically. We have barely

scratched the surface. The creative process associated with these technologies is not over.

REFERENCES

1. C:\Program Files\SAS\Shared Files\Integration Technologies - fichiers : sasoman.chm, sas.chm, saswman.chm.

2. SAS
®
 Integration Technologies, UNIX and Visual Basic .Net Integration Procedure. Chevrette, Antoine. Ottawa,

Canada : Sas Global Forum, 2008. paper 011-2008.

3. SAS
®
 9.2 Integration Technologies: Windows Client Developer’s Guide. Cary, NC : SAS Institute Inc, 2009. ISBN

978-1-59994-847-8.

4. SAS
®
 9.2 Integration Technologies: Overview. Cary, NC : SAS Institute Inc, 2009. ISBN 978-1-59994-851-5.

5. Enterprise Integration Technologies What is it and what can it do for me? Vodicka, Scott. Cary, NC : SAS, 2000.

6. Using IOM and Visual Basic in SAS
®
 Program Development. Greg Silva. Cambridge, MA : Biogen, Inc., 2003.

7. Access to SAS
®
 Data Using the Integrated Object Model (IOM) in version 9.1. Pratter, Frederick. Eastern

Oregon University, La Grande, OR : PharmaSUG 2005 AD05, 2005.

8. Developing Windows Clients - FileService Object. FileService Object. [Online] [Cited: 2011-18-08.]

http://support.sas.com/rnd/itech/doc/dist-obj/comdoc/fsvca.html.

9. Developing Windows Clients - DataService Object. DataService Object. [Online] [Cited: 2011-18-08.]

http://support.sas.com/rnd/itech/doc9/dev_guide/dist-obj/comdoc/iyhlca.html.

10. Creating and Using SAS
®
 Stored Processes. Eric Rossland, Kari Richardson. Philadelphia, Pennsylvania :

SAS Institute Inc., 2005. Paper 135-30.

Applications DevelopmentSAS Global Forum 2012

http://support.sas.com/rnd/itech/doc/dist-obj/comdoc/fsvca.html
http://support.sas.com/rnd/itech/doc9/dev_guide/dist-obj/comdoc/iyhlca.html

SAS® IOM and your .Net Application Made Easy

10

11. Sample 26056: Microsoft Visual Studio 2005 C# Code Snippets. [Online] [Cited: 2011-18-08.]

http://support.sas.com/kb/26/056.html.

12. Through the Looking Glass:Two Windows into SAS
®
. Peter Eberhardt, Richard A. DeVenezia. Toronto,

Canada : SAS Institute Inc., 2005, Vols. SUGI-30. Paper 003-30.

13. SAS
®
 Integration Technologies - Expanding your choices for integrating SAS Intelligence. [Online] 2011. [Cited:

2011-29-06.] http://www.sas.com/resources/factsheet/sas-integration-technologies-factsheet.pdf.

ACKNOWLEDGMENTS

I would like to thank Chantal Marquis and Yves Deguire first for giving me the opportunity to explore this technology

and then for encouraging me to write about it. I would also like to thank Antoine Chevrette and Marc Thomson, who

strongly encouraged me to write and revise this article. Finally, I would like to thank everyone at Statistics Canada’s

SAS Technology Centre who works directly or indirectly with me. It is a pleasure to work with all of you.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Karine Désilets
Statistics Canada
R.H. Coats 100 Tunney’s Pasture Driveway
Ottawa Ontario, K1A 0T6
613-951-3948
karine.desilets@statcan.gc.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX A – SASEASYIOM CLASS

public class SasEasyIom

{

 SAS.Workspace mySAS; // SAS session

 SAS.LanguageService ls; //Submitting SAS language

 SAS.StoredProcessService SASproc;//SAS stored process

SASObjectManager.ObjectFactoryMulti2 obObjectFactory = new

SASObjectManager.ObjectFactoryMulti2();

SASObjectManager.ServerDef obServer = new SASObjectManager.ServerDef();

SASObjectManager.ObjectKeeper objectkeeper = new

SASObjectManager.ObjectKeeper();

public SAS.FileService obFileServ; // manage filerefs

public SAS.DataService obDataServ; // manage librefs

System.Data.OleDb.OleDbConnection Con = new

System.Data.OleDb.OleDbConnection();

DataSet ds = new DataSet();

System.Data.OleDb.OleDbDataAdapter oDA = new

System.Data.OleDb.OleDbDataAdapter();

private string MyLogin; //username

private string MyPassword;//password

private int MyServerPort; //port info

private string MyServer; //serverName

Applications DevelopmentSAS Global Forum 2012

http://support.sas.com/kb/26/056.html
http://www.sas.com/resources/factsheet/sas-integration-technologies-factsheet.pdf
mailto:karine.desilets@statcan.gc.ca

SAS® IOM and your .Net Application Made Easy

11

private string MyLogicalName; //server logical name

private string MyserverFileName; //Xml server filename

private string myUserFileName; //Xml user filename

//********** serverName **********//

public object serverName {

 get { return MyServer; }

 set { MyServer = (string)value; }

}

//********** port **********//

public object port {

 get { return MyServerPort; }

 set { MyServerPort = (int)value; }

}

//********** login **********//

public object login {

 get { return MyLogin; }

 set { MyLogin = (string)value; }

}

//********** password **********//

public object password {

 get { return MyPassword; }

 set { MyPassword = (string)value; }

}

//********** logicalname **********//

public object logicalName {

 get { return MyLogicalName; }

 set { MyLogicalName = (string)value; }

}

//********* server XML info *******//

public object serverXmlInfo {

 get { return MyserverFileName; }

 set { MyserverFileName = (string) value; }

}

//********* user XML info **********//

public object userXmlInfo {

 get { return myUserFileName; }

 set { myUserFileName = (string) value; }

}

//*************************************

//open a workspace

//*************************************

public bool openWS(int conType) {

 Boolean connect;

 connect = false;

 if (conType == 0) //local host

 {

 obServer.MachineDNSName = MyServer;

 obServer.Port = MyServerPort;

 obServer.Protocol = SASObjectManager.Protocols.ProtocolCom;

 mySAS = (SAS.Workspace)obObjectFactory.CreateObjectByServer ("myServer" +

 conType.ToString(), true, obServer, MyLogin, MyPassword);

 }

 else if (conType == 1)//by serverName

 {

 obServer.MachineDNSName = MyServer;

 obServer.Port = MyServerPort;

 obServer.Protocol =

 SASObjectManager.Protocols.ProtocolBridge;

 mySAS = (SAS.Workspace)obObjectFactory.CreateObjectByServer("myServer" +

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

12

 conType.ToString(), true, obServer, MyLogin, MyPassword);

 }

 else if(conType == 2)//by logicalName

 {

 obObjectFactory.SetMetadataFile(MyserverFileName,

 myUserFileName, false);

 mySAS = (SAS.Workspace)

obObjectFactory.CreateObjectByLogicalName(MyLogicalName, "");

 System.Windows.Forms.MessageBox.Show("SAS server running on: " +

 mySAS.Utilities.HostSystem.DNSName);

 }

 configureSASLanguageEvents(mySAS); //Instantiate sasLSevents

 obDataServ = mySAS.DataService;

 obFileServ = mySAS.FileService;

 objectkeeper.AddObject(1, "myServer" + conType.ToString(), mySAS);

 if (MyServer.ToUpper() == (string)"LOCALHOST")

 {

 Con.ConnectionString = "provider=sas.iomprovider.1; sas workspace ID=" +

 mySAS.UniqueIdentifier + "; Data Source=_LOCAL_";

 }

 else

 {

 Con.ConnectionString = "provider=sas.iomprovider.1; sas workspace ID=" +

mySAS.UniqueIdentifier;

 }

 Con.Open();

 //Remove obSAS form the object keeper

 objectkeeper.RemoveObject(mySAS);

 if ((ConnectionState)ConnectionState.Open == Con.State)

 {

 connect = true;

 }

 return connect;

}

//*************************************

// Procedure closeWS

//*************************************

public void closeWS() {

 closeDS();

 mySAS.Close();

}

//*************************************

// Procedure submitSASCode

//*************************************

public void submitSASCode(string strSASCode) {

 SAS.LanguageService ls = default(SAS.LanguageService);

 string[] arSource = new string[2];

 ls = mySAS.LanguageService;

 arSource[0] = strSASCode;

 System.Array linesVar = arSource;

 ls.SubmitLines(ref linesVar);

}

//*************************************

// Procedure SubmitStoredProcess

//*************************************

public void SubmitStoredProcess(string repository, string storedProcess,

 string parameter) {

 SASproc = mySAS.LanguageService.StoredProcessService;

 SASproc.Repository = "file:" + repository;

 SASproc.Execute(storedProcess, parameter);

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

13

 }

//*************************************

// Procedure closeDS

//*************************************

public void closeDS() {

 if (((oDA != null)))

 {

 oDA.Dispose();

 oDA = null;

 }

 if (((Con != null)) && (Con.State != ConnectionState.Closed))

 {

 Con.Close();

 Con = null;

 }

 if (((ds != null)))

 {

 ds.Dispose();

 ds = null;

 }

}

//*************************************

// Function getDS

//*************************************

public DataSet getDS(string mySelectQuery) {

 DataSet dst = new DataSet();

 bool r = false;

 try

 {

 r = oDA.ContinueUpdateOnError;

 oDA.SelectCommand = new

System.Data.OleDb.OleDbCommand(

mySelectQuery, Con);

 oDA.Fill(dst);

 return dst;

 }

 catch (Exception ex)

 {

 System.Windows.Forms.MessageBox.Show("Error :" + ex);

 return null;

 }

}

//*************************************

// Function getErrorCode

//*************************************

public int getErrCode() {

 int errCode = 0;

 string mystring;

 mystring = "select name, value from sashelp.vmacro where name = 'SYSINFO' " +

" or name = 'SYSERR' " + " order by name desc; ";

 ds = getDS(mystring);

 submitSASCode("data _null_;run;");

 try

 {

 if (((string)ds.Tables[0].Rows[0][0] == "SYSINFO" &

 (string)ds.Tables[0].Rows[0][1] != "0") &

 ((string)ds.Tables[0].Rows[0][0] == "SYSERR" &

 (string)ds.Tables[0].Rows[0][1] != "0"))

 {

 errCode = Convert.ToInt32(ds.Tables[0].Rows[0][1]);

 }

 return errCode;

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

14

 }

 catch (Exception)

 {

 ls.Reset();

 errCode = -2;

 return errCode;

 }

}

//*************************************

// Function log - Parse Sas log

//*************************************

public object Log(){

 return (mySAS.LanguageService.FlushLog(10000000));

}

//*************************************

// Procedure analyzeLog

//*************************************

public void analyzeLog(string outLog, string outWarning, string outError) {

 bool bMore = true;

 System.Array CCs = null;

 const int maxLines = 1000000000;

 System.Array lineTypes = null;

 System.Array logLines = null;

 string log = null;

 string errorTxt = null;

 string ParseLineType = null;

 string warningTxt = null;

 warningTxt = "";

 errorTxt = "";

 log = "";

 while (bMore)

 {

 mySAS.LanguageService.FlushLogLines(maxLines, out CCs, out lineTypes,

 out logLines);

 for (int i = 0; i <= logLines.Length - 1; i++)

 {

 log += (Convert.ToString(

logLines.GetValue(i)) + Environment.NewLine);

 }

 for (int k = 0; k <= logLines.Length - 1; k++)

 {

 ParseLineType = Convert.ToString(lineTypes.GetValue(k));

 if (ParseLineType == "LanguageServiceLineTypeError")

 {

 errorTxt += ("The line is an error message line: " +

 Convert.ToString(logLines.GetValue(k)) +

 Environment.NewLine);

 }

 else if (ParseLineType == "LanguageServiceLineTypeWarning")

 {

 warningTxt += ("The line is a warning message line: " +

 Convert.ToString(logLines.GetValue(k)) +

 Environment.NewLine);

 }

 }

 if (logLines.Length < maxLines)

 {

 bMore = false;

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

15

 }

 }

 //Print errors in a file

 if (errorTxt.ToString().Length != 0)

 {

 using (StreamWriter outfile = new StreamWriter(outError))

 {

 outfile.Write(errorTxt.ToString());

 }

 }

 // Print warning in a file

 if (warningTxt.ToString().Length != 0)

 {

 using (StreamWriter outfile = new StreamWriter(outWarning))

 {

 outfile.Write(warningTxt.ToString());

 }

 }

 // Print log in a file

 if (log.ToString().Length != 0)

 {

 using (StreamWriter outfile = new StreamWriter(outLog))

 {

 outfile.Write(log.ToString());

 }

 }

}

//*************************************

// Procedure configure Events

//*************************************

public void configureSASLanguageEvents(SAS.Workspace sasWorkspace)

{

 ls = mySAS.LanguageService;

ls.DatastepStart += new

SAS.CILanguageEvents_DatastepStartEventHandler(ls_DatastepStart);

ls.DatastepComplete += new

SAS.CILanguageEvents_DatastepCompleteEventHandler(ls_DatastepComplete);

ls.ProcStart += new SAS.CILanguageEvents_ProcStartEventHandler(ls_ProcStart);

ls.ProcComplete += new

SAS.CILanguageEvents_ProcCompleteEventHandler(ls_ProcComplete);

ls.StepError += new SAS.CILanguageEvents_StepErrorEventHandler(ls_StepError);

ls.SubmitComplete += new

SAS.CILanguageEvents_SubmitCompleteEventHandler(ls_SubmitComplete);

}

//*************************************

// Procedure ls_StepError

//*************************************

private void ls_StepError()

{

 ls.Reset();

 Debug.Print("Error in SAS code !!!! " +

 Environment.NewLine);

}

Applications DevelopmentSAS Global Forum 2012

SAS® IOM and your .Net Application Made Easy

16

//*************************************

// Procedure ls_SubmitComplete

//*************************************

private void ls_SubmitComplete(int Sasrc)

{

 Debug.Print("Submit Completed " +

 String.Format("{0:0.00}", Sasrc));

}

//*************************************

// Procedure ls_ProcStart

//*************************************

private void ls_ProcStart(string Procname)

{

 Debug.Print("Proc Started" + Procname);

}

//*************************************

// Procedure ls_ProcComplete

//*************************************

private void ls_ProcComplete(string Procname)

{

 Debug.Print("Proc Completed" + Procname);

}

//*************************************

// Procedure ls_DatastepStart

//*************************************

private void ls_DatastepStart()

{

 Debug.Print("DatastepStart");

}

//*************************************

// Procedure ls_DatastepComplete

//*************************************

private void ls_DatastepComplete()

{

 Debug.Print("DatastepComplete");

}

}

Applications DevelopmentSAS Global Forum 2012

	2012 Table of Contents

