

1

Paper 012-2012

Tracking and Reporting Account Referral Activity Us ing Hash Tables and
SAS® Business Intelligence

James Beaver, Farm Bureau Bank, San Antonio, TX
Tobin Scroggins, Farm Bureau Bank, San Antonio, TX

ABSTRACT

This paper demonstrates how Farm Bureau Bank uses the SAS hash object and the SAS hash iterator to track and
report on new account referrals. New account referrals are tracked by agent representatives based on their location,
sales territory, and manager. To handle these needs, an agent dimension table is created as part of a data
warehouse. Examples show the use of the SAS hash object methods FIND(), REPLACE(), and OUTPUT() to add
new records and overwrite and partition existing records in the agent dimension table. An example of the hash
iterator and use of the LAST() method illustrates how to determine the last key in the table. Sample reports using
SAS BI tools, including OLAP cubes and SAS Web Report Studio, are demonstrated.

INTRODUCTION

Farm Bureau Bank was founded in 1999 to provide the membership of Farm Bureau Associations throughout the
country with retail banking services. Marketing to its customer base of Farm Bureau members is carried out
predominantly through direct mail, referrals by participating states’ Farm Bureau Insurance agents and internet
marketing. Currently agent referrals provide approximately 90% of the new account applications with the remainder
coming from direct mail or the internet. Agents are compensated for their referrals and there are incentives for the
agents based on their account production. One of the responsibilities of the Finance/analytics area is to track the
referral production of these insurance agents and provide reports to the agents, their managers and sales directors.
The area is also responsible for calculating, reporting and paying commissions. Both referral and commission reports
are distributed to members throughout the country using SAS BI allowing flexibility in terms of method and type of
report distribution.

 Accurate and timely reporting of account referrals is critical to maintaining the agents’ willingness to refer business to
the bank. This is made more difficult due to the structure of the agent relationships within the state. The state Farm
Bureau Associations are independent entities with each Association having it own organizational structure. Some
states structure their agents based upon counties, with each county having one or more agencies within the county,
with the agency manager reporting to a county agency manager, and then going up to a district manager and state
manager. Other states may have more than one county reporting to a manager and then have no district. As well as
the different reporting structures, there is the usual churn among the agencies and managers. Over time agents may
change counties, become agency managers, or become inactive. The reporting relationship may change as states
redraw their districts, combine reporting entities or revamp their entire reporting structure.

Referral and commission reports must be able to deal with the continuing changes in the agent reporting relationship.
In addition, because the number of referrals may influence the compensation of agency and district managers,
accurate, timely and flexible reporting is necessary. For example, at times the total number of referrals by agent may
be requested, independent of the agency or county associated with the agent. Other report requests may be based
on the number of referrals by county, with the number of referrals made by agents during the assignment to the
county, irrespective of whether they are currently active or currently assigned to the county. These same issues arise
for referral reporting related to agency and district managers.

To handle these requirements a data warehouse was developed with an application fact table and a number of
different dimensions including an agent dimension. The agent dimension is a type 2 slowly changing dimension that
allows for tracking any changes in the agent status and reporting relationship. This allows us the flexibility necessary
for providing the various reports that may be requested. To reduce processing time and provide the functionality
needed to maintain the agent dimension a SAS hash object was used. Reports are produced using SAS BI tools
including OLAP cubes and Web Report Studio.

Applications DevelopmentSAS Global Forum 2012

Tracking and Reporting Account Referral Activity

2

DATA WAREHOUSE

In building our data warehouse we use the basic ETL process. We extract application data from the various
databases and input channels, transform and clean the data to conform to bank and regulatory standards then load
the information into our Application fact table and assorted dimension tables.

AGENT ROSTER – A SLOWLY CHANGING DIMENSION

The key to being able to produce the desired reports is the Agent Roster table. This table is structured as a slowly
changing dimension. This allows us to track changes in the agent location or reporting structure.

Target

Column Name Type Length Format Description Key? Example Values SCD Type

Agent_Dim_Key Int 8 Surrogate Primary Key PK ID Type 2- Hybrid

RSC Char 60 $60. RSC Assigned by FB Bamk 706708 Type 2- Hybrid

RIM_NO Num 8 11. Rim Number 1105 Type 2- Hybrid

DIST_NAME Char 40 $40. District Name DISTRICT 03 Type 2- Hybrid

COUNTY_NAME Char 40 $40. County Name ELLIS Type 2- Hybrid

DEP_ACCT Char 40 $40. Deposit Acct for Commission 8000092696 Type 1

FULL_NAME Char 40 $40. Judy E Webb Type 1

Row_Eff_Date Num 8 MMDDYYS8. Effective Date Type 2- Hybrid

Row_Exp_Date Num 8 MMDDYYS8. Expiration Date Type 2- Hybrid

Current_ind Int 1 0 denotes current record 0 Type 2- Hybrid

Source

Source System Source Table Source Field Name ETL Rules

ETL Process Standard Surrogate Key

Phoenix ex_acct acct_no Should not Change

Phoenix ex_acct rim_no Should not Change

Phoenix ex_acct string_4 Create New Record When Changed

Phoenix ex_acct string_5 Create New Record When Changed

Phoenix ex_acct string_1 Update if Changed

Phoenix rm_address name_1 Update if Changed

ETL Process Set When Record is Created

ETL Process Set when Record is Changed

ETL Process 0 if current record 1 otherwise

Figure 1. Agent Dimension Table Structure

The starting point in the creation of all of our dimension and fact tables is good documentation. Above is a
Target/Source table for our Agent Roster dimension table. It gives some of the basic column properties of the dataset
as well as details specific to the ETL process. For example, SCD Type provides information on the type of slowly
changing dimension for each variable. We also store information on the database and table(s) our source data is
coming from as well as rules about how each variable is updated or replaced. Having these tables as a starting point
in our data warehouse design has saved countless hours during the creation and debugging of our ETL programs.
(RSC is the referral source code which is a unique identifier assigned by the bank to referring agents). This is only a
subset of the demographic and internal/external account data we track. For demonstration purposes we will use this
small dataset to walk you through the Agent Dimension updating process.

STEP 1: CREATING WORK TABLES WITH AGENT_ROSTER AND UPDATE TABLES

The first steps in the program copy the Agent_Roster from the permanent library into the work library and pull data
from the banking system to create the roster update table (Agent_Roster_UPD) in the work library. You will notice
that in the Agent_Roster_UPD program we rename some of the variables by adding a T_ to the beginning. This is
done in order to facilitate comparison of fields in the current Agent_Roster to the Agent_Roster update table (step 3).
We have highlighted the differences between the current and update tables.

We track any changes or new agents with a change log table. Reports are created using this table to allow other
bank departments to verify that any changes they have made to the agent record in the banking system have been
entered correctly. Any changes to the records in the agent table, either a new record or a changed record, are
tracked in the change log file.

Applications DevelopmentSAS Global Forum 2012

Tracking and Reporting Account Referral Activity

3

Agent_Roster

RSC RIM_NO FULL_NAME DEP_ACCT DIST_NAME COUNTY_NAME RIM_RSC Current_Ind Agent_Dim_Key

700001 100001 Ken Arrow 500001 District 1 Keynes 1000017000010 0 100

700002 100002 Anna Schwartz 500002 District 1 Keynes 1000027000020 0 101

700003 100003 Frank Edgeworth 500003 District 1 Keynes 1000037000030 0 102

700004 100004 Irving Fisher 500004 District 1 Keynes 1000047000040 0 103

700005 100005 Bill Phillips 500005 District 1 Friedman 1000057000050 0 104

700006 100006 Gene Slutsky 500006 District 1 Friedman 1000067000060 0 105

700007 100007 Fritz Pareto 500007 District 1 Friedman 1000077000070 0 106

Figure 2. Agent Roster Table Before Updating

proc sql;
 create table Agent_Roster_UPD as
 select rsc,
 rim_no,
 full_name as T_full_name,
 dep_acct as T_dep_acct,
 dist_name as T_dist_name,
 county_name as T_county_name
 from (Banking System);
quit;

data Agent_Roster_UPD;
set Agent_Roster_UPD;
length rim_rsc $15. ;
rim_rsc=cats(rim_no,rsc, '0');
run;

1. Pull the fields from the banking system and change the names as needed.

2. Create a unique variable rim_rsc based upon the RIM and RSC fields; a ‘0’ is appended to the field which
indicates a current record.

Agent_Roster_UPD

RSC RIM_NO T_FULL_NAME T_DEP_ACCT T_DIST_NAME T_COUNTY_NAME rim_rsc

700001 100001 Ken Arrow 500001 District 1 Friedman 1000017000010

700002 100002 Anna Schwartz 500002 District 1 Keynes 1000027000020

700003 100003 Frank Edgeworth 500003 District 1 Keynes 1000037000030

700004 100004 Irving Fisher 500004 District 1 Keynes 1000047000040

700005 100005 Bill Phillips 600001 District 1 Friedman 1000057000050

700006 100006 Gene Slutsky 500006 District 1 Friedman 1000067000060

700007 100007 Fritz Pareto 500007 District 1 Friedman 1000077000070

700008 100008 Fischer Black 600000 District 1 Friedman 1000087000080

Figure 3. Agent Roster UPD Table with Differences Highlighted

STEP 2: ADDING A NEW RECORD INTO THE AGENT DIMENSIO N USING A HASH TABLE - FIND

The first task in keeping the Agent dimension up to date is to check for new agents. A table (Agent_Roster_UPD)
containing all of the current agents and their information is pulled from the banking system. The Agent_Roster table
is then is loaded as a hash table and the Agent_Roster_UPD table is checked against this table using the Rim_RSC
as the key. If the Rim_RSC is not found in the Agent_Roster then a record is created in the table New_Agents and a
record is created in the change log with the information about the new record. The record is then added into the
Agent_Roster table.

data work.Changelog_New(keep = full_name affected_table source_table change_date
change_reason rim_rsc change_date)
work.New_Agents (keep =rim_rsc);

1

2

Applications DevelopmentSAS Global Forum 2012

Tracking and Reporting Account Referral Activity

4

length change_reason table_name $40. affected_table source_table action $15. ;
 if 0 then set WORK.Agent_Roster;
 format change_date mmddyy8. ;
 if _n_ = 1 then do;
declare hash rimhash(DATASET: 'WORK.Agent_Roster' , ORDERED: 'A' ,HASHEXP:16
 rc=rimhash.defineKey('rim_rsc');
 rc=rimhash.defineData('rim_rsc' , 'full_name');
 rc=rimhash.defineDone();
 end ;
 affected_table 'Agent Dimension' ;
 change_date=date();
 change_date= 'Create Record' ;
 source_table= 'RSC_Acct' ;
 full_name= '' ;
 do while (not done);
 set WORK.Agent_Roster_UPD end=done;
 rc=rimhash.find() ;
 if rc ne 0 then do;
 change_reason= 'New Record' ;
 output work.Changelog_New;
 output work.New_Agents;
 end ;
 end ;
stop ;
run;

1. Define the hash table, the key and the data desired to be returned from the table

2. Check to see if the records in the Agent_Roster_UPD are in the agent_roster table. If not, create a new record
and put a notation in the change log.

Changelog_New

CHANGE_REASON AFFECTED_TABLE SOURCE_TABLE ACTION RIM_RSC FULL_NAME CHANGE_DATE

New Record Agent Dimension RSC_Acct Create Record 1000087000080 Fritz Pareto 10/25/2011

Figure 4. Records Created in Changelog_New and New _Agent tables

STEP 3: CHECKING FOR CHANGED INFORMATION USING A HA SH TABLE - OVERWRITE

The next step is to check if any of the fields in the agent table have been changed since the last update of the agent
record. Some of the fields result in new records being created (Step 4) if they are different, and other fields are
overwritten. Based on the Target/Source table we know that the full_name and dep_acct variables are Type 1. This
means that if a change is detected in either of these variables, the fields are overwritten with the new data. Shown
below is the code that is used to update the records for fields that are overwritten. (For brevity we have included only
the Dep_Acct variable)

data work.Changelog_Overwrite (keep =rim_no rsc full_name affected_table source_table
change_date orig_char new_char change_rsn state rim _rsc action) ;
length orig_char new_char change_rsn $40. affected_table source_table action $15. ;
 format change_date mmddyy8. ;
 if 0 then set work.Agent_Roster;
 if _n_ = 1 then do;
 declare hash rimhash(DATASET: 'work.Agent_Roster' , ORDERED: 'A');
 rc=rimhash.defineKey('rim_rsc);
rc=rimhash.defineData(‘ rim_rsc’ , 'rsc' , 'rim_no' , 'full_name' , 'dist_name' , 'county_name' , '
dep_acct' , 'current_ind');

New_Agents

RIM_NO RSC RIM_RSC FULL_NAME DEP_ACCT DIST_NAME COUNTY_NAME CURRENT_IND ROW_EFF_DATE

100008 700008 1000087000080 Fischer Black 600000 District 1 Friedman 0 10/25/2011

1

2

Applications DevelopmentSAS Global Forum 2012

Tracking and Reporting Account Referral Activity

5

 rc=rimhash.defineDone();
 end ;
 affected_table= 'Agent Dimension' ;
 Change_date=date();
 Source_table= 'RM_ACCT' ;
 action= 'Update Record' ;
do while (not done1);
 set work.Agent_Roster_UPD end=done1;
 rc=rimhash.find() ;
 if rc = 0 then do;
 if T_dep_acct ne dep_acct then do;
 orig_char=strip(dep_acct);
 new_char=strip(T_dep_acct);
 change_rsn= 'change in dep_acct' ;
 output work.Changelog_Overwrite;
 dep_acct=T_dep_acct;
 end ;
 RC=rimhash.replace();
 end ;
end ;
rc=rimhash.output(dataset: 'Agent_Roster2'); /* need to output hash table*/
stop ;
run;

1. This data is used to track the change information that is entered into the change log
2. This will replace the any changed fields with the updated fields.

Changelog_Overwrite

ORIG_CHAR NEW_CHAR CHANGE_RSN AFFECTED_TABLE SOURCE_TABLE

500005 600001 change in DEP_ACCT Agent Dimension RM_ACCT

ACTION FULL_NAME RIM_NO RSC RIM_RSC CHANGE_DATE

Update Record Bill Phillips 100005 700005 1000057000050 10/25/2011

Agent_Roster2

RIM_RSC RSC RIM_NO FULL_NAME DIST_NAME COUNTY_NAME DEP_ACCT CURRENT_IND

1000017000010 700001 100001 Ken Arrow District 1 Keynes 500001 0

1000027000020 700002 100002 Anna Schwartz District 1 Keynes 500002 0

1000037000030 700003 100003 Frank Edgeworth District 1 Keynes 500003 0

1000047000040 700004 100004 Irving Fisher District 1 Keynes 500004 0

1000057000050 700005 100005 Bill Phillips District 1 Friedman 600001 0

1000067000060 700006 100006 Gene Slutsky District 1 Friedman 500006 0

1000077000070 700007 100007 Fritz Pareto District 1 Friedman 500007 0

Figure 5. Changelog_Overwrite and Agent_Roster2 ta bles

1

2

Applications DevelopmentSAS Global Forum 2012

Tracking and Reporting Account Referral Activity

6

STEP 4: CHECKING FOR CHANGED INFORMATION USING A HA SH TABLE – PARTITION

The next step is to check if any of the fields that would result in a new agent record being created have been changed
since the last update of the agent record. This step shows the code used to partition Type 2 variables. Whenever
there is a change in these variables a new record is created in a temporary table and will be added to the dimension
table in Step 6.

data WORK.Changelog_Partition (keep =rim_no rsc full_name affected_table source_table
change_date orig_char new_char change_rsn state rim _rsc action)
WORK.Partition_Rec (keep =rsc rim_no full_name city dist_name county_name de p_acct
row_eff_date row_exp_Date current_ind rim_rsc agent _dim_key);
 if 0 then set work.Agent_Roster2;

length orig_char orig_char new_char change_rsn table_name $40. affected_table
source_table action $15. ;

 format change_date mmddyy8. ;
 if _n_ = 1 then do;
 declare hash rimhash(DATASET: 'work.Agent_Roster2' , ORDERED: 'A');
 rc=rimhash.defineKey('rim_rsc');

rc=rimhash.defineData('rim_rsc' , 'rsc' , 'rim_no' , 'full_name' , 'dist_name' , 'county_
name' , 'dep_acct' , 'agent_aim_key');

 rc=rimhash.defineDone();
 end ;
affected_Table= 'Agent Dimension' ;
change_date=date();
action= 'Replace Record' ;
source_table= 'RSC_ACCT' ;

do while (not done);
set WORK.Agent_Roster_UPD end=done;

 rc=rimhash.find() ;
 replace =0;
 if rc = 0 then do;
 if T_county_name ne county_name then do;
 orig_char= county_name;
 New_char=T_county_name;
 change_rsn= 'change in county_name' ;
 output work.changelog_Partition;
 replace =1;
 county_name=T_COUNTY_NAME;
 end ;
 if replace = 1 then do;
 row_eff_date=Today();
 current_ind= 0;
 output work.Partition_rec;
 end ;
 end ;
end ;
stop ;
run;

1. This puts the new county name into the record.
2. Output the updated record from the hash table..

Changelog_Partition

RIM_NO RSC RIM_RSC FULL_NAME ORIG_CHAR NEW_CHAR CHANGE_RSN

100001 700001 1000017000010 Ken Arrow Keynes Friedman change in COUNTY_NAME

AFFECTED_TABLE SOURCE_TABLE ACTION CHANGE_DATE

Agent Dimension RSC_ACCT Replace Record 10/25/2011

Partition Record

RIM_NO RSC RIM_RSC FULL_NAME DEP_ACCT DIST_NAME

100001 700001 1000017000010 Ken Arrow 500001 District 1

COUNTY_NAME CURRENT_IND AGENT_DIM_KEY ROW_EFF_DATE

Friedman 0 100 10/25/2011

1

2

Applications DevelopmentSAS Global Forum 2012

Tracking and Reporting Account Referral Activity

7

Figure 6. Change Log and Partition Record

STEP 5: ADVANCING CURRENT INDICATOR FOR PARTITIONED RECORDS

In this step the current indicator is incremented for any agent records for which a changed field causes a new record
to be created. The variable current_ind is used to track changes in an Agent’s record. If current_ind = 0 then this is
the most recent record. Therefore it is necessary to advance the current indicator for all entries related to the
partitioned records. We also add a row expiration date variable in order to have a record of when the information in a
partitioned entry was changed.

data work.partition;
set work.changelog_partition (keep = rim_no rsc);
run;

proc sort data =WORK.Agent_Roster2; by rim_no rsc; run;
proc sort data =work.partition nodupkey ; by rim_no rsc; run;

data work. Agent_Roster3;
merge work.partition (in =a) WORK.Agent_Roster2 (in = b);
 by rim_no rsc;
 if a and b then do;
 if current_ind= 0 then row_exp_date=today()- 1;
 Current_ind=Current_ind+ 1 ;
 rim_rsc=cats(rim_no,rsc,current_ind);
 end ;
run;

1. This will update the current indicator by 1 for any record that will be replaced. It also adds the current indicator

to the Rim_RSC, keeping that field as a unique field.

Agent_Roster3

RSC RIM_NO RIM_RSC COUNTY_NAME CURRENT_IND AGENT_DIM_KEY ROW_EXP_DATE

700001 100001 1000017000011 Keynes 1 100 10/25/2011

700002 100002 1000027000020 Keynes 0 101

700003 100003 1000037000030 Keynes 0 102

700004 100004 1000047000040 Keynes 0 103

700005 100005 1000057000050 Friedman 0 104

700006 100006 1000067000060 Friedman 0 105

700007 100007 1000077000070 Friedman 0 106

Figure 7. Agent_Roster3 Table

STEP 6: CREATING NEW AGENT KEY FOR NEW RECORDS-ITER ATION

In this next to last step of the Agent Dimension update process we are adding the Agent Keys to any new records in
the dimension table. The highlighted section shows the hash method used to find the last key in the dataset. Once
this is located the Keycount is advanced by 1 for all new and partitioned entries.

data work.New_Partitioned (drop = Keycount rc);
Length Agent_Dim_Key 8.;
/******************* Hash Object to Get Last forei gn Key ***********************/
 retain Keycount;
 if _n_ = 1 then do;
 declare hash for_key(DATASET: 'WORK.Agent_Roster3' , ORDERED: 'A');
 rc=for_key.defineKey('Agent_Dim_Key');
 rc=for_key.defineData('Agent_Dim_Key');
 declare hiter hi_for_key('for_key');
 rc=for_key.defineDone();
 rc=hi_for_key.last(); /* Get last key in the table */
 Keycount=Agent_Dim_Key;

1

1

Applications DevelopmentSAS Global Forum 2012

Tracking and Reporting Account Referral Activity

8

 end ;
/******************* End of Hash Object to Get Las t foreign Key
***********************/

set work.partition_rec work.New_Agents;
Keycount=keycount+ 1;
Agent_Dim_Key=keycount;
run;

1. Set up the iterative hash table to determine the last key in the current table.

Agent_Roster3

AGENT_DIM_KEY RIM_RSC FULL_NAME DIST_NAME COUNTY_NAME DEP_ACCT CURRENT_IND ROW_EFF_DATE

107 1000017000010 Ken Arrow District 1 Friedman 500001 0 10/25/2011

108 1000087000080 Fischer Black District 1 Friedman 600000 0 10/25/2011

Figure 8. Agent_Roster3 Table

STEP 7: CREATING NEW AGENT_ROSTER TABLE

The final step adds the new and partitioned records with the updated key and the rim_rsc to the full dataset and our
Agent Roster dimension table has been updated. The highlighted cells show the data and/or records that have been
overwritten or partitioned.

data dataware_Agent_Roster;
set work.Agent_Roster3 work.New_Partitioned;
format row_eff_date row_exp_date mmddyy8. ;
by rsc current_ind;
run;

Agent_Roster

RSC FULL_NAME DEP_ACCT COUNTY_NAME CURRENT_IND AGENT_DIM_KEY ROW_EXP_DATE ROW_EFF_DATE

700001 Ken Arrow 500001 Friedman 0 107 10/25/2011

700001 Ken Arrow 500001 Keynes 1 100 10/24/2011 09/01/2011

700002 Anna Schwartz 500002 Keynes 0 101 09/01/2011

700003 Frank Edgeworth 500003 Keynes 0 102 09/01/2011

700004 Irving Fisher 500004 Keynes 0 103 09/01/2011

700005 Bill Phillips 600001 Friedman 0 104 09/01/2011

700006 Gene Slutsky 500006 Friedman 0 105 09/01/2011

700007 Fritz Pareto 500007 Friedman 0 106 09/01/2011

700008 Fischer Black 600000 Friedman 0 108 10/25/2011

Figure 9. Agent roster table with changed and new records

STEP 8: BI REPORTING

The agent dimension is used with the application fact table to create an OLAP cube for reporting. A referred
application will have an RSC associated with it and this is used to establish the link with the application dimension
and the agent dimension key. Once the link between the application fact table and the agent dimension is
established, it is simple to create the reports desired. AN OLAP cube is created with dimension that allows drilling
down from state to county to agent. With the link between the fact table and the agent based upon the location at the
time of the application, reports will show multiple locations for the agents based upon their location at time of the
application. An example of this report is shown below. In addition any new agents and their applications will be
shown.

Applications DevelopmentSAS Global Forum 2012

Tracking and Reporting Account Referral Activity

9

Figure 10. Application Report based upon location of agent at time of application

A report can also be created based upon the current location of the agent irrespective of the location of the agent at
the time of the application. Selecting all of the applications of the agent and then basing the agent location on the
current location of the agent results in the creation of this report.

Figure 11. Application Report based upon current l ocation of agent

CONCLUSION

The hash tables make it possible to easily check for any changes in fields and determine the last key in a current
table. Because the hash tables are in memory, the hash tables also result in decreased processing time. Structuring
the agent dimension table with the type 1 and type 2 variables provides the ability to easily create the desired reports.
Reports created from the change log table provide other departments of the bank with information concerning new
and changed records resulting in easy validation of any changes.

REFERENCES

• Dorfman, Paul. “Data Step Hash Objects as Programming Tools” Proceeding of SUGI 30
• Dorfman Paul and Vyverman, Koen. “The SAS® Hash Object in Action” Proceedings of the SAS Global

Forum 2009
• Eberhardt, Peter. 2010 “The SAS® Hash Object: It’s Time to .find() Your Way Around” Proceedings of the

SAS Global Forum 2010
• Kimball, Ralph and Ross, Margy. 2002. The Data Warehouse Toolkit, 2nd Ed. New York, New York. Wiley

Computer Publishing
• Kimball, Ralph and Caserta, Joe. 2004. The Data Warehouse ETL Toolkit. New York, New York. Wiley

Computer Publishing
• Loren, Judy. 2008. “How Do I Love Hash Tables: Let Me Count the Ways!” Proceedings of the SAS Global

Forum 2008

Applications DevelopmentSAS Global Forum 2012

Tracking and Reporting Account Referral Activity

10

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Name: James Beaver
Enterprise: Farm Bureau Bank
Address: 17300 Henderson Pass
City, State ZIP: San Antonio, TX
Work Phone: 210-637-4809
E-mail: jbeaver@farmbureaubank.com

Name: Tobin Scroggins
Enterprise: Farm Bureau Bank
Address: 17300 Henderson Pass
City, State ZIP: San Antonio, TX
Work Phone: 210-637-4809
E-mail: tscroggins@farmbureaubank.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2012

	2012 Table of Contents

