
1

Paper 015-2012

Custom Analysis and Reporting with the JMP® Application Builder

Daniel Schikore, SAS Institute, Cary, NC, USA

ABSTRACT

The JMP Application Builder is a drag-and-drop environment for custom application development. Developers have
access to the full capabilities of JMP, including more than 50 analysis and graphics platforms for in-memory analytics,
as well as custom scripting with JSL to connect with SAS

®
 or R for more powerful techniques. Custom, multi-window

reports can be created interactively without having to write scripts at all. A flexible, hierarchical data filter allows the
developer to apply filters to all or parts of a report. The developer can deploy a JMP Application for other JMP users
to run, optionally encrypting the application with a password required to run the application.

INTRODUCTION

JMP is a desktop tool for in-memory data discovery and visual analytics. In addition to an extensive collection of a
statistical and graphical capability, each release brings new ways to customize JMP. The JMP Scripting Language
(JSL) includes support for creating and modifying strings and matrices, data tables, display box hierarchies (GUIs)
and JMP platforms. The large collection of built-in statistical functions can be augmented through communication to
external applications, including SAS and R.

A number of custom applications have been developed using JSL with SAS
®
 Integration Technologies [Miclaus]

[Watson]. JMP 9 added the ability to package and distribute scripts as an Add-In [Hill], making it easier to deploy
custom applications within an organization or to a larger community. Add-Ins have the advantage that they embed
new commands into the menus of JMP – a real convenience for scripts that are used repeatedly.

The JMP Application Builder is a new visual programming environment for JMP 10. You use intuitive drag-and-drop
operations to create each application window. This eliminates a tedious part of the scripting process and makes it
easy to experiment with various GUI configurations. You set properties on both the GUI objects and the Application
objects through an integrated property table. Applications consisting primarily of JMP platforms often require no
additional scripting, and can be parameterized to allow for runtime selection of columns to analyze. More complex
applications can be created by adding custom JSL scripts to access the full capabilities of JMP, including integration
with SAS and R. Applications can be saved to disk, stored as an attribute in a data table, deployed as an Add-In, or
integrated into a higher level process script.

JMP APPLICATIONS

In the past, only experienced JSL programmers could customize many of JMPs powerful features. The purpose of
the JMP Application and Application Builder is to provide the following capabilities:

 A lightweight framework to organize objects into building blocks for Applications

 Encapsulation to eliminate side effects

 Links to deployment mechanisms

 Integration with the JSL debugger

The JMP Application does not define or limit what an application can do. A JMP Application combines JSL scripting,
display boxes, and JMP platforms into a designated workflow. The editing and run-time behaviors are controlled by
three new JMP objects, the JMP Application, the Module, and the Module Instance.

The JMP Application consists of a JSL script, properties that are global to the application, and the definition of one or
more Modules. JMP Application properties are shown in Table 1.

Name The Application name is used as a default value for window titles and file
names.

Table In Edit mode, this data table is used to create the objects in the Application
Builder. When the Application is run it will use the current data table,
allowing you to run the same application against multiple sources.

Auto Launch If any part of an Application has been parameterized (described later in
Parameterizing Instant Applications), this Boolean property specifies
whether the Application should automatically create a launch dialog box to
prompt for and set the parameters. If you disable this, you are free to set

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

2

the parameters through scripting.

Encrypt Specifies that encryption should be used when saving an executable form of
the application.

Run Password An optional property can be specified to require the user of the application to
enter a password when the application is run.

Table 1: Application Properties

The Module object is a design for a window in the application. It consists of a JSL script, a collection of display
objects, and the module properties shown in Table 2.

Variable Name This is the name of the Module in the Application namespace. It can be used
to query or send messages to a Module from any script in the Application.

Title This property is used as the window title when an instance of the Module is

created at run time. Special strings ^TABLENAME and ^APPNAME can be

included and will be substituted with the data table name or Application
name.

Module Type Specifies the type of window to be created. A Dialog or Launcher window
has no menus or toolbars. A Dialog with Menu includes a menu bar. A
Report window includes an auto-hide menu and toolbar.

Auto Launch Setting this parameter will cause an Instance of this Module to be created
automatically at run time. This is useful to enable certain classes of
Applications to be created without scripting. For more complex application
workflows, behavior can be controlled through the Application and Module
scripts.

Table 2: Module Properties

The final object making up the Application Builder framework is the Module Instance. This is a run-time object

representing the realization of a Module. While some Applications may create only a single instance of each Module,
a custom Application can create multiple instances of the same Module based on user input, the data table, or other
considerations.

RUNNING APPLICATIONS

It is helpful to understand how a JMP Application will behave at run time before trying to design an application. In a
custom application, the scripts define the behavior of the Application. When an application is executed, the process
flow is shown in Figure 1.

Figure 1: Execution Flow for the JMP Application

The JMP Application is a very lightweight wrapper around the Module objects. The script gives the user full access to
JSL functionality, but in general the work is done by the Modules that are created at run time. The Application script
is used for definition of functions that are shared across multiple modules and set up processing before any analysis
or display can be computed. For example, the script might confirm that the current data table is appropriate for the
application or connect to SAS or R.

In a default configuration, one instance of each Module will be created automatically. This behavior can be changed
through a combination of scripts and properties, which will be discussed in the section on custom applications. Each
time a new Module Instance is created, the process flow is as shown in Figure 2.

Create and Show
Launch Dialog if

Application is
Parameterized.

Create an Instance
of any Modules that
are defined as Auto-

Launch.

Run the
Application

Script.

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

3

Figure 2: Execution Flow for a Module Instance

The Module is also a lightweight wrapper around the objects that it contains. Applications consisting primarily of JMP
platforms might require no additional scripting, while the availability of the script provides a mechanism for
customized processing and workflow.

BUILDING JMP APPLICATIONS

The Application Builder is a graphical environment for creating JMP Applications. Figure 3 shows the initial view of
the Application Builder.

Figure 3: Initial Application Builder View

The Application Builder consists of the following four main areas:

 The Sources panel on the left shows the graphical content that is available to add to the application. The
sources include full JMP platforms that have already been created, as well as individual display boxes for
building and arranging custom dialog boxes and reports.

 The workspace in the center of the screen is where the layout of the application window is defined. For
multi-window applications, there is one tab for each different type of window, as well as a Scripts tab for
defining the Application and Module scripts.

 The Objects panel at the upper right displays a hierarchical view of the Application, including each Module
and display box. This tree provides an alternate method for selecting objects, which can be easier than
clicking in the workspace depending on the type and size of the object.

 The Properties panel at the lower right displays the properties for the currently selected object(s). Properties
can be edited according to their type, including strings, numbers, fonts, colors, list editors, option selection,
Boolean toggles, and several custom editors for specific properties.

Run the
Module
Script.

Create the display
and platform objects,

if they were not
already created

through the script.

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

4

The toolbar at the top of the window provides quick access to many common features (such as copying and pasting
objects) and Application Builder specific operations (such as aligning boxes and adding borders). Many of these
operations can also be performed from the right-click menu in the workspace or object tree.

The initial workspace provides a link to the Application Builder documentation and sample applications. The sample
applications demonstrate several application patterns and are a useful starting point for developing similar
applications.

INTERFACE LAYOUT

To begin creating a GUI layout, double-click objects on the Sources panel or drag them onto the workspace, as
illustrated in Figure 4.

Figure 4: Creating Objects from the Source Panel

Objects in the Sources panel are organized by function. Open reports generated from a JMP data table appear
under Reports. The reports might contain a large amount of active functionality for setting parameters on the
analysis, selecting and brushing data points, and more live interaction linked to the data table. Containers are
display boxes that organize the display of one or more child boxes. Spacers are boxes that add padding between
other boxes. The Display category includes boxes that show information, such as text, numbers, icons, and pictures.
Tables include all of the elements for creating a table of results, including boxes for numbers and string columns.
Buttons are the boxes that are used to perform an action or select items from a list. Input boxes allow the user to
enter information. The Data Filter category includes boxes for applying local filtering to hide or exclude rows from a
subset of the display.

Containers define the layout of a graphical display and allow the boxes to move with relation to one another when
content is shown, hidden, or changes size. Drag an object into a container, or right-click the object and select Add
Container. Different containers have different behavior, so during a drag operation a highlight will be shown to

indicate where the object will be inserted when dropped. Figure 5 shows how to insert a new button before two
existing buttons in a horizontal List Box.

Figure 5: Inserting a New Object into a Horizontal List Box

In addition to top-down design, Application Builder also supports operations for bottom-up design. You might find that
it is easier to experiment by placing your boxes manually, without containers. When you are ready to join boxes into
a container for layout control, simply select the multiple boxes, right-click to select Add Container, and select the
desired container. Figure 6 shows that this approach can result in the same final display, giving you the flexibility to
choose a layout later in the development process.

Figure 6: Adding a Container to Arrange Multiple Boxes

The Add Container command also lets you add a container around a box that already has a parent container. A
complementary Remove Container command lets you remove the container of the selected box. The Add Container

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

5

and Remove Container commands are also available from the toolbar () and Objects
panel.

While it is common to use containers to control the relative positions of boxes, you can also choose absolute
positioning. By default, a grid is displayed in the background and box positions snap to this grid, making it easier to
align objects by the left or top border. If you turn the snap option off or require other types of alignment, simply select
the multiple boxes, right-click to select Align, and find the desired alignment option.

Figure 7: Aligning Display Boxes

The alignment options are also available from the toolbar () as well as from the Object Tree. One
advantage to using containers is that the box layout will automatically reconfigure based on the sizes of each object,
which might change based on font, text, column names, or other factors.

Properties for the selected objects are displayed in the lower right corner of the Application Builder window. All
objects share three properties: a Variable Name and X / Y Positions. The variable name is a JSL variable that is
created in the namespace of the Module Instance. The variable can be referenced in the Module script to query or
make changes to the object at run time. The X and Y positions determine the location of the object in the workspace,
unless the object is managed by a container. The rest of the properties are object specific. For more information
about the properties of a particular object, right-click and select Scripting Help. The Scripting Index opens to provide
details about the selected object.

Each property has a unique editor based on the parameter type. Table 3 shows the editors for various properties.

Numeric String

Boolean Option

Color Script

List

Aggregate

Font

Table 3: Properties and Editors

The aggregate editor in this example is used for several objects to provide a visual representation of properties
controlling spacing on top, bottom, left, and right.

To position an object, edit the object properties or drag-and-drop the object in the workspace. Some objects also
support visual editing of other properties using drag handles that appear when the object is selected, as shown in
Figure 8.

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

6

Figure 8: Editing an Object Using Drag Handles

Collections of boxes can be moved or copied by selecting the objects and using the Cut or Copy operation from the

Edit menu, toolbar, or the right-click menu. When objects are copied, all of the properties are copied to the new
objects, including any referenced scripts. The object names will be updated to ensure that they are unique, and any
references to these names in the copied script will also be updated to match the new names. Copy and paste works
across applications as well, making it easy to re-use part of an existing application in a new application.

The following sections provide more detail about the process of creating two classes of JMP Applications: Instant
Applications and Custom Applications.

INSTANT APPLICATIONS

Instant Applications combine multiple analyses into one report. On the Windows platform this process is streamlined
through integration into the Home window and the Report windows. Start by selecting multiple reports and select the
Combine or Combine selected windows option. Application Builder creates a new window with the reports

embedded, as shown in Figure 9.

Figure 9: Combining Multiple Reports to Create an Instant Application

The automated combine function will attempt to replicate the layout of the reports on your screen, in horizontal or
vertical direction. For more control over layout, the red triangle menu for the application has an option to load the
resulting application into Application Builder. All functions of Application Builder are available, including reordering of
reports or creating new container boxes to rearrange the layout.

You can also combine reports into an Instant Application inside Application Builder. The first category in the Sources
panel is Reports, which contains a thumbnail image of each current report window. These full reports can be treated
just like the basic display boxes. Double-click or drag to create a new instance of the report in Application Builder.
Because a report is the result of a live platform, it is not possible to rearrange the components of the report. The
internal structure of live reports can be modified only through controls provided by the platform.

The default behavior of a report embedded in an application is to reproduce the analysis using the same columns that
were used in the original analysis. This is very similar to saving the script for each platform and then combining the
scripts together in a new window. This is a useful first step for creating applications, but often there are changes that
you want to make at run time. Two additional features greatly expand the class of Instant Applications that are
possible – all without writing a single line of JSL.

 OR

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

7

Parameterizing Instant Applications

Parameterized Instant Applications are combinations of reports in which the column roles have been assigned the
name of an application parameter. At run time, you are prompted to assign values to the application parameters,
which are then passed to the platforms prior to creating the reports. Application parameters can span multiple
reports, so you can specify that two platforms should use the same Y columns by assigning them the same
parameter name.

There are two steps to specifying the application parameters. The first step is to specify which platform roles you
want to parameterize. When a report is selected, the property panel shows a list of the roles for the platform. For
each role that you want to parameterize, enter a JSL variable name, as shown in Figure 10(a). When you are
prompted for column roles at run time, the selected column(s) will be stored in this JSL variable.

The second step is optional. By default, Application Builder uses the name of the platform role when prompting for
the application parameter. If the platform has a Size role, you will be prompted to select a Size column. You can
change this label by selecting the Application object in the Objects panel. In the Properties panel for the Application
object there is a list of all application parameters that have been created, as shown in Figure 10(b). Each role
appears only once, even if it has been used multiple times for different platforms. The resulting run-time launch
dialog box is shown in Figure 10(c).

Figure 10: Parameterizing a Platform Role. (a) Select the roles to parameterize (b) Specify a label for the
parameter (c) The Resulting Launch Dialog Box at Run Time

When you create parameters that are shared across multiple platform roles, Application Builder will keep track of
known restrictions related to data type, modeling type, and number of parameters. These limits will be merged
together and used in the combined launch dialog box to guide the user in selecting valid input. An error message will
be displayed during parameterization if conflicts are detected between multiple roles that are being combined.

Embedded Data Filters

The local data filter is new to JMP 10. While the traditional data filter makes changes to the data table that are
globally visible, the local data filter is integrated into platforms and provides for local control of the visibility and
inclusion of rows. Local data filters are also supported from JSL and Application Builder, with a special container box
called the Data Filter Context Box that defines the extent of the filter effect.

One advantage of using embedded filters for Instant Applications is that a single filter can be shared among multiple
platforms, by arranging them within the same Data Filter Context Box. You can also include multiple filters, either by
nesting the context boxes or using them to divide the window in multiple filter regions. Figure 11 shows the sample
application Data Filter Compare with two embedded data filters, each shared between a Bubble Plot and Tabulate
platform.

(b)

(c)

(a)

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

8

Figure 11: Embedded Local Data Filters Shared by Multiple Platforms

When arranged in a nested configuration, the results of the filters will aggregate from the outside-in. Typically you
would filter on different columns in a hierarchical configuration. For example, in Figure 11 you might consider adding
a filter around the entire display to filter all of the results by population.

CUSTOM APPLICATIONS

Custom applications integrate analyses from JMP with custom JSL scripts to perform additional analysis and produce
new reports. The custom scripts have full access to JSL functionality, including local JSL functions and remote
execution of SAS or R components. Application scripts are edited through the integrated Scripts tab in the
workspace, as shown in Figure 12.

Figure 12: Selecting an Application Script to Edit

Data Filter
Context Boxes

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

9

The namespace menu has entries for the Application as well as each Module defined in the application. A list of
methods or functions provides a convenient way to navigate through large scripts.

In addition to the JSL variable names that have been specified through properties on the boxes and Modules, there

are two special JSL variables that can be used in your scripts. The thisApplication variable refers to the

Application object, and can be used from any Application script. The thisModuleInstance variable can be used

from any Module script and refers to the running instance of the Module.

Scripting Objects

Custom applications will use more of the available display boxes for both input and display of information and
graphics. Actions associated with display boxes are controlled through JSL scripts that are part of the properties
associated with an object. For simple actions you might find it convenient to store the entire script in the property.
For more complex actions, or actions that can be invoked through multiple means, you might prefer to define a
function in the Module scope and invoke this function from the object property. To help you with these linked actions,
you can right-click on an object and navigate to the Scripts menu. Each script property associated with the selected
object is shown in the menu. As shown in Figure 13, selecting a script property from this list creates a template
function for the action and associates the new function with the box. If you select a property that already has an
associated function, the script editor will open to the given function.

Figure 13: Adding a Script Action to an Object

The template functions give you a starting point for defining a function, including comments on the behavior of the
function and a valid function signature with correct arguments. Each function will have a this argument, giving you a
handle to the object that was activated. Using the this parameter will make it easier to share functions across
multiple objects. Some objects might pass additional parameters, particularly in cases when the additional
information cannot be queried from the object using scripting.

Module Flow Control

While Instant Applications have a relatively simple and fixed flow of control, custom Applications require more
flexibility in order to implement different classes of applications. A JMP Application Module corresponds to a window
that is created at run time. Each Module has an Auto Launch property that controls whether an instance of the
Module is created automatically when the application is run. This is true by default and makes development of
Instant Applications possible without requiring JSL scripting. But it is vital for the programmer to be able to take
control of the flow in order to support a variety of application patterns. Some common patterns might include:

 Launch / Report: A launch window is presented to gather input from the user. On completion of the input,
the launch dialog box is dismissed, computation is completed, and the associated report window appears.

 Report generator: A window appears, showing a variety of reports and parameters that are available. The
user can selectively launch reports, each of which results in a new window. The same report might be
launched multiple times with different parameters.

The Auto Launch property is the first tool in controlling the flow of the application, by controlling the initial view that
the user sees. From this point on, the flow of the application is controlled through the JSL scripts defined by the
application. In response to button presses or other actions, it might be necessary to create a new instance of an
Application Module. This is implemented through a message to the Module object:

Module1 << Create Instance(param);

Each Module has a JSL variable name that is automatically visible from any script in the Application. The parameter
list gives you the ability to pass values to the module that is used in the computation or display. This could include
column names, thresholds, or other input required by the Module to complete its analysis and report. The parameters
are received by the Module using a special function defined in the Module script:

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

10

OnModuleLoad({param}, <body of function>)

This function can appear anywhere in the body of the Module script. Generally it is useful to process the input early
in the script, but there might be some initialization that is required earlier. Another useful statement that appears in
the template for the Module script is:

 thisModuleInstance << Create Objects;

This statement allows you to control when the box objects and reports are created. It is not required that you include
this statement in the Module script, but including it will allow you to send messages to the created objects or set
properties on the object at the time that the Module Instance is created. This is useful when the properties on the
object are not known when the Application is being developed, for example if you want to use the name of the data
table in a text field.

DEBUGGING APPLICATIONS

New with JMP 10 is a JSL debugger environment with flow control, breakpoints, and variable inspection. The JSL
debugger can be used on stand-alone scripts and is also integrated into the Application Builder environment. You
can begin a debugging session from the Edit menu, the toolbar, or by selecting the option Debug Application from the
red triangle menu of Application Builder. As each Application or Module Instance is run, the associated script is
loaded into the debugger. You can set breakpoints, step into or over statements, and inspect variables as they are
modified. Figure 14 shows an example session with a breakpoint set in the callback function for a launch dialog box.

Figure 14: Debugging an Application

The debugger will automatically terminate when it detects that the application has completed.

DEPLOYING APPLICATIONS

Once you build an Application, you will want to distribute and maintain them. There are several mechanisms to do
this, depending on your needs.

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

11

There are two new file types associated with JMP Applications. The .jmpappsource file is the development version of

the application. When opened through the File menu or through a JSL Open() command, the Application Builder

environment initializes and loads the contents to continue editing the application. The .jmpapp file is the executable
version of the application. When this file is opened, the Application object is loaded and run. Both files are text
based and contain similar content. The .jmpappsource file is never encrypted, while the .jmpapp file will be encrypted
if the property has been set on the Application object.

Two options are supported that are familiar to users of JMP platforms. Save Script to Data Table and Save Script to
Journal are available from the red triangle menu of the Application Builder. As shown in Figure 15, saving an

Application script to the Data Table embeds the application as a property on the table. This is a full copy of the
Application, and not a reference to a separate file. This allows you to communicate results by sharing only a single
file, with all of your analysis included in the file.

Figure 15: Saving an Application Script to the Data Table

The Save Script to Journal option embeds the application in the current journal, or creates a new one if one does not
exist. The embedded application appears as a script connected to a button, allowing you to launch the application
from the journal. This is often used as a technique to create an outline for a presentation.

Launching an application from an add-in is useful for both personal use and for distribution of applications to other
users. Add-Ins are JMP extensions that are recognized and added to the local JMP installation when they are
opened. An add-in can create one or more buttons in the JMP menu to create a persistent way to launch a custom
script, so the user will not have to remember where they saved the application file. When you select Save as Add-In

from the red triangle menu of Application Builder, the Add-In Builder opens to let you customize the add-in. Figure 16
shows one of the tabs of the Add-In Builder as invoked from Application Builder.

Figure 16: Saving an Application to an Add-In

Applications DevelopmentSAS Global Forum 2012

<Paper title>, continued

12

In the Add-In, the name of the menu item has been initialized to the name of the application, and the Application
script is used as the script to run. Saving this document will result in a .jmpaddin file that can be distributed to other
users. When you open an add-in JMP prompts you to install it, after which it can be run from the specified menu.
Add-Ins have advantages over JSL scripts and JMP Application files when communicating and distributing results
because they integrate into both the installation and the menu system of JMP.

CONCLUSION

The JMP Application Builder provides a framework for application development in JMP by using intuitive drag-and-
drop construction techniques for GUI layout. The property editor relieves the programmer from having to remember
all object properties and valid parameters. For the non-programmer, Instant Applications enable you to create
custom combinations of JMP platforms. By parameterizing the Instant Application, you can create general-purpose
applications that can be used on data from multiple sources and with multiple queries. Advanced JSL developers will
appreciate the automated management of namespaces to avoid unintended interaction between scripts. The
increased focus on scripting for analysis rather than scripting for GUI design allows the advanced programmer to
concentrate more on the application, and less on how it is delivered. Future development will continue to integrate
additional GUI elements, support more advanced Instant Applications, and add more scripting help for the advanced
custom application developer.

REFERENCES

Hill, Eric. 2011. “JMP® 9 Add-Ins: Taking Visualization of SAS® Data to New Heights”. Proceedings of the SAS
Global Forum 2011 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings11/TOC.html.

Miclaus, Kelci. 2011. “JMP® as an Analytic Hub: Using JMP to Build Custom Applications via SAS® and R”.
Proceedings of the SAS Global Forum 2011 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings11/TOC.html.

Watson, Wayne. 2011. “Introducing SAS® Structural Equation Modeling for JMP®: A New User Interface that Brings
the Power of SAS/STAT® Software to JMP Software”. Proceedings of the SAS Global Forum 2011 Conference.
Cary, NC: SAS Institute Inc. Available at http://support.sas.com/resources/papers/proceedings11/TOC.html.

ACKNOWLEDGMENTS

I would like to thank Craige Hales for his initial work and continued input on Application Builder. Xan Gregg, Joseph
Morgan, and Jeff Perkinson provided feedback and suggestions throughout the development. Rosemary Lucas, Hui
Di, Melanie Drake, Kyoko Keener, Sheila Loring, Liza Lucas and Nala Sun provided valuable early testing and
feedback. Chung-Wei Ng developed the Local Data Filter, Dave Barbour developed the Add-In Builder, and Jeff
Polzin developed the JSL Debugger. Their help integrating these new features with Application Builder is greatly
appreciated.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Daniel Schikore
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
(919) 531-8670
Dan.Schikore@jmp.com
http://www.jmp.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2012

http://support.sas.com/resources/papers/proceedings11/TOC.html
http://support.sas.com/resources/papers/proceedings11/TOC.html
http://support.sas.com/resources/papers/proceedings11/TOC.html
mailto:Dan.Schikore@jmp.com
http://www.jmp.com/

	2012 Table of Contents

