
1

Paper 009-2012

Integrating Your Java Web Application into the SAS® 9.2 or SAS 9.3
Enterprise Business Intelligence Environment

Guillaume Curat, SAS Institute Inc., Cary, NC

ABSTRACT
Do you want your existing Java Web application to look and behave like the other SAS applications? The key to
achieving this goal is the use of the SAS Logon Manager, SAS metadata roles and capabilities, SAS themes, the
SAS Logging Service, and metadata.

This paper explains in detail all the steps to integrate your Java Web Application to an existing SAS Enterprise
Business Intelligence (BI) environment. SAS® AppDev Studio™ is used to demonstrate how easily it can be done.

INTRODUCTION
Over the years, companies have developed a lot of Web applications, but integration among each other and the
ability to share common services were not really a priority. Now, it is time to try to integrate them into a common
platform: the SAS® Web Infrastructure Platform.

The SAS Web Infrastructure Platform is a collection of services and applications that provide a common infrastructure
and integration features to be used by SAS Web applications. These services and applications provide the following
benefits:

 consistency in installation, configuration, and administration tasks for Web applications

 greater consistency in users' interactions with Web applications
 integration among Web applications as a result of the ability to share common resources

This paper explains in detail how to integrate your Java Web applications into an existing SAS Enterprise BI
environment by using the main components of the SAS Web Infrastructure Platform:

 SAS Logon Manager

 SAS Logging Service

 SAS themes
 SAS Web Infrastructure Platform Services

 Role and capabilities

SAS AppDev Studio is used to demonstrate how easily this integration can be done.

SAMPLE WEB APPLICATION TO INTEGRATE
To illustrate the different steps of the integration process, we will use the Tomcat Web Application Manager
application provided with Apache Tomcat 6.

Display 1. The Apache Tomcat 6 Web Application Manager

Applications DevelopmentSAS Global Forum 2012

2

This application contains Java Server Page (JSP) servlets and resource files, and it uses HTTP basic authentication,
as shown below.

Display 2. HTTP Basic Authentication for Accessing the Tomcat Web Application Manager

We will use Apache Tomcat version 6.0.32 as a servlet container for testing SAS Web applications under SAS®
AppDev Studio. Tomcat runs on a machine named sasbiserver on port 8180.

The SAS Enterprise BI environment (which includes the SAS Web Infrastructure Platform) also runs on the machine
named sasbiserver, but it is on port 8080.

SAS WEB APPLICATION COMMONALITIES
Before discussing the integration process, we need to look at the commonalities of the SAS Web applications.
Understanding the commonalities will help you determine which SAS features and functions you want to integrate
with.

If you look at several SAS Web applications, you will notice that they all have certain features in common:

 Visual aspects:

 Uses the same branding, which is defined by a SAS Theme and banner.

 Accesses applications from a single point: the SAS Logon Manager.

 Metadata: SAS metadata information is attached to each Web application. The metadata defines connection
properties and settings.

 Common services: SAS Web applications are using a set of common core infrastructure services that
enable integration with the SAS platform. These services are all part of SAS Foundations Services: Logging
Service, Information Service, Session Service, User Service, Authentication Service, and so on.

 Same way of managing functionalities: Roles and capabilities are used to limit the functionality of an
application.

Applications DevelopmentSAS Global Forum 2012

3

INTEGRATION PROCESS
The integration process consists of five steps:

1. Import an existing project into SAS AppDev Studio as a Dynamic Web Project.

2. Upgrade the Dynamic Web Project to a SAS Web Application project.

3. Add template content to the project.

4. Register the application in the SAS® Metadata Server.

5. Modify the application to use the SAS components (Foundation Services, SAS themes, roles and
capabilities, and so on).

STEP 1: IMPORT
To import the Tomcat Web Application Manager to SAS AppDev Studio as a Dynamic Web Project:

1. Create a new Dynamic Web Project named TomcatManager.

2. Copy and replace all the files from installation-directory\apache-tomcat-
6.0.32\webapps\manager directory to the TomcatManager project in the WebContent folder.

3. From the Java archive apache-tomcat-6.0.32\lib\catalina.jar, delete the folder
org\apache\catalina\manager.

4. Create a new Java package named org.apache.catalina.manager under the TomcatManager
project.

5. Download the source code for Apache Tomcat 6.0.32, and copy all of the files from apache-tomcat-
6.0.32-src\java\org\apache\catalina\manager to the Java package that is created in step 4.

6. Refresh the TomcatManager project to ensure that the copied files are picked up. (See Display 4, Project
Explorer).

7. Add the project to the ADS Apache Tomcat test server. Then start the server.

8. Test the TomcatManager project by opening the following URL:

http://sasbiserver:8180/TomcatManager/html

When the URL opens, the Tomcat Web Application Manager should look like the one shown in Display 3 on
the following page.

Applications DevelopmentSAS Global Forum 2012

4

Display 3. Project Explorer (left) and the Tomcat Web Application Manager (right) as It Appears When Launched

STEP 2: UPGRADE
To upgrade the Dynamic Web Project to a SAS Web Application Project:

1. Right-click the TomcatManager project and select Properties to open the Properties for
TomcatManager dialog box.

2. In the dialog box under SAS Java Project Properties, select the check box Upgrade to SAS
Web Application Project.

3. Click the Apply button.

The following project facets are added:

 SAS Java Components:
o SAS Java Components are a collection of .jar files provided by SAS to the build path of the project.

All of the .jar files are grouped under a library called SAS Repository.

o Images, scripts, styles, and templates provided by SAS are added to the WebContent folder of
the project.

o The Web deployment descriptor file (web.xml) is updated.

 SAS Web Infrastructure Platform
o SAS Web Infrastructure Platform adds Spring Framework configuration files (the spring-config

folder) to the project.

o The Web deployment descriptor file (web.xml) is updated.

Facets used by a project can be viewed by selecting Project ► Properties ► Project Facets.

STEP 3: ADD TEMPLATES
SAS templates consist of code that helps you rapidly develop SAS Web applications or implement a particular feature.
You can add these templates to a project when it is created or add them to an existing project later.

Applications DevelopmentSAS Global Forum 2012

5

In this step, the SAS Web Infrastructure Platform Applications Metadata Creation template is
added to the TomcatManager project. It creates support files for creating and deploying application metadata that is
required by the SAS Web Infrastructure Platform.

1. Right-click the TomcatManager project and select New ►Other.

2. Select SAS AppDev Studio / Add Template Content to Project.

3. In the Template section, select SAS Web Infrastructure Platform Support / SAS Web
Infrastructure Platform Application Metadata Creation.(Display 4)

4. Click the Next button.

5. Select the BI Server Profile information. (Display 5)

6. Enter the name of the Application Name. The name must be unique because it is used by the SAS
Logon Manager to identify the Web application. (Display 5)

7. Leave the Application ID empty. (Display 5)

8. Enter the appropriate values under Connection Information. This information defines the URL that is
used by the SAS Logon Manager to return to the Web application. (Display 5)

Display 4. New SAS Content Template Wizard:
Template selection

Display 5. New SAS Content Template` Wizard:
Application information

You can add several templates to the project if needed.

After the Upgrade and Add Template steps, your project should have the following new components:

 a reference to SAS Repository

 a metadata folder
 spring-framework integration that creates a spring-config folder

 folders for images, scripts, styles, and templates
 an updated web.xml file

STEP 4: REGISTER
At this point, you have to register the Web application in the SAS Metadata Server. Application metadata is required
for the Web application to communicate with the SAS Web Infrastructure Platform.

To create the metadata that is to be associated with the TomcatManager application:

1. Under the metadata folder of the project, right-click on the TomcatManager Create
Metadata.launch.

2. Select Run As ► TomcatManager Create Metadata.

Applications DevelopmentSAS Global Forum 2012

6

3. Verify that the message BUILD SUCCESSFUL appears at the end of the output logged to the console.

4. Open SAS® 9.2 Management Console by selecting Application Management ► Configuration Manager.
You can see the metadata that is associated with the Web application. (Display 6)

Note: For SAS® 9.3, you can view the application metadata by selecting Application Management ►
Configuration Manager ► SAS Application Infrastructure.

Display 6. TomcatManager As It Is Defined in SAS Management Console 9.2

STEP 5: MODIFY
By default, the Tomcat Web Application Manager uses HTTP basic authentication to request a user name and a
password from the Web browser whenever the browser requests a resource of the protected Web application.

We want to use the SAS Logon Manager to handle the security access to the Web application. Therefore, we need to
remove the HTTP basic authentication mechanism from the Web application.

Under the TomcatManager project in SAS AppDevStudio:

1. Open WebContent\WEB-INF\web.xml

2. Remove the XML element login-config.

3. Remove all four occurrences of the security-constraint XML elements.

4. Remove all five occurrences of the security-role XML elements.

The default page for the TomcatManager Web application should point to /TomcatManager/html.

Next, add the following lines to the web.xml file just after the <web-app. . .> line:

<welcome-file-list>
<welcome-file>html</welcome-file>

</welcome-file-list>

Now, when you try to connect to your Web application (http://sasbiserver:8180/TomcatManager), you
are redirected automatically to the following SAS Logon page:

http://sasbiserver:8080/SASLogon/index.jsp?_sasapp=TomcatManager&

Applications DevelopmentSAS Global Forum 2012

7

After you log on successfully, you are again redirected back to http://sasbiserver:8180/TomcatManager.

Display 7. Initial Integration with SAS Logon Manager

So far, you have seen how to use the SAS AppDev Studio wizards to integrate your Web application into the SAS
environment. However, there are some advanced modifications that are necessary for full integration. These
modifications are discussed later in the section Advanced Integration.

BEHIND THE SCENES
At this point, we need to understand what happened to the Dynamic Web Project when we upgraded it to a SAS Web
application project.

Spring Framework is the selected method for configuring SAS Web applications to consume services that are
provided by the SAS Web Infrastructure Platform.

SAS AppDev Studio helps you generate all of the Spring Framework configuration files, and it updates the Web
deployment descriptor (web.xml) of your application.

SPRING FRAMEWORK INTEGRATION
Spring Framework provides a comprehensive programming and configuration model for modern enterprise
applications that are Java based. Spring Framework was created to address the complexity of enterprise application
development.

 SAS 9.2 is using Spring Framework version 2.5.5.0.

 SAS 9.3 is using Spring Framework version 3.0.5.0.

Applications DevelopmentSAS Global Forum 2012

8

The following tables list and explain the roles of the Spring Framework configuration files that are created by the SAS
AppDev Studio wizard during the Upgrade step.

SAS 9.2

Configuration Files
That Are Added to

the spring-config
Folder

Description of the
Configuration Files

Method Used to Define the
Spring Elements

infrastructure-
config.xml

Imports JavaBean
definitions related to

platform infrastructure such
as JMS, data sources, SAS®

Foundation Services.

Standard Spring dependency injection:

 classpath*:META-INF/wip-services-client-
 config.xml

 classpath*:META-INF/spring-
config/aop-config.xml

 classpath*:META-INF/spring-config/data-
config.xml

 classpath*:META-INF/spring-
config/presentation-config.xml

 classpath*:META-INF/spring-config/jps-
config.xml

 classpath*:META-INF/xss-config.xml

webapp-config.xml

Specifies or imports
JavaBean definitions related

to Java Web application
components, such as servlet

filters.

Standard Spring dependency injection:

classpath*:META-INF/spring-config/webapp-
config.xml

SAS 9.3

Configuration Files
That Are Added to

the spring-config
Folder Description of the Configuration Files

Method Used to Define the
Spring Elements

aop-config.xml Contains AOP bean definitions for the SAS
Web infrastructure Platform

data-config.xml
Specifies the bean definitions associated
with the data access layer (tables, SAS

metadata, properties files…).
Explicit definition of the JavaBeans.

infrastructure-
config.xml

Specifies or imports JavaBean definitions
related to platform infrastructure such as

JMS, SAS Foundation Services.

Explicit definition of JavaBeans and
dependency injection of the following:

classpath*:META-INF/remote-
jps.xml

presentation-
config.xml

Specifies JavaBean definitions related to
user interface elements, such as themes.

Explicit definition of the JavaBeans

(table continued)

Applications DevelopmentSAS Global Forum 2012

9

Configuration Files
That Are Added to

the spring-config
Folder Description of the Configuration Files

Method Used to Define the
Spring Elements

services-config.xml Imports JavaBean definitions for
service use

Spring dependency injection:

classpath*:/META-INF/wip-
services-client-config.xml

webapp-config.xml (This file is empty.)

wip-config.xml
Specifies JavaBean definitions related to

Java Web application components, such as
servlet filters.

Explicit definition of the JavaBeans

xss-config.xml Specifies JavaBean definitions related to
cross-site scripting protection

Explicit definition of the JavaBeans

WEB DEPLOYMENT DESCRIPTOR

The Web deployment descriptor of the SAS Web application (WEB-INF/web.xml) contains all of the components to
integrate with the Spring Framework and the SAS Web Infrastructure Platform.

The Upgrade step adds the following main elements to the web.xml file:

 Main Elements of the web.xml File Description

context-param: locatorFactorySelector

context-param: parentContextKey

Used to access common properties across the middle-tier
applications.

The beanRefContext.xml file is provided as part of the
sas.svcs.cluster.jar file.

context-param: contextConfigLocation

Initializes the Spring Framework integration.

filter: SanitizingRequestFilter Addresses cross-site scripting vulnerabilities in Web
applications.

filter: CharacterEncodingFilter Sets the character encoding for input.

filter: WIPSecurityFilter The main security Filter. It is used to ensure that the user is
authenticated and has a SAS session established.

filter: ThemeSupportFilter

Enables access to the current theme.

(The following sessions attributes are set:
DISPLAY_THEME_OBJECT, BROWSER_TYPE.)

(table continued)

Applications DevelopmentSAS Global Forum 2012

10

 Main Elements of the web.xml File Description

filter: WIPPlatformServicesFilter
Sets a number of HTTP session attributes:
PFS_SESSIONID, REMOTE_SESSION_CONTEXT,
REMOTE_USER_CONTEXT, USER_ID, and USER_NAME.

servlet: director Constructs URIs for redirection to Web applications.

servlet: logoff Handles the process of logging out a user from the
application.

ADVANCED INTEGRATION
So far, we have used SAS AppDev Studio wizards to complete the initial integration (Upgrade, Add Template, and
Register steps). To fully integrate with the SAS Web Infrastructure Platform, we need to make some manual
modifications to the Web application, as explained in the following sections.

SAS LOGON MANAGER
During the previous integration steps, the Web application was automatically configured to use the SAS Logon
Manager to authenticate users. To enable the user to log off from the Web application, we just need to call the servlet
named Logoff. To do that, add the following HTML code to the main page:

Log Off

After this code is added, users should be able to log off successfully, as shown in the following display:

Display 8. Logoff Enabled

SAS LOGGING SERVICE
The SAS Logging Service provides a standardized mechanism for generating and handling logged messages. To
enable the service for the Web application, we have to create a new Local Foundation Services deployment
descriptor. Afterwards, we need to modify the web.xml file in order to use the new descriptor.

Applications DevelopmentSAS Global Forum 2012

11

Note: The following steps are valid only for SAS 9.2. The SAS Logging Service is deprecated in SAS 9.3. For
details about how to handle logged messages in SAS 9.3 details, see the section Logging Service Deprecation in
SAS® 9.3.

Definition of the Local Services

Define the Local Services in SAS Management Console, as follows:

1. Under Foundation Services Manager, right-click SASWIPServices9.2 Local Services and select
Duplicate Service Deployment. Rename the new deployment to TomcatManager9.2 Local
Services.

2. Select TomcatManager 9.2 Local Services ► Core.

3. Under Core, right-click Logging Service and select Properties. In the Logging Service Properties
dialog box, click the Service Configuration tab.

4. Click the Configuration button to open the Logging Service Configuration dialog box.

5. In the dialog box, click the Outputs tab.

6. Select SAS_LS_FILE in the Outputs box. Then, under File Output, add the following path to the File text
field: sas-configuration-directory\Lev1\Web\Logs\TomcatManager9.2.log.

Display 4, TomcatManager Logging Service Properties and Configuration Dialog Boxes

Modify the Web Application to Use the Local Services

Under the TomcatManager project in SAS AppDev Studio:

1. Create a new folder named conf in the WebContent/WEB-INF folder.

2. In the conf folder, create a new file named sas_metadata_source.properties that contains the following content:

software_component=TomcatManager9.2 Local Services
deployment_group_1=Core
deployment_group_2=Stored Process

Applications DevelopmentSAS Global Forum 2012

12

The software_component name must match the name of the Local Services created previously.

Display 5. Contents of the sas_metadata_source.properties File

3. Modify WEB-INF/spring-config/infrastructure-config.xml, as follows.

a. Locate the following line in the file:

<import resource="classpath*:META-INF/spring-config/jps-config.xml" />

b. Replace the line above with the following line:

<import resource="classpath*:META-INF/spring-config/jps-config-local-
remote.xml" />

4. Add the following elements to WEB-INF/web.xml:

<context-param>
<param-name>log4j-configuration-name-prefix</param-name>
<param-value>TomcatManager</param-value>

</context-param>

<!-- logging context separation listener (this should be the FIRST
 listener!!!) -->

<listener>

<listener-class>com.sas.svcs.logging.LoggingContextListener</listener-
class>

</listener>

5. Create a new log4j configuration file in sas-configuration-
directory\Lev1\Web\Common\LogConfig\TomcatManager-log4j.xml. To do that, make a copy of
the SASLogon-log4.xml file and rename it TomcatManager-log4j.xml.

6. Add the following Java Virtual Machine (JVM) option to the launch configuration of the Tomcat application server:

-Dcom.sas.log.config.url=file:///sas-configuration-directory/Lev1/
Web/Common/LogConfig/

Applications DevelopmentSAS Global Forum 2012

13

Write to the Log File

Use the following Java code to write to the log file. (Modify
org/apache/catalina/manager/HTMLManagerServlet.java, under the list method.)

import com.sas.services.logging.LoggerInterface;
import com.sas.services.logging.LoggingServiceInterface;
import com.sas.services.webapp.ServicesFacade;

LoggingServiceInterface _loggingServiceInterface =
 ServicesFacade.getLoggingService();
LoggerInterface logger =

 _loggingServiceInterface.getLogger(this.getClass().getName());

logger.warn("Tomcat Manager Accessed.");

When you access the TomcatManager application, the TomcatManager9.2.log file is created under sas-
configuration-directory \Lev1\Web\Logs\.

The TomcatManager9.2.log output looks similar to the following:

2012-01-10 13:32:42,708 [http-8180-1] WARN []
org.apache.catalina.manager.HTMLManagerServlet - Tomcat Manager Accessed.

Output 1. TomcatManager9.2.log

Logging Service Deprecation in SAS® 9.3

The Logging Service is deprecated in SAS 9.3. Therefore, you should use Apache log4j.

Under the TomcatManager project in SAS AppDev Studio:

1. Add the following parameters to WEB-INF/web.xml

<context-param>
<param-name>log4j-config-name-prefix</param-name>
<param-value>TomcatManager</param-value>

</context-param>

<!--Logging context separation listener (this should be the FIRST
listener!!!)-->

<listener>
 <listener-class>com.sas.svcs.logging.LoggingContextListener</listener-
class>

</listener>

2. Create a new log4j configuration file in sas-configuration-
directory\Lev1\Web\Common\LogConfig\TomcatManager-log4j.xml.To do that, make a copy
of the SASLogon-log4.xml file and rename it TomactManager-log4j.xml. Open TomcatManager-log4j.xml with
a text editor, and replace all occurrences of SASLogon9.3.log by TomactManager93.log.

You might want to change the root priority from ERROR to WARN or DEBUG.

3. Add the following JVM option to the launch configuration of the Tomcat application server:

-Dcom.sas.log.config.url=file:///sas-configuration-directory/Lev1/Web
/Common/LogConfig/

4. Use the following Java code to write to the log file. (Modify
org/apache/catalina/manager/HTMLManagerServlet.java, under the list method.)

import org.apache.log4j.Logger;

Logger log = Logger.getLogger(this.getClass().getName());
log.warn(“Tomcat Manager Accessed”);

Applications DevelopmentSAS Global Forum 2012

14

SAS THEMES
The following code shows how to add the SAS banner and apply a SAS theme to the Web application. Adding the
banner and a theme ensures that all Web applications are consistent in their general appearance. We can use either
of the following options to add the banner and apply a theme.

Option1: Use the SAS taglib Directive (in a JSP page)

a. Add the following taglib directive into the header section of a JSP page.

<%@ taglib uri="http://www.sas.com/taglib/sas" prefix="sas" %>
<sas:InitializeComponents/>
<sas:StyleSheet/>

b. At the beginning of the HTML body tag, insert the following code:

<sas:Banner title="Tomcat Manager" secondaryTitle="Welcome" userName=""
logOffURL="Logoff" helpDocURL="doc.do" helpAboutURL="help.do"
helpAboutTitle="XYZ" preferencesURL="preferences.do"/>

Option 2: Use Java Code

Add the following code to org/apache/catalina/manager/HTMLManagerServlet.java, under the list
method.

import com.sas.services.webapp.ServicesFacade;
import com.sas.servlet.util.BaseUtil;
import com.sas.web.keys.CommonKeys;
import com.sas.servlet.tbeans.html.Banner;
import com.sas.framework.themes.client.Theme;
import com.sas.framework.themes.client.BrowserType;

//Initialize SAS components to add Javascript to the HTML page.
com.sas.servlet.util.Components.init(writer, request);

// Retrieve the current theme.
Theme theme = (Theme) request.getAttribute(CommonKeys.DISPLAY_THEME_OBJECT);

// Retrieve the browser type.
BrowserType browserType =

(BrowserType) request.getAttribute(CommonKeys.BROWSER_TYPE);

//Retrieve the SAS style sheets according to the current theme and browser.
String links = BaseUtil.getStyleSheetLinks(theme, browserType,"SAS Style");
writer.println(links);

Banner banner = new Banner();
banner.setRequest(request);
banner.setTitle("Tomcat Manager");
banner.setSecondaryTitle("Welcome");
banner.setUserName("");
banner.setLogOffURL("/TomcatManager/Logoff");
banner.setHelpAboutURL("help.do");

banner.setHelpDocURL("doc.do");
banner.setPreferencesURL("preferences.do");

banner.setShowDivider(false);
banner.write(writer);

Applications DevelopmentSAS Global Forum 2012

15

For better output, set the margin to 0 for the HTML body.

<body style="margin: 0pt;">

Display 6. Banner and Theme Integration

SAS® WEB INFRASTRUCTURE PLATFORM SERVICES
Now, let’s see how we can use some of the SAS Web Infrastructure Platform services in order to obtain information
about the connected user and the application environment.

Spring Web Application Context

The Spring Framework Web Application context provides an interface to access configuration information about the
Web application. You can obtain the context name of the application and access all of the Java Beans that are
defined by using the following code:

import org.springframework.web.context.WebApplicationContext;
import org.springframework.web.context.support.WebApplicationContextUtils;
import javax.servlet.ServletContext;

//Retrieve the servlet context.
ServletContext sc = getServletContext();

// Retrieve the Web application context
WebApplicationContext wac=

WebApplicationContextUtils.getWebApplicationContext(sc);
//Retrieve the context name of the Web application.

String appName = sc.getInitParameter("application-name");

Configuration Service

The Configuration Service provides a standard way to define, store, modify, discover, and retrieve application
configuration information for SAS components deployed in the middle tier.

For example, you can retrieve the Web application properties that are defined in the metadata by using this code:

import com.sas.framework.config.ConfigurationServiceInterface;
import java.util.Properties;

ConfigurationServiceInterface configService =

 (ConfigurationServiceInterface)wac.getBean("configurationService");

(code continued)

Applications DevelopmentSAS Global Forum 2012

16

//Retrieve the properties of the Web application.
Properties prop = configService.getSettings(appName);
String title1 = prop.getProperty("banner.title1"); //Tomcat Manager
String title2 = prop.getProperty("banner.title2"); //Welcome

The TomcatManager application depends on the Web Infrastructure Platform. Therefore, the properties that are
returned by the Configuration Service are all of the properties of the Web Infrastructure Platform plus the properties of
the TomcatManager application.

Display 7. TomcatManager Properties in SAS Management Console

Each time modifications are made to the application metadata properties, the SAS Remote Services and the Web
application server must be restarted.

With SAS 9.3, the class com.sas.framework.config.ConfigurationServiceInterface has been
deprecated. Therefore, we need to use the class
com.sas.svcs.config.client.ConfigurationServiceInterface instead and use the bean named
svcs.configurationService:

import com.sas.svcs.config.client.ConfigurationServiceInterface;
import java.util.Properties;

ConfigurationServiceInterface configService =
 (ConfigurationServiceInterface)wac.getBean("svcs.configurationService");

Security Service

The Security Service context contains information about the authenticated user. You can retrieve the Security context
from the session with the following code.

import com.sas.svcs.authentication.client.SecurityContext;

//Retrieve the Security context from the session.
SecurityContext sec =

 (SecurityContext)request.getSession().getAttribute("waf_security");
String user_name = sec.getName(); //SAS Demo User
String user_id = sec.getId(); //sasdemo

To retrieve only the user name and ID of the authenticated user, use this code:

import com.sas.web.keys.CommonKeys;
String user_id =

(String)request.getSession().getAttribute(CommonKeys.USER_ID);
String user_name =

(String)request.getSession().getAttribute(CommonKeys.USER_NAME);

Applications DevelopmentSAS Global Forum 2012

17

User Service

The User context contains information about the authenticated user. You can retrieve that context with the following
code:

import com.sas.services.user.UserContextInterface;
import com.sas.web.keys.CommonKeys;
import com.sas.services.user.UserIdentityInterface;

UserContextInterface userContext =

(UserContextInterface)session.getAttribute(CommonKeys.REMOTE_USER_CONTEXT);

String authDomain = userContext.getAuthServer().getDomain();
UserIdentityInterface userIdentity =

userContext.getIdentityByDomain(authDomain);
String username = (String)userIdentity.getPrincipal(); //sasdemo
String password = (String)userIdentity.getCredential(); //password

UserInfo Service

The UserInfo Service provides mechanisms for returning information about a specific user (name, job title, e-mail
address, phone, and so on). You can retrieve this information with the following code:

import com.sas.svcs.userinfo.client.UserInfoServiceInterface;
import com.sas.svcs.userinfo.client.UserContactInfo;
import com.sas.svcs.userinfo.client.UserDetails;

//Retrieve userInfoService.
UserInfoServiceInterface userInfoService =
 (UserInfoServiceInterface)wac.getBean("userInfoService");

//Retrieve the user contact information for a specific user.
UserContactInfo userContactInfo = userInfoService.getContactInfo(user_id);
List emails = userContactInfo.getEmailAddresses();

//Get the UserDetails Info for a specific user.
UserDetails userDetails = userInfoService.getDetails(user_id);
String job_title = userDetails.getTitle();

Theme Service

The Theme Service provides access to SAS Theme information and resources. We can retrieve this information with
this code:

import com.sas.framework.themes.client.ThemeServiceInterface;
import com.sas.framework.themes.client.Theme;
import com.sas.framework.themes.client.Image;

//Retrieve themeService.
ThemeServiceInterface themeService =
 (ThemeServiceInterface)wac.getBean("themeService");

//Retrieve the list of all the themes that are available.
List themes = themeService.getThemeNames();

//Retrieve a theme.
Theme theme = themeService.getTheme((String)themes.get(0));

//Retrieve a theme resource to display(an image that is defined in
SASthemes.xml)

Image image = theme.getImage("tbar_Email");
String imagePath = image.getFile();
//imagePath conatins the full path to the image:
//http://sasbiserver:8080/SASTheme_default/themes/default/images/TbarEmail.gif

Applications DevelopmentSAS Global Forum 2012

18

ROLES AND CAPABILITIES
Roles and capabilities are used to limit the functionality of an application.

In the following TomcatManager example, the banner menus are restricted so that only certain users can see the
Preferences, Help, and Logoff menus. This example also controls access to the sections (deploy, diagnostics,
and so on).

Create New Capabilities in Metadata

Before making any changes to the SAS metadata server, you should perform a backup.

To add new capabilities in the metadata:

1. Retrieve the metadata ID of your Web application definition.

a. Open SAS Management Console and select Application Management ► Configuration
Manager.

b. Right-click TomcatManager and select Properties to open the TomcatManager Properties
dialog box. The metadata ID of the application (A5N99DRF.AI00001V) should be displayed on the
General tab .

Display 8. Metadata ID of the Web Application

2. Enable the XML Metadata Interface in SAS Management Console.

a. Navigate to the SAS_HOME\SASManagementConsole\9.2\plugins\advanced directory.

b. Copy the omitoolsmc directory to SAS_HOME\SASManagementConsole\9.2\plugins\.

c. Restart SAS Management Console.

3. Create metadata.

a. In SAS Management Console, launch the XML Metadata Interface, which is available from the
Tools menu.

b. On the Update Metadata tab, enter the following XML code in the Input XML field.

Note: The SoftwareComponent ID must match the ID of the Web application.

<!-- Update the Software Component ID with the ID of the Web
application. -->

<SoftwareComponent Id="A5N99DRF.AI00001V" PublicType="Application" >
<SoftwareTrees>

<Tree Name="ApplicationActions" PublicType=""
TreeType="ApplicationActions">

<SubTrees>
<!-- Create a new group of capabilities; TreeType must have

a value of ApplicationActions. -->
<Tree Name="Basic" Desc="Basic features" PublicType=""

TreeType="ApplicationActions">

 (code continued)

Applications DevelopmentSAS Global Forum 2012

19

<Members>
<!-- Add capabilities to the group; ActionType must
have a value of Feature. -->
<ApplicationAction Name="Manager"

Desc="Enable Manager Menu"
ActionIdentifier="Manager"
ActionType="Feature" />

<ApplicationAction Name="Applications"
Desc="Enable Applications Menu"
ActionIdentifier="Applications"
ActionType="Feature" />

<ApplicationAction Name="Deploy"
Desc="Enable Deploy Menu"
ActionIdentifier="Deploy"
ActionType="Feature" />

<ApplicationAction Name="Diagnostics"
Desc="Enable Diagnostics Menu"
ActionIdentifier="Diagnostics"
ActionType="Feature" />

<ApplicationAction Name="Server Information"
Desc="Enable Server Menu"
ActionIdentifier="ServerInfo"
ActionType="Feature" />

</Members>
</Tree>
 <Tree Name="Banner" Desc="Banner features" PublicType=""

TreeType="ApplicationActions" >
<Members>

<ApplicationAction Name="LogOff"
Desc="Show Log Off in Banner"
ActionIdentifier="banner.logoff"
ActionType="Feature" />

<ApplicationAction Name="Preferences"
Desc="Show Preferences in Banner"
ActionIdentifier="banner.pref"
ActionType="Feature" />

<ApplicationAction Name="Help"
Desc="Show Help in Banner"
ActionIdentifier="banner.help"
ActionType="Feature" />

</Members>
</Tree>

</SubTrees>
 </Tree>
 </SoftwareTrees>
</SoftwareComponent>

c. Click the Execute button.

Applications DevelopmentSAS Global Forum 2012

20

4. Create a new role and select new capabilities under the TomcatManager application.

Display 9. Roles and Capabilities in SAS Management Console

Integrate Capabilities into the Web Application

1. Use the following code to retrieve the roles and granted capabilities:

import com.sas.services.security.ApplicationAuthorization;

//Retrieve the roles.
List roles = userContext.getRoles(); //[Add-In for Microsoft

// Office: Advanced, TomcatManager -
// Limited]

 //Retrieve the granted capabilities.
List caps = userContext.getActions(appName,true);

List<String> capabilities = new ArrayList<String>(caps.size());
for (int i=0;i<caps.size();i++)

capabilities.add(((ApplicationAuthorization)caps.get(i)).getName());

//Granted capabilities contain [Applications, Server Information, LogOff]

2. Now modify the banner code, as follows, to take advantage of the capabilities defined in metadata.

Banner banner = new Banner();
banner.setRequest(request);
// The banner titles are read from the Web application properties.
banner.setTitle(prop.getProperty("banner.title1"));
banner.setSecondaryTitle(prop.getProperty("banner.title2"));
banner.setUserName(user_name);

if (capabilities.contains("Help"))
{
 banner.setHelpAboutURL("About.do");
 banner.setHelpDocURL("Help.do");
}

if (capabilities.contains("LogOff"))
 banner.setLogOffURL("/"+appName+"/Logoff");

(code continued)

Applications DevelopmentSAS Global Forum 2012

21

if (capabilities.contains("Preferences"))
 banner.setPreferencesURL("/Preferences.do");

banner.setShowDivider(false);
banner.write(writer);

Once we modify the banner, the Tomcat Manager application is fully integrated with SAS.

Display 10. Tomcat Manager Application Fully Integrated into the SAS Environment

CONCLUSION
This paper describes the steps necessary to integrate a Web application into the SAS Enterprise BI environment
using SAS AppDev Studio wizards. You have learned how to use the following main components of the SAS Web
Infrastructure Platform:

 SAS Logon Manager
 SAS Logging Facility
 SAS Foundation Services
 SAS themes
 Roles and capabilities

This paper covers only the integration of a Java Web application. However, you can also integrate Web applications
that use other technologies (such as Adobe Flex or Adobe Flash) into the SAS Enterprise BI environment.

RECOMMENDED READING
SAS Institute Inc. 2010. SAS® AppDev Studio™3.4 Eclipse Plug-ins: User's Guide. Cary, NC: SAS Institute Inc.
Available at support.sas.com/rnd/appdev/V34/ADS34UsersGuide.pdf.

SAS Institute Inc. 2012. SAS AppDev Studio 3.41 Developer’s Site. Available at
support.sas.com/rnd/appdev/. Accessed March 6, 2012.

SAS Institute Inc. 2011. SAS® 9.3 Foundation Services: Administrator's Guide. Cary, NC: SAS Institute Inc. Available
at support.sas.com/documentation/cdl/en/fndsvcag/62765/PDF/default/fndsvcag.pdf. (The
comparable SAS 9.2 edition of this document is available at
support.sas.com/documentation/cdl/en/fndsvcag/61502/PDF/default/fndsvcag.pdf.)

(continued)

Applications DevelopmentSAS Global Forum 2012

http://support.sas.com/rnd/appdev/V34/ADS34UsersGuide.pdf
http://support.sas.com/rnd/appdev/
http://support.sas.com/documentation/cdl/en/fndsvcag/62765/PDF/default/fndsvcag.pdf
support.sas.com/documentation/cdl/en/fndsvcag/61502/PDF/default/fndsvcag.pdf

22

SAS Institute Inc. 2011. SAS® 9.3 Integration Technologies: Java Client Developer's Guide. Cary, NC: SAS Institute
Inc. Available at
support.sas.com/documentation/cdl/en/itechjcdg/62762/PDF/default/itechjcdg.pdf.
(The SAS 9.2 edition of this document is available at
support.sas.com/documentation/cdl/en/itechjcdg/61499/PDF/default/itechjcdg.pdf.)

SAS Institute Inc. 2011.SAS® 9.3 Integration Technologies: Overview. Cary, NC: SAS Institute Inc. Available at
support.sas.com/documentation/cdl/en/itechov/62757/PDF/default/itechov.pdf. (The
comparable SAS 9.2 edition of this document is available at
support.sas.com/documentation/cdl/en/itechov/60309/PDF/default/itechov.pdf.)

SAS Institute Inc. 2011 SAS® 9.3 Intelligence Platform: Overview. Cary, NC: SAS Institute Inc. Available at
support.sas.com/documentation/cdl/en/biov/63143/PDF/default/biov.pdf. (The comparable
SAS 9.2 edition of this document is available at
support.sas.com/documentation/cdl/en/biov/63145/PDF/default/biov.pdf.)

SAS Institute Inc. 2011. SAS 9.3 Intelligence Platform: Web Application Administration Guide, Second Edition. Cary,
NC: SAS Institute Inc. Available at
support.sas.com/documentation/cdl/en/biwaag/64769/PDF/default/biwaag.pdf. (The
comparable SAS 9.2 edition of this document is available at
support.sas.com/documentation/cdl/en/biwaag/63149/PDF/default/biwaag.pdf.)

SAS Institute Inc. 2012. SAS® 9.3 Intelligence Platform: Middle-Tier Administration Guide, Second Edition. Cary, NC:
SAS Institute Inc. Available at
support.sas.com/documentation/cdl/en/bimtag/64862/PDF/default/bimtag.pdf. (Note: This
document is first available with the SAS 9.3 release.)

SAS Institute Inc. 2012. SAS® 9.3 Intelligence Platform: System Administration Guide. Cary, NC: SAS Institute Inc.
Available at support.sas.com/documentation/cdl/en/bisag/63132/PDF/default/bisag.pdf.
(The comparable SAS 9.2 edition of this document is available at
support.sas.com/documentation/cdl/en/bisag/64088/PDF/default/bisag.pdf.)

SpringSource. 2012. SpringSource Documentation: Spring Framework. Available at
www.springsource.org/documentation. Accessed March 8, 2012.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Guillaume Curat
SAS Institute Inc.
Guillaume.Curat@sas.com
support.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2012

http://support.sas.com/documentation/cdl/en/itechjcdg/62762/PDF/default/itechjcdg.pdf
http://support.sas.com/documentation/cdl/en/itechjcdg/61499/PDF/default/itechjcdg.pdf
http://support.sas.com/documentation/cdl/en/itechov/62757/PDF/default/itechov.pdf
http://support.sas.com/documentation/cdl/en/itechov/60309/PDF/default/itechov.pdf
http://support.sas.com/documentation/cdl/en/biov/63143/PDF/default/biov.pdf
http://support.sas.com/documentation/cdl/en/biwaag/64769/PDF/default/biwaag.pdf
http://support.sas.com/documentation/cdl/en/biwaag/63149/PDF/default/biwaag.pdf
http://support.sas.com/documentation/cdl/en/bimtag/64862/PDF/default/bimtag.pdf
http://support.sas.com/documentation/cdl/en/bisag/63132/PDF/default/bisag.pdf
http://support.sas.com/documentation/cdl/en/bisag/64088/PDF/default/bisag.pdf
http://www.springsource.org/documentation
mailto: Guillaume.Curat@sas.com
http://support.sas.com
http://support.sas.com/documentation/cdl/en/biov/63145/PDF/default/biov.pdf

	2012 Table of Contents

