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ABSTRACT 

 

Logit models appear in a variety of forms in applications in biostatistics, epidemiology, economics, marketing 
research and sociology. They are used to model the relationship between covariates and various types of 
discrete outcomes from the ubiquitous binary logit model for a two-level response to the conditional logit 
and multinomial (generalized) logit models concerning polytomous responses. Covariates may vary by 
characteristics of both the individual and response. For example, when assessing a consumer’s choice of 
health insurance plan or health care provider, or selection of a treatment regime (surgery, medical 
management, or no treatment), the probability of choice depends on the consumer’s own circumstances, 
utilities and preferences. Nested logit models allow for modeling the sequence of the decision process faced 
by the consumer by grouping alternatives at each stage into nests. Ordered logit models exploit the underlying 
ordinal structure of the response, whereas the exploded logit can be applied to rank ordered responses. We 
survey some enhancements in SAS/STAT and SAS/ETS software that can be used to fit various logit 
models. 

 
INTRODUCTION 

 

In many applications one encounters qualitative response data. The simplest binary outcome has two levels, 
for example a patient’s response to treatment is success or failure; a voter supports, or does not support a 
piece of legislation. Polytomous outcomes with several levels may be ordinal such as the severity of pain 
recorded as none, mild, moderate or severe, or nominal (unordered) such as the choice of travel mode—car, 
bus, train or plane, for traveling between two cities. Rank-ordered response data arise when a consumer is 
provided a menu of alternatives such as several breakfast cereals, and asked to order their choice from best 
(most preferred) to worst (least preferred). There may be several nuances in the respondent data. The set of 
alternatives could vary across individuals; some choices may receive the same rank; only a subset of the 
offered alternatives may be ranked leaving the remaining choices unranked. Discrete choice models (DCMs) 
in which individuals make choices based on own tastes for attributes of the alternatives have applications in 
marketing research, health services research and behavioral and social sciences. See references. 

 

Statistical models for analysis of qualitative observations should exploit their discrete nature while focusing on 
the inferential questions being addressed. Methods typically used to analyze quantitative, continuous 
responses are likely to be inadequate and inappropriate. For the models to be discussed in this paper the 
observations {( , ) : 1 }i iY i n≤ ≤x constitute a random sample from the target population, with iY  denoting the 
response or the chosen alternative in DCMs and ix  a p×1 vector of explanatory variables (covariates) for the 
i-th individual or unit in the sample. Especially with DCMs the covariates will vary by characteristics of the 
alternatives. In this case { : }i ij ij C= ∈x x where ijx  are the covariates for the j-th alternative in the choice set 

iC for the i-th individual. Typically researchers wish to quantify the influence of the covariates on some 
feature of the distribution of iY , for example the probabilities of choosing alternative j. This quantification is 
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through a regression model for an underlying unobserved continuous latent variable whose range of values is 
manifest in the observation iY . Although reference to a latent variable regression is not strictly necessary, it 
nevertheless provides a convenient primitive to frame the derivation of various models by changing the 
distribution assumption on the latent variable. If the latent variable has a meaning in a particular field of 
application, it has the advantage of providing a context that could help with interpretation of the model. 

 

Binary Logit 

 

The binary logit model is the mainstay for modeling a dichotomous response with applications in perhaps 
every research endeavor.  The response iY  is realized as a binary indicator [ 0]i iY Y ∗= > from the latent linear 
regression model i i iY β ε∗ ′= +x  where the error iε has a logistic distribution 1( ) (1 ) , ( , )uF u e u− −= + ∈ −∞ ∞  
independent of ix . The response probability ( ) [ 1| ] ( )i i i iP Y Fπ β′= = =x x x when transformed by 

( )log ( )/ (1 ( )i i iπ π β′− =x x x provides an interpretation of the regression coefficients β as log odds ratios. 
The maximum likelihood estimator (MLE) of β is obtained by maximizing the log-likelihood 

( )1 1
( ) log ( ) (1 )log(1 ( )) log ( )n n

i i i i i ii i
Y F Y F F qβ β β β

= =
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simplify to ( ) ( ) ( )2
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( ) , ( ) , ( )(1 ( ) .n n n

i i i i i i i i i i ii i i
Y F Y F F Fβ β β β

= = =
′ ′ ′ ′ ′ ′= − = − = −∑ ∑ ∑g x x B x x x H x x x x  

The MLE β̂ of β is the solution to the normal equation ( ) 0.β =g  It is consistent and asymptotically normal 

with (estimated) asymptotic variance matrix 1ˆ −H where ˆˆ ( )β=H H . Two other estimates of the asymptotic 

variance matrix are the OP estimate 1ˆ −B and the robust-sandwich estimate 1 1ˆ ˆ ˆ ,− −H BH  also referred to as the 
quasi (Q)-MLE variance matrix. 

 

All three variances are computed by proc QLIM; only the Hessian variance is computed in proc LOGISTIC. 
Robust-sandwich (empirical) and Hessian variances are computed in proc GLIMMIX and proc GENMOD 
under the assumed set-up of the generalized linear model (GLM). The solution to the estimating equation 

(EE) for β , 1
1

( ) 0n i
i i ii

Y
π υ π
β

−
=

∂
− =

∂∑ , where ( | ) (1 )i i i i iVar Y υ π π= = −x is the same as the solution to the 

MLE normal equation. The GLM model-based and robust-sandwich estimators of the variance coincide with 
1ˆ −H and 1 1ˆ ˆ ˆ ,− −H BH  respectively. In contrast the probit model with F = Φ (standard normal distribution) will 

yield slightly different variance estimators under the MLE and GLM theory although the MLE and EE 
estimators for β are the same. 

 

Consistent estimation of β requires correct specification of π ( ).ix  Any of the following will make the MLE 

β̂  inconsistent: (i) heteroscedasticity, i.e., ( | )i iVar ε x being non-constant. (ii) endogeneity of covariates ix , 
i.e., one or more covariates are correlated with the error iε , (iii) incorrect distribution assumption on the 
error ε ,i and (iv) omitted covariates in ix (even if they are orthogonal to those included). An example of (i) is

2( | ) exp( )i i iVar ε σ γ′=x z where 2σ is 1 for the probit model or 2π /3 for the logit model which lead to 
specifying ( ) ( exp( ½ ))i i iFπ β γ′ ′= −x x z . The covariates iz , typically a subset of ix , should be selected with 
guidance from subject-matter rather than statistical convenience. For (ii) we need additional models for the 
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endogenous covariates. Both (i) and (ii) can be fitted in QLIM although for (ii) the model errors are assumed 
jointly normal. The logistic and normal distributional assumption on iε  generally yield similar results for 

( ).iπ x  Moon (1988) and Mcdonald (2000) discuss other flexible forms for F concerning (iii).  Wooldridge 
(2002) gives some insightful comments on the issue of neglected heterogeneity (iv) in the context of the 
probit model. Since all moments of  the response iY are functions of π ( ),ix  in the single response context 
one might question the need for robust standard errors to guard against heteroscedasticity or 
misspecification. 
 
Illustrative Example 1 
 

The data set comprises 4483 respondents in year 1988 to the German Socioeconomic Panel Survey 1984-
1995 on healthcare utilization (Riphahn et al, 2003). Self-reported assessment of health (HSAT) is recorded on 
a 0 to 10 scale with higher values indicative of better health. The covariates we will use in this analysis are the 
respondent’s age (AGE), a measure of household income (HHNINC), education (EDUC) –all continuous, 
and the binary indicators for gender (FEMALE, 48%), having children in household (HHKIDS, 38%) and 
marital status (MARRIED, 75%). For purposes of illustration of various binary logit models we use the 
dichotomization Y=[HSAT≥7].  Approximately 60% have the event Y=1 which we will call “good health”. 
The following formats might prove useful: 
proc format; 
value hsat low-<7='<7' 7-high='>=7'; 
value female 0='male' 1='female'; 
value affirm 0='no' 1=' yes'; 
run; 

LOGISTIC and QLIM will produce identical results:  

proc logistic data=c.healthcare(where=(year=1988)); 
class married(ref='no') hhkids(ref='no') /param=ref; 
model hsat(event='>=7')=age educ hhninc married hhkids female/link=logit; 
format female female. married hhkids affirm. hsat hsat.; 
run; 

proc qlim data=c.healthcare(where=(year=1988)); *covest=qml; 
class hhkids married female; 
endogenous hsat~discrete(dist=logistic order=formatted); 
model hsat=age educ hhninc married hhkids female; 
format female female. married hhkids affirm. hsat hsat.; 
run; 

Table 1 summarizes the estimation results. Although its need is questionable, the robust estimates of standard 
errors (column 4) are produced by the option covest=qml in the QLIM statement. The p-values (column 
5) computed using either standard errors are practically the same. The heteroscedastic logit model (columns 
6-8) is fitted by adding the HETERO statement to the QLIM syntax: 
 
 hetero hsat~female HHNINC /link=exp noconst; 
 
Model fit statistics at the bottom of Table 1 show that the heteroscedastic model is not significantly different 
from the homoscedastic model. The formal likelihood ratio (LR) test of 0 : 0H γ = has 2 0.35χ = , 2 DF. 
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Table 1: Binary Logit Models 
 Homoscedastic case Heteroscedastic Case 

Parameter Estimate 

Standard 
Error 

(Hessian) 

Standard 
Error 

(QMLE) 
P-value 

(Hessian) 

 
 

Estimate 

Standard 
Error 

(Hessian) 

 
P-value 

(Hessian) 

Intercept 0.8091 0.24155 0.24287 0.0008 0.8146 0.23332 0.0005 
AGE –0.0328 0.00321 0.00321 <.0001 –0.0320 0.00589 <.0001 
EDUC 0.0837 0.01503 0.01536 <.0001 0.0805 0.02032 <.0001 
HHNINC 0.3487 0.20833 0.21234 0.0942 0.2224 0.37888 0.5572 
MARRIED –0.0518 0.08288 0.08339 0.5318 –0.0401 0.08622 0.6422 
HHKIDS 0.1289 0.07557 0.07523 0.0881 0.1285 0.07690 0.0947 
FEMALE –0.0568 0.06388 0.06387 0.3738 –0.0304 0.08008 0.7040 
_H.FEMALE     0.1212 0.27374 0.6579 
_H.HHNINC     –0.3642 0.95830 0.7039 
–2 Log L 5780.0    5779.6   
–2 Log L (null) 6020.8    6020.8   
–2 Log LR 240.8    241.2   
 
The results show that older age is associated with poor health, and more education with good heath. The sign 
on MARRIED suggests that the health status of married respondents was worse than their single 
counterparts. Fortunately the effect is not significant. Using the OUTPUT statement we can obtain predicted 
probabilities of response. This is useful in the heteroscedastic model because the standard interpretation of 
the β-coefficients as log odds ratios is not valid. 
 
 

Cumulative Logit and Ordered Logit Models 

 

There are many applications in which the categories of the outcome have a natural ordering.  For example, 
the severity of pain recorded as none, mild, moderate or severe. Any categorical variable assessed on a Likert 
scale would also fit this type of response. 

 

Suppose there are J- levels of the outcome iY  with labels 1, 2, …,J.  The response variable can be modeled in 
various ways. The cumulative probabilities of iY , ( ) [ | ]j i i iP Y jγ = ≤x x , reflect the ordering, with 

1 2( ) ( ) ( ) 1.i i J iγ γ γ≤ ≤ ≤ =x x x  Procedures LOGISTIC, GENMOD and GLIMMIX with the option  

link=cumlogit in the model statement will fit the model ( )log ( )/ (1 ( )j i j i j iγ γ α δ′− = +x x x , which is called 

the cumulative logit model (Agresti, 2002). Changing the link to cumprobit will fit the cumulative probit model. 
The jα ,  j=1, 2, …,J are intercepts; a constant is not included in ix . The parameters δ describe the effect of a 

covariate on the log odds of response in the category j or below. When the corresponding δ >0, as the value 
of the associated covariate increases, the response is more likely to fall at the low end of the ordinal scale. 
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As in the aforementioned pain scale the response variable sometimes reflects an underling measure that is not 
observed in its entirety. Let , 0, ,j j Jµ =  be threshold-points that provide a partition of the entire real line, 

that is,  0 1 Jµ µ µ−∞ = < < < = ∞ . The observed outcome is a categorization of a latent variable 
*

i i iY β ε′= +x  such that iY j=  if and only if *
1j i jYµ µ− < ≤ . The probability of response is 

( ) [ | ]j i i iP Y jπ = =x x µ β µ β−′ ′= − − −1( ) ( ),j i j iF Fx x  = 1, ,j J  where F is the distribution of iε . The 

cumulative response probability is ( ) [ | ] ( ).j i i i j iP Y j Fγ µ β′= ≤ = −x x x  By specifying F we get the two 
commonly used models: when F is the logistic distribution function we get the ordered logit model; when F is the 
standard normal distribution function Φ we get the ordered probit model.    

 

In the ordered logit model ( ) ( )log ( )/ (1 ( )) log (1 ( ))/ ( ) , 1, , 1.j i j i j i j i j i j Jγ γ µ β γ γ′− = − = − − = −x x x x x   

The parameters β describe the effect of a covariate on the log odds of response in the category above j, or 
equivalently the marginal effect of the covariate on *[ | ]i iE Y x . When β >0, as the value of the covariate 

increases, the response is more likely to fall at the high end of the ordinal scale, because 
*[ | ]i i

i

E Y β∂
=

∂
x

x
. 

Both the cumulative logit model and the ordered logit model have the proportional odds property because the odds 
ratio does not depend on the category to which the response variable belongs. Both models assume the effect 
of a covariate is identical for all J–1 cumulative logits. When this property holds, the model requires a single 
parameter rather than J–1 parameters to describe the effect of a covariate. 

 

Proc QLIM fits the ordered logit and ordered probit models. It uses the latent variable formulation.  By 
default an intercept is included in β and the first threshold parameter µ1 is set to zero. The model option 
limit1=varying overrides the default.  

 

Estimation of the parameters ( ,jµ β ) or ( , )jα δ in the ordered and cumulative models is via maximum 
likelihood. The log-likelihood is the same for two models except for the difference in the parameterization. 
For the ordered model the log-likelihood is  ( )11

( , ) [ ]log ( ) ( ) .n
i j i j ii j

Y j F Fµ β µ β µ β−=
′ ′= = − − −∑ ∑ x x  

Standard errors can be obtained from the Hessian, OP or their combination as QMLE. The default Hessian 
is preferred. A heteroscedastic model can be also fitted using, for example the variance model 

2( | ) exp( )i i iVar ε σ γ′=x z as we did in the binary logit case. Note that 2σ is a constant. 

 
Illustrative Example 2 
 
In example 1 the self-reported health status (HSAT) has a range 0 to 10. Suppose we create an ordinal 
response using the categories reflected in the format: 
 
value ohsat 0-<3='0' 3-<6='1' 6-<9='2' 9='3' 10='4';  
 
proc logistic data=c.healthcare(where=(year=1988)); 
class married(ref='no') hhkids(ref='no') female(ref='male')/param=ref; 
model HSAT=age educ hhninc married hhkids female /link=cumlogit; 
format female female. married hhkids affirm. hsat ohsat.; 
run; 
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The responses are cumulated over the lower formatted values. Table 2 shows the estimation results for the 
homoscedastic cumulative logit model (columns 3-5) fitted in proc LOGISTIC. The LR test (5 DF) is for the 
model’s δ-parameters. The estimate for AGE, for example, is 0.0322, which indicates that as people grow 
older, they are more likely to be in the lower end of the observed ordinal scale, i.e., having worse health. The 
proportional odds assumption maintains the same slope parameter across the 4 response levels. Response-
specific slope parameters increase the number of parameters by 18.  Unfortunately, overall, the proportional 
odds assumption is violated (score test 2χ = 66.6, 18 DF, p<.0001). Proc QLIM may be used to fit the 
equivalent homoscedastic ordered logit model. The results (not shown) are the same for the threshold 
parameters, but the signs for the covariates are reversed because the β-parameters here are −δ.  
 
A heteroscedastic ordered logit model with 2( | ) exp( )i i iVar ε σ γ′=x z is fitted in QLIM (columns 6-8). The 
LR test for no heteroscedasticity ( 2χ =20.42, 3DF) is significant, p<.0001. Comparison of coefficients 
between the two models is meaningless. Instead, predicted probabilities and marginal effects could be 
compared. 
 
proc qlim data=c.healthcare(where=(year=1988)); 
endogenous HSAT~discrete(dist=logistic order=formatted); 
model HSAT=age educ hhninc married hhkids female/limit1=varying; 
format female female. married hhkids affirm. hsat ohsat.; 
hetero HSAT~HHNINC female age/link=exp noconst; 
test 'NOHETERO' _H.HHNINC, _H.female, _H.age/all; 
run; 

Table 2: Ordinal Logit Models 
  Homoscedastic Cumulative Logit Heteroscedastic Ordered Logit 

Parameter  Estimate 
Standard 

Error p–value Estimate 
Standard 

Error p–value 

Intercept 1 α1, μ1 –3.5070 0.2197 <.0001 –3.8870 0.3535 <.0001 

Intercept 2 α2, μ2 –1.3858 0.2105 <.0001 –1.5145 0.2465 <.0001 

Intercept 3 α3, μ3 0.9275 0.2099 <.0001 0.9868 0.2294 <.0001 

Intercept 4 α4, μ4 1.8707 0.2129 <.0001 1.9965 0.2525 <.0001 

AGE  0.0322 0.0029 <.0001 –0.0352 0.0040 <.0001 
EDUC  –0.0650 0.0127 <.0001 0.0711 0.0142 <.0001 
HHNINC  –0.4254 0.1820 0.0194 0.4166 0.1945 0.0322 
MARRIED yes 0.0636 0.0738 0.3884 –0.0661 0.0814 0.4173 
HHKIDS yes –0.1144 0.0671 0.0884 0.1295 0.0724 0.0735 
FEMALE F –0.0130 0.0570 0.8199 0.0152 0.0620 0.8063 
_H.HHNINC     –0.5438 0.1611 0.0007 
_H.FEMALE F    0.0391 0.0571 0.4931 
_H.AGE     0.0078 0.0026 0.0027 
–2 Log L  11489.26   11477.84   
–2 Log L (null)  11750.19   11750.19   
–2 Log LR  251.93   272.35   

Statistics and Data AnalysisSAS Global Forum 2011

 
 



SAS Global Forum  Statistics and Data Analysis 

7 
 

Since the proportional odds assumption is violated in this example one might consider fitting a model with 
level-specific coefficients for the covariates. But 1 1( ) ( ) ( )j i j i j j i jF Fπ µ β µ β− −′ ′= − − −x x x must be between 0 

and 1, and the only way to assure this for all covariate values is to have 1j jµ µ −>  and 1.j jβ β −=
 
This is 

tantamount to assuming the proportional odds model. SAS Usage Note 22954 uses NLMIXED to fit a fully 
non-proportional odds model wherein each of the covariates is crossed with the response levels.  The 
likelihood for optimization is constructed from the cumulative response probabilities γ ( ).j ix  Whenever        

‘ ( ) 0j iπ ≤x ’ for an observation its contribution to the likelihood is set to near zero, whilst if  ‘ ( ) 1j iπ >x ’ the 
contribution is set to 1. In this way we can assure that estimates of the response probabilities are properly 
constrained. Stokes et al (2000) provide another approach based on generalized estimating equations (GEE) 
for the vector of binary responses 1 2 1( , , , )i i i iJY Y Y −=Y  where [ ], 1,..., 1ij iY Y j j J= ≤ = − . This makes the 
marginal responses highly correlated. The GEE model for the marginal response is 

( )logit [ 1|ij i ijP Y β′= =x x . Although this method does not guarantee appropriately constrained response 

probability estimates, it is easy to implement and generally, with data sets of moderate size, will yield proper 
probability estimates ( )jπ x unless x lies in the fringes of the covariate space (McCullagh and Nelder, 1989). 
Another alternative with non-proportionality of odds is to abandon the ordinal model altogether and regard 
the response as nominal. The multinomial model is described next. 
 
 
Multinomial logit (generalized logit) 

 

The multinomial logit model (MLM) makes the parameters specific to the nominal outcome. With subject–

specific covariates only, the probability of response {0,1, , 1}j J∈ −  is 1

0

exp( )
( )

exp( )
i j

ij j i J
i jj

β
π π

β−

=

′
= =

′∑
x

x
x

with 

0 0β = for identification. An intercept is included in each jβ . The MLM has the property of independence from 

irrelevant alternatives (IIA) because / exp( ( ))ij ik i j kπ π β β′= −x depends only on the two outcomes (j, k). Having 
too many parameters is a serious drawback of the MLM. Since one outcome (j=0) is used as a reference we 
will have J−1 intercepts and (J−1)p  regression coefficients, a total (J−1)(p+1) parameters. In the previous 
example on health status at 5 nominal levels and 6 covariates we have a MLM with 28 parameters. The 
proporatinal odds model on the other hand has 10 parameters.  

 

The MLM can be estimated in LOGISTIC or GLIMMIX using the link=glogit option. A single record file 
per subject is used with only the observed nominal response iY  and covariates ix . Proc MDC in SAS/ETS 
could also be used but requires a multiple-record input file — one record for each of the J alternatives. The 
dependent variable is numeric with value 1 for the observed response and zero for all other alternatives. All 
subject covariates need to be made response level–specific (crossed effects). Essentially MDC is fitting a 
conditional logit model (see next).  See MDC documentation example ‘Binary Data Modeling’ for a 
description of the binary logit model as a choice model.   

 
 
Conditional logit 
 
A series of logit models was popularized by McFadden (1984) in the context of discrete choice. A person 
(indexed by i ) is presented with a set of discrete choices iC ––for example, choice of health insurance plan or 
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health care provider; or different treatment regimes (surgery, medical management, no treatment). The 
observed option iY j=  that the individual chooses can be thought of as the person’s attempt to optimize his 
or her utility function{ : }ij iU j C∈ . The selected choice iY j=  is made because the person believes

max{ : , }ij il iU U l C l j≥ ∈ ≠ . Different classes of choice models are obtained from an underling latent 

random utility model (RUM) ij ij ijU β ε′= +x  where { : }ij ij Cε ∈ are random variables with a specified 
distribution. 

 

The conditional logit model (CLM) assumes { : }ij ij Cε ∈ are independent identically distributed (iid) 

extreme–value random variables, with distribution function ( ) exp( exp( ))F u u= − − , −∞<u<∞. The 
computation of  [ | ] [max{ : , } | ]ij i i il i ij iP Y j P U l C l j Uπ = = = ∈ ≠ <x x  leads to the expression 

exp( )
exp( )

i

ij
ij

ill C

β
π

β
∈

′
=

′∑
x

x
. The CLM has the IIA property, that is, for any two alternatives (j, k)

 
we have 

/ exp(( ) )ij ik ij ikπ π β′= −x x  which depends only on the characteristics of the two alternatives (j, k). A 
covariate that does not vary across alternatives does not enter the model because it is a constant multiplier to 
both the numerator and denominator of ijπ . 

Estimation in the CLM is via maximization of the log–likelihood 
1

( ) [ ]log .n
i iji j

Y jβ π
=

= =∑ ∑  This is 

exactly the same objective function that one obtains in conditional logistic regression for matched case–control 
studies. The analogy is that the revealed choice from the set iC  is a ‘case’ whilst all remaining alternatives in 
the choice set are ‘controls’.  Therefore the CLM can be analyzed in proc LOGISTIC using the strata 
statement to identify the matched sets, whereas in proc MDC the id statement serves the same functionality.  
Both procedures require a multiple-record input file—one record for each alternative in iC . 

 
Illustrative Example 3 
 
Allison (1999) describes a study of 147 murder cases. Each of 50 trial judges were asked to read 14 or 15 
murder cases and rank them from the most serious (rank=1) to the least (up to 15). All cases were ranked and 
ties were allowed with ties given the average rank. For example, ties in the three most serious cases received 
average rank=2; ties in 5–th and 6–th cases got average rank=5.5. Each case was ranked by 4 to 6 judges. The 
data set JUDGERNK is arrayed as one record per case with the following characteristics of each case:  
 
BLACKD= indicator for defendant being black; WHITVIC= indicator for victim being white; DEATH= 
indicator for death penalty; JUDGID identifies judges. Allison adds CULP an ordinal variable for culpability 
on a scale 1 to 5 derived from prediction of the death penalty. CULP  is used here as another covariate 
although it is a generated regressor (Wooldridge, 2002). 
 
When ranking the cases for seriousness the judges did not receive information on race or penalty. We first 
consider the 35 judges who gave a unique top rank (=1). Other cases ranked may have ties. The objective is 
to assess the relative importance of characteristics of the case that was ranked as most serious. In the data set 
JUDGRNK2 the variables CHOSEN and CHOSEN2 are created for convenience: 
 
chosen=(rank=1); 
chosen2=(rank=1)+2*(rank>1); 
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In the parlance of the choice model, ijπ is the probability that judge i ranks case j  as the most serious 

amongst his or her portfolio of cases iC . The case characteristics i =x (BLACKD, WHITVIC, DEATH, 
CULP) vary across cases in iC and across judges. Proc MDC is dedicated to fitting discrete choice models. 
The CLM is invoked via the type=clogit option in the model statement. An equivalent model statement is 
also shown but it uses only the first ranked choice, all other ranks are ignored. Future enhancements will 
provide flexibility of analyzing rank–ordered responses.  
 
proc mdc data=judgernk2 covest=hess; 
id judgid; 
model chosen=blackd whitvic death CULP/type=clogit choice=(rank); 
*model rank=blackd whitvic death CULP/type=clogit choice=(rank) rank; 
output out=stats_q pred=phat_q xbeta=xbeta_q; 
run; 

 
Exactly the same model is fitted by LOGISITC via 
proc logistic data=judgernk2; 
strata judgid; 
model chosen(event='1')=blackd whitvic death CULP; 
run; 
 

Table 3: Choice models  

First ranked choice Ranked choices 

Parameter Estimate 
Standard 

Error p–value 
 

Estimate 
Standard 

Error 
 

p–value 

BLACKD 0.2043 0.4124 0.6204 0.1195 0.0971 0.2185 

WHITVIC 0.3631 0.4266 0.3947 0.2370 0.1046 0.0235 

DEATH –0.4339 0.4821 0.3681 –0.1818 0.1377 0.1866 

CULP 0.5311 0.1415 0.0002 0.2586 0.0423 <.0001 

 

In Table 3 (columns 2–4) the only significant coefficient is CULP indicating that an increase in this variable is 
associated with an increase in the probability of a case being ranked as most serious. In fact the partial effects 

for continuous covariates are ([ ] )ij
ij ik

ik

k j
π

βπ π
∂

= = −
∂x

. For a discrete covariate the partial effect should be 

derived as differences in probabilities. The OUTPUT statement will compute the probability that each case in 
the input file is ranked first. For each judge these probabilities for the portfolio iC  must sum to 1. Note that 
only case characteristics are used in ijπ . This does not mean that cases with same values for BLACKD, 
WHITVIC, DEATH and CULP rated by different judges will have the same probability of receiving the most 
serious rank. The reason is that the choice set could be different for different judges. 

 

Neither MDC nor LOGISTIC will compute a confidence interval for the choice probabilities. However, 
using a survival model that has the same likelihood as the choice model, PHREG would allow computation 
of confidence intervals. The variable CHOSEN2 is regarded as an event time with the first ranked case 
having value 1 and all other cases having value 2, which is treated as censored.  Contribution to the partial 
log–likelihood by the potential times for cases ij C∈ for judge i is the aforementioned ( )β . The absence of 
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ties amongst the event times makes the likelihoods–– Breslow, Efron, discrete all the same. In the parlance of 
survival analysis, the estimated cumulative hazard at time t  is 0 0 0

ˆ ˆˆ ( | ) ( , )exp( )i iH t H t β β′=z z where 0z is a 

profile of a case, (0 ) 1
0 0

ˆ ˆ( , ) { ( , )} ( ),
t

i i iH t S u dN uβ β −= ∫ ( 0 ) ˆ ˆ( , ) ( )exp( )
i

i ij ijj C
S t Y tβ β

∈
=∑ x , ( )ijY t is the indicator 

for cases to be ranked at time  t, and ( )iN t is the counting process for ranked cases up to time  t. We have just 
one event time (=1) which yields the desired choice probability for case profile 0z . Note that the profile 0z
need not be one of the cases in the portfolio. This fact has important implications in application of discrete 
choice models in marketing research where the available constellation of choice characteristics could be 
extremely large. 
 
 PHREG computes a confidence interval for 0 0(1| ) exp( (1| ))i iS H= −z z from a confidence interval for

( )0 0 0log log( (1| ) log (1, )i iS H β β′− = +z z .  This can be salvaged to get the desired confidence interval via the 
approximation 0 0 01 (1| ) 1 exp( (1| )) (1| )i i iS H H− = − − ≈z z z . As an alternative, one could use directly the 

variance of 0
ˆ (1| )iH z  to do the calculations, 2

0 0 0
ˆ ˆˆ( (1| )) ( (1| ))/ (1| )i i iVar H Var S S≈z z z . 

 
 
Exploded logit (rank–ordered logit) model 

 

The exploded logit model uses the rankings of the utilities in the RUM ij ij ijU β ε′= +x where we maintain the 

assumption that the errors { : }ij ij Cε ∈
 
are distributed iid extreme–value. The observed responses are the 

rank order of the utilities of the choices, instead of the single choice that corresponds to the maximum utility.  
For example, without loss of generality suppose there are J alternatives and individual i ranks them as 

1 1max{ : } ,i ij i iY U j C U= ∈ = 2 2max{ : , 1} , ,i ij i iY U j C j U= ∈ > =   iJ iJY U= . The observed response is 

only the rank order 1 2 .i i iJU U U> > >  The response probability is computed as 1 2[ ].i i iJP U U U> > > We 

may allow for incomplete rankings with the first J1 alternatives being ranked keeping the remaining J− J1 
unranked.  The probability of response is then 

1 11[ ]i iJ iJP U U U> > >   where 
1 1max{ : }iJ ijU U j J= > . Ties 

among ranks are theoretically not possible under the continuous utility specification.  However, see below. 

 

Use the fact that exp( )ij ijX U= − has the exponential distribution with mean 1( )ijλ
− where exp( )ij ijλ β′= x . For 

a subset A⊆ iC , min{ : }ijX j A∈ is exponentially distributed with inverse scale ijj A
λ

∈∑ . A pedestrian 

calculation yields 1

1 1

1

1 2
1

1 2

[ ] iJi i
i iJ iJ

ij ij ijj j j J

P U U U
λλ λ

λ λ λ
≥ ≥ ≥

    
    > > > =
    
    ∑ ∑ ∑



  . The structure makes the 

term exploded logit to describe this model quite appropriate. The overall likelihood is the product of such 
terms across the sample.  

 

The form of this likelihood is exactly the same as the Breslow likelihood for observed survival times 

11 2i i iJT T T< < < in a sample of J potential events time of which the last  J− J1 are censored.  Therefore to 

analyze these data on the preference ranks we can use PHREG with the survival times 1<2< 1J<   for the 
first J1 ranked alternatives and a censored value (=J1+1) for the last J− J1 unranked alternatives. Of course the 
actual “times” are immaterial as long as the order is preserved. 
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If there are ties amongst the preference ranks an acceptable approach is to modify the above likelihood terms 
as follows. Suppose alternatives 1 , , pj j have the same rank r and R denotes all subsets of p alternatives 

amongst those that might receive a rank r or worse.  Let 1( , , )pq q=q  denote subscripts for the p 

alternatives in a subset q∈R. The corresponding term(s) in the likelihood is replaced by  

( )
( )

β

β
=

∈ =

 ′
 
 ′ 
 

∑
∑ ∑

1

1

exp ( )

exp ( )

k

l

p
ijk

p
iqR lq

x

x
. Allison suggests that this discrete logistic likelihood should be used with tied 

ranked data. Estimation is readily carried out in PHREG with the TIES=DISCRETE option to invoke use of 
this likelihood. The response times are the observed ranks 1, 2,…, allowing for ties.  

 
Illustrative Example 4 
  
Use the data set JUDGERNK with the syntax 
 
proc phreg data=judgernk; 
strata judgid; 
model rank=blackd whitvic death CULP/ties=discrete; 
output out=stats xbeta=xbeta logsurv=logsurv survival=survival/method=ch; 
run; 

The parameter estimates are shown in Table 3 (columns 5–7). Strictly speaking the results are not comparable 
with the analysis of the first ranked choice because inter alia the data sets used and the underlying models are 
different. Output statistics generated for the rank–ordered model must be interpreted with some caution 
because PHREG is operating in the context of a survival model. 
 
Let us carry out a few calculations (see Table 4). JUDGID=11 provided unique ranks to his portfolio of 15 

cases. The probability of case=4163 (obs=1) being ranked first is 1
1

1

exp( )
[ max{ : 1}] .

exp( )
i

i ij
ijj

P U U j
β
β

≥

′
> > =

′∑
x

x
 

For obs=1 we get 3.1026/31.8052 =0.0976 which is the cumulative hazard H(1)= –logsurv. Survival is 
computed as (1) [ 1] exp( (1)) 0.9071.S P RANK H= > = − =  
 
Dividing each exp_xb=exp(xbeta) by the sum across all cases gives the probability of first rank for each case. 
Although the observed ranks differ in  obs=11, 14 and 15, they have the same case characteristics and will 
therefore have the same probability of having the first rank. Obs=2 is a different case.  

1 2
1 2

1 2

exp( ) exp( )
[ max{ : 2}]

exp( ) exp( )
i i

i i ij
ij ijj j

P U U U j
β β
β β

≥ ≥

  ′ ′  > > > =
  ′ ′
  ∑ ∑

x x
x x

 

=0.0976×2.2954/28.7026=0.0078. 

For obs=2 we have ( )1 1(2)= (31.8052) (28.7026) 2.2954 0.15215.H − −+ × =  Survival for this record is
(2) [ 2] exp( (2)) 0.8587.S P RANK H= > = − =  We notice that we cannot easily use these results to compute 

the choice probabilities, other than for the first ranked choice. Moreover, if there were tied ranks at the first 
choice then (1) 1iN∆ >  and we cannot use H(1) directly to obtain choice probabilities. 
 
Future enhancements to proc MDC for ranked choice response data are likely to address these issues. 
Currently, in SAS/ETS 9.2, MDC utilizes only the first ranked value (=1) in estimation, ignoring the rest, 
basically fitting a conditional logit model. 
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Table 4: Output statistics for ranked choice (exploded logit) model 
Obs judgid rank blackd whitvic death culp case xbeta survival logsurv exp_xb 

1 11 1 1 1 0 3 4163 1.13224 0.90706 –0.09755 3.1026 
2 11 2 0 1 1 3 2172 0.83093 0.85886 –0.15215 2.2954 
3 11 3 1 1 0 1 1880 0.61508 0.82477 –0.19266 1.8498 
4 11 4 1 0 1 5 2015 1.23062 0.60900 –0.49594 3.4234 
5 11 5 0 0 0 1 1060 0.25858 0.77966 –0.24890 1.2951 
6 11 6 1 1 0 1 2375 0.61508 0.63843 –0.44875 1.8498 
7 11 7 1 0 1 2 1720 0.45487 0.62505 –0.46993 1.5760 
8 11 8 1 0 1 5 1598 1.23062 0.29248 –1.22936 3.4234 
9 11 9 1 0 1 2 197 0.45487 0.50295 –0.68727 1.5760 

10 11 10 0 1 1 5 119 1.34809 0.13315 –2.01630 3.8501 
11 11 11 1 0 0 1 3035 0.37809 0.38393 –0.95731 1.4595 
12 11 12 1 0 0 2 4142 0.63668 0.21236 –1.54945 1.8902 
13 11 13 0 0 0 1 4128 0.25858 0.25437 –1.36896 1.2951 
14 11 14 1 0 0 1 1791 0.37809 0.12967 –2.04274 1.4595 
15 11 15 1 0 0 1 463 0.37809 0.04770 –3.04274 1.4595 

          Sum 31.8052 
 
 

Nested logit 

 

As an extension of the conditional logit model suppose the choice alternatives are partitioned into K non-
overlapping nests, 1 , , KB B  (McFadden, 1984). The observed response for the i-th subject is the revealed 
choice (j) within the nest (k), that is, ,i kY j j B= ∈ . Suppressing the subject index, the underlying latent utility 
model is kj kj kjU V ε= + where kjV will be specified later. Within the nest kB  the errors { : }k kj kj Bε= ∈ε have 

a joint cumulative distribution ( )( ) exp exp( / )
k

k
k kj kj B

F u
θ

θ
∈

 = − − 
 ∑u , called the generalized extreme-value 

distribution (GEV, Train, 2003). To ensure that ( )kF u is a proper distribution we require (0,1]kθ ∈ for k=1, 
2,…, K. Across nests the errors are independent. The reasoning behind this specification originates from the 
marginal distribution of each ,kj kj Bε ∈ , which is assumed to be the standard extreme-value distribution

( ) exp( exp( )),u u uΛ = − − −∞ < < ∞ . We then generate the GEV distribution ( )1 2( ) ( ), ( ),k k kF C u u= Λ Λu 

for kε via the Gumbel-Hougaard (GH) copula ( )1/( ) exp ( log ) , [0,1]
k

k

k
j jj B

C v v
θ

θ
∈

 = − − ∈ 
 ∑v (Nelson, 

1999). 

 

The GH copula belongs to the Archimedean Family of Copulas which is generated by a continuous convex 
strictly decreasing function : [0,1] [0, ]ϕ → ∞ . Then ϕ ϕ

∈
=∑( ( )) ( )

k
jj B

C vv . For the GH copula
1/( ) ( log ) kv v θϕ = − . Kendall’s tau (τ ) assesses the association between two marginals 1 2( , )k kε ε . It is the 
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difference of the probability of concordance 1 1 2 2[( )( ) 0]k k k kP ε ε ε ε′ ′− − > and the probability of discordance 

1 1 2 2[( )( ) 0]k k k kP ε ε ε ε′ ′− − <  where 1 2( , )k kε ε′ ′ is an independent copy of 1 2( , )k kε ε .  For the GH copula 
1

0
1 4 { ( )/ ( )} 1 kv v dvτ ϕ ϕ θ′= + = −∫ . Also 2( , ) 1kj kl kCorr ε ε θ= −  (Kotz and Nadarajah, 2000). Generally, we 

require (0,1]kθ ∈  which makes the RUM consistent with utility maximization.  If 1kθ =  for all k, then 
{ : }kj kj Bε ∈ are iid extreme-value random variables.  

 

With the specification of the GEV for kε  the choice probability kjπ for a subject with choice (j) within the 

nest (k) is computed as [ | ] [ ]kj i k i kP Y j B P Y Bπ = = ∈ , with the maximum utility across nests being in kB . 
This is the nested logit model with level 1 for alternatives (j) and a level 2 layer for nests (k). For multiple layers 
the formulation becomes more complex in its notation (Hensher et al, 2005). Analogous to a tree structure a 
4-layer nested model has alternatives (level 1) nested in branches (level 2) that are in limbs (level 3) of trunks 
(level 4) of the root.  

The expression for a 2-level choice probability is 
( )

( )

θ

θ

θθ
π

θ θ

∈

∈
= ∈

 
 =
 
 

∑
∑ ∑ ∑1

exp( / )exp( / )
.

exp( / ) exp( / )

k

k

k

k
k

kl kl Bkj k
kj K

kl kl B kl kk l B

VV
V V

For alternatives ,j m in kB  we have ( )/ exp ( )/kj km kj km kV Vπ π θ= − which maintains the IIA property within 

a nest. However, if , ,k lj B m B m l∈ ∈ ≠  then 

( ) ( )
( )

1

1

exp( / )
/ exp ( / ) ( / )

exp( / )

k

k

l

l

kh kh B
kj lm kj k lm l

lh lh B

V
V V

V

θ

θ

θ
π π θ θ

θ

−

∈

−

∈

= −
∑
∑

depends on alternatives in the nests , .k lB B  

When 1kθ = for all k, the 2-level nested logit model reduces the conditional logit model.  

 

To incorporate covariates let kj k kjV α β′ ′= +z x with variables that depend only on the nest and variables that 
depend on alternatives (within the nest). Note that the additional subject index (i) is suppressed.  Then the 
utility-maximized nested logit model (UMNL) is 

( )
( )1

1

exp( ) exp( / )exp( / )
exp( / ) exp( ) exp( / )

exp( / ) exp( )
exp( / ) exp( )

k

k

k

k
k

k

k kl kl Bkj k
kj K

kl kl B k kl kk l B

kj k k k k
K

kl k k k kl B k

I
UMNL

I

θ

θ

α β θβ θ
π

β θ α β θ

β θ α θ
β θ α θ

∈

∈
= ∈

∈ =

′ ′ ′
 =
 ′  ′ ′ 

  ′ ′ +  =
 ′  ′ +  

∑
∑ ∑ ∑

∑ ∑

z xx
x z x

x z
x z

 

where ( )log exp( / )
k

k kl kl B
I β θ

∈
′= ∑ x  k=1,…,K  are called the inclusive values. The scale parameters kθ in the 

GEV could be referred to as the inclusive value parameters. From the GEV distribution we can compute the 
expected maximum utility from alternatives in kB : ( )max( : )kj k k k kE U j B Iθ α γ′∈ = + +z  where γ is a 

(Euler) constant. The first term in kjπ is the conditional probability of selected choice being  j  in the nest kB , 

given that the maximum utility across nests is the nest kB . The second term is the probability of 
max( : )k kj kM U j B= ∈ being the maximum utility across nests, i.e., [ max( : ,1 )]k lP M M l k l K> ≠ ≤ ≤ . 

Statistics and Data AnalysisSAS Global Forum 2011

 
 



SAS Global Forum  Statistics and Data Analysis 

14 
 

Proc MDC does not fit the UMNL (Silberhorn et al, 2008). Instead it fits the non-normalized nested logit model 
(NNNL) where / kβ θ  is replaced by β yielding the formula: 

1

exp( ) exp( )
exp( ) exp( )

k

kj k k k
kj K

kl k k kl B k

I
NNNL

I

β α θπ
β α θ∈ =

  ′ ′ +  =
 ′  ′ +  ∑ ∑

x z
x z

     

The NNNL places no restrictions on the parameters kθ . If all kθ  are constrained to be equal, the UMNL 
model reduces to the NNNL model.  In MDC we could estimate nest-specific coefficients by replacing 

/ kβ θ  with kβ . The corresponding UMNL beta coefficients are kβ × kθ . This means that we are estimating 
alternative-specific effects that differ by nest. Unless the intended application can support a complex 
structure, fitting such a model would be unwieldy and its interpretation a challenge.  

 

For each individual i  in a random sample, the observation is the revealed choice and the nest to which it 
belongs, i.e., iY j=  and the nest kB with kj B∈ . With individual covariate values ( , )kji kix z the log-likelihood 

is 
1 ,

( , ) [ , ]log ( , ).n
i k kj kji kii k j

Y j j Bα β π
=

= = ∈∑ ∑ x z  

 
Illustrative Example 4 
 
Brownstone and Small (1989) describe a study of 527 automobile commuters from home to their work place. 
The choice of arrival time at work consists of 12 alternatives based on their preference for arriving at work 
early, on-time or late relative to the official work-start time. Early arrivals (ALT 1-8) have a schedule delay 
(SD) of between −40 min to −5 min in 5 min increments; on-time arrivals (ALT 9) of course have SD=0; and 
late arrivals (ALT 10-12) have SD 5, 10 or 15 min.  The binary DECISION (0 or 1) revealed the arrival time 
choice. About 35% (n=187) of commuters chose on-time arrival, and only 5% (n=22) favored late arrival. 
Data on travel time (TTIME) in minutes were obtained from actual work-arrival time, official start-time at 
work supplemented by calculations for each commuter for each alternative. For the chosen alternative 
(DECISION=1), as expected TTIME was on average slightly longer for carpoolers (CP=1, n=156) than non-
carpoolers (CP=0, n=371). Some individuals had the flexibility of late arrival at work without any 
consequence.  The binary variable D2L=[SD≥FLEX] indicates schedule delay in excess of flex time (FLEX in 
mins). So D2L=0 for ALT 1-8. The variable SDLX=(SD−FLEX)/10, if SD>FLEX, and 0 otherwise, 
measures schedule delay in excess of allowed FLEX.  We define an indicator FL=[FLEX>0] for commuters 
who had flexibility of late arrival (FL=1, n=193), and those who did not (FL=0, n=334). 
 
Four variables describe characteristics of alternatives only: SDE=(−SD/10)×[SD<0] for schedule delay for 
early arrival; SDL =(SD/10)×[SD>0] for schedule delay for late arrival. Note that (SDE, SDL)=(0,0) only for 
ALT=9, on-time arrival. Binary variables R15=[SD∈{−30, −15, 0, 15}] and R10 =[SD∈{−40, −30, −20, −10, 
0, 10}] capture the tendency of respondents to round off answers to their schedule delay time to 15 minutes 
and 10 minutes, respectively.  
 
The figure depicts the tree structure for schedule delay. This is a 2-level model. Level 1 at the bottom shows 
the alternatives which are nested at level 2 in three nests. The nests are joined at the top of the tree. 

The NEST statement in proc MDC for the nesting of level 1 alternatives in level 2 nests is 

nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),  
     level(2) = (1 2 3 @ 1); 

Statistics and Data AnalysisSAS Global Forum 2011

 
 



SAS Global Forum  Statistics and Data Analysis 

15 
 

Covariates for the model are specified through the UTILITY statement. The general specification is  
 
utility u(level,alternatives@nest)=;  
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Figure: Tree Structure for Schedule Delay

 

Although proc MDC permits some flexibility in covariate specifications, having too many alternative-specific 
covariates builds an unwieldy model that is likely at best to be un-interpretable, let alone being able to fit 
properly (convergence problems). In most applications one would use a set of covariates that are common to 
all alternatives. All covariates in the model must appear in the MODEL statement.  
 
The data set SMALL may be accessed from the SAS Sample Library for the MDC procedure. Individual 
commuters are identified by ID, there are 12 records per individual corresponding to ALT= 1-12, for a total 
of 527×12= 6324 records. For additional description and analysis of this data set see Brownstone and Small 
(1989), Small (1982) and the documentation example ‘Nested Logit Analysis’ in MDC. For illustrative 
purposes and demonstration of different nested logit models we will use the following covariates: 
 
Level 1:  R10, R15, TTIME, SDE, SDL, SDLX, D2L 
Level 2:  CP_2, FL_2, CP_3, FL_3. 
 
The level 2 variables are indicators for CP and FL specific to nest=2 (ALT 9), and nest=3 (ALT=10-12). For 
nest=1 (ALT 1-8) all four variables are zero. Note that these level 2 variables are subject-specific. They are 
constant across the alternatives within each nest.  
 
Table 5 summarizes the output from fitting different NNNL models. 
 
Model A: Covariates at level 1 only.  
 
proc mdc data=small maxit=200 covest=hess; 
model decision = r15 r10 ttime sde sdl sdlx d2l/              
            type=nlogit  
            choice=(alt);  
id id;  
utility u(1, )= r15 r10 ttime sde sdl sdlx d2l;                    
nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),  
     level(2) = (1 2 3 @ 1);  
run; 
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The labeling of the parameters β in the output is self-explanatory. The inclusive value parameters 1 2 3, ,θ θ θ are 
named INC_L2G1C1, INC_L2G1C2, INC_L2G1C3. The three nests at level 2 (L2) form a single group 
(G1) at the top of the tree (see Figure).  
 
Model B: Covariates at level 1 only with the restriction 1 2 3θ θ θ= = . 
 
As previously noted, model B will be consistent with utility maximization. The restriction is accomplished by 
adding the option SAMESCALE to the model statement. The LR test for model B versus model A has       
−2 log LR=8.03. The 2 DF chi-square test is significant (p=.018). The test can be carried out within the 
invocation for fitting model A by adding the TEST statement: 
 
test "SAME SCALE"  INC_L2G1C1=INC_L2G1C2=INC_L2G1C3/LR; 
 
Model C: Covariates at level 1 only with the restriction 2 1.θ =  
 
Nest 2 is degenerate because it has a single alternative associated with it. The inclusive value parameter 2θ is 
not defined for the UMNL but identifiable in the NNNL. To impose the restriction, add the RESTRICT 
statement to model A: 
 
restrict "THETA2=1" INC_L2G1C2=1; 
 
The LR test for model C versus model A is not significant. 

Model D: Covariates at level 1 and level 2. 
 
The syntax modifies the UTILITY statement, imposes bounds on 1θ and 3θ  via a BOUNDS statement, and 
restricts 2 1θ = as before. 
 
proc mdc data=small maxit=250 covest=hess;  
bounds 0<INC_L2G1C1<=1, 0<INC_L2G1C3<=1; 
model decision = r15 r10 ttime sde sdl sdlx d2l cp_2 FL_2 cp_3 FL_3/        
            type=nlogit  
            choice=(alt);  
id id;  
utility u(1, ) = r15 r10 ttime sde sdl sdlx d2l,           
        u(2, 1 2 3@1)=cp_2 fl_2 cp_3 fl_3; 
 
   nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),  
        level(2) = (1 2 3 @ 1);   
restrict "THETA2=1" INC_L2G1C2=1; 
run; 
         

The utility specification for Model D is kj k kj kjU α β ε′ ′= + +z x  where  

1 2 3 4 5 6 710 15 2kj R R TTIME SDE SDL SDLX D Lβ β β β β β β β′ = + + + + + +x , 

11 12 21 22_ 2 _ 2 _ 3 _ 3k CP FL CP FLα α α α α′ = + + +z . 

An increase of 1 min in travel time is associated with an expected disutility 3β =–0.0933, whereas arriving at 
work a minute earlier has a disutility of 4β =–0.6490/10 (recall that SDE is scaled by 10). The marginal rate 
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of substitution is 1
4 3/ ( ) ( )/ ( ) 10 /kj kj

kj kj
kj kj

EU EU
TTIME SLE

SLE TTIME
β β−∂ ∂

∆ −∆ ≈ = =
∂ ∂

0.70. So a commuter will 

incur 0.70 minutes of extra travel time to avoid arriving an extra minute early. In all models the negative sign 
on the β-coefficients for variables associated with time signify their disutility. The α-coefficients in model D 
are subject-specific.  For example, with all other variables held constant, 21α is the difference in utility 
between a commuter who carpools and arrives late, and a commuter who does not carpool and arrives late. 
The negative sign on the estimate seems plausible, reflecting perhaps the perceived inconvenience of having 
to travel with others. A Wald test is not significant (p=.4052). By default MDC produces Wald tests for all 
parameters in the model. The TEST statement carries out hypotheses tests for linear combinations of model 
parameters through the LR, Wald, or Lagrange multiplier (score) chi-square tests.  

 

Estimates of choice probabilities are computed for each record in the data set from an OUTPUT statement:  

output out=stats_mdc predicted=phat; 

The distribution of values of phat by alternative are shown in the boxplot. Each box represents 527 estimates. 

 
Table 5: Non-normalized Nested Logit Models 

 Model  A Model  B Model C Model D 

Parameter Estimate 
Standard 

Error Estimate 
Standard 

Error Estimate 
Standard 

Error Estimate 
Standard 

Error 

r15_L1 1.1455 0.1234 1.1404 0.1104 1.1300 0.1118 1.0996 0.1260 

r10_L1 0.4344 0.1202 0.4260 0.1096 0.4203 0.1105 0.3862 0.1250 

ttime_L1 –0.0803 0.0361 –0.1072 0.0441 –0.0752 0.0290 –0.0933 0.0367 

sde_L1 –0.6711 0.0760 –0.6765 0.0572 –0.6623 0.0693 –0.6490 0.0710 

sdl_L1 –2.1683 0.5036 –2.1960 0.4994 –2.1146 0.4649 –2.3154 0.6865 

sdlx_L1 –3.4391 1.5077 –3.1042 1.3509 –3.3737 1.4740 –2.5152 1.7652 

d2L_L1 –1.2057 0.3665 –1.3962 0.3640 –1.1183 0.1897 –0.7994 0.2630 

INC_L2G1C1 0.5992 0.2547 0.7471 0.1521 0.6574 0.1735 0.7641 0.1304 

INC_L2G1C2 0.9133 0.2782 0.7471 0.1521 1.0000  1.0000  

INC_L2G1C3 0.7436 0.1543 0.7471 0.1521 0.7694 0.1387 0.8730 0.1803 

CP_2_L2G1       –0.7075 0.2268 

FL_2_L2G1       0.4282 0.2862 

CP_3_L2G1       –0.4096 0.4921 

FL_3_L2G1       0.5630 0.7200 

−Log L 993.53  997.54  993.58  988.19  
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Boxplot: Distribution of estimates of choice probabilities (Model D) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROC NLP is harnessed to carry out the maximum likelihood estimation for two UMNL models E and F 
(Table 6) considered as counterparts to NNNL models C and D. In model F having covariates at level 2 
appears to be detrimental as most alternative-specific variables are not significant. All alternative-specific 
coefficients are scaled by the corresponding inclusive value parameters 1θ  or 3θ , but 2θ is not defined and 
thus fixed at value 1. Initial parameters for the NLP procedure (inest= option) were from the NNNL models, 
and initial results from NLP were used in subsequent iterations of NLP with the hope of improving 
convergence and precision (i.e., small gradients). Although the results in Table 6 are satisfactory, we are 
unsure if additional improvements are possible using the myriad of options available in NLP.  

 
SUMMARY 
 
SAS Usage Note 22871 summarizes the types of logit models that can be fitted with SAS software. In this 
paper we described some of the capabilities of SAS procedures LOGISTIC, GENMOD, PHREG, QLIM 
and MDC in fitting a variety of logit models. We covered the binary logit for a dichotomous response, the 
ordinal and cumulative logit for ordered responses, the multinomial (or generalized) logit for nominal 
responses, and the exploded logit model for ranked responses. The latter used PHREG for analysis by 
exploiting the analogy between the ranked outcomes and a discrete time survival model. For discrete choice 
models, the conditional logit and nested logit models were discussed. The conditional logit model (CLM) is 
structurally similar to conditional logistic regression (CLR) for matched case-control data. However, 
important differences exist in interpretation of results from CLR and CLM because of differences in study 
design. For all models discussed in this paper estimation of model parameters is via maximization of an 
appropriate objective function, which is generally a log-likelihood function. 
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Although we focused on a single categorical response, there are natural extensions to longitudinal and 
clustered data. In specific contexts GLIMMIX and GENMOD could be used to account for correlation in 
repeated measures. CATMOD performs categorical data analyses for data structures that are presented as 
multidimensional contingency tables, using weighted least-squares for estimation. Some logit models not 
discussed in this paper are the continuation-ratio, adjacent-category models for ordinal responses, the 
stereotype models for ordered and multinomial responses, and mixed-logit model in the context of discrete 
choice. Finally, we note that using the term logit broadly to describe structurally very different models might 
seem overly simplistic.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
DATA SOURCES 
 
The German Socioeconomic Panel Survey 1984-1995 on healthcare utilization used in examples 1 and 2 is 
discussed extensively in Greene and Hensher (2010). The judge rank data set used in example 3 is from 
Allison (1999). The travel time data set of commuters used in example 4 can be obtained from the SAS 
Sample Program Library for the MDC procedure. 
 
 
 
 

Table 6: Utility Maximized Nested Logit Models 

 Model E Model F 

Parameter Estimate 
Standard 

Error p-value Estimate 
Standard 

Error p-value 

r15_L1 0.7868 0.2951 0.0079 0.6852 0.5418 0.2066 

r10_L1 0.2879 0.1369 0.0359 0.2328 0.2117 0.2720 

ttime_L1 –0.0765 0.0365 0.0369 –0.0696 0.0512 0.1745 

sde_L1 –0.4698 0.1804 0.0095 –0.4069 0.3216 0.2063 

sdl_L1 –1.8759 0.9548 0.0500 –1.8602 1.1545 0.1077 

sdlx_L1 –2.3989 0.8865 0.0070 –2.7819 1.7467 0.1118 

d2L_L1 –1.0429 0.1592 <.0001 –0.7970 0.1812 <.0001 

INC_L2G1C1 0.6866 0.2693 0.0111 0.6177 0.4988 0.2161 

INC_L2G1C2 1.0000   1.0000   

INC_L2G1C3 0.8872 0.5545 0.1102 0.9357 0.6083 0.1246 

CP_2_L2G1    –0.7849 0.2241 0.0005 

FL_2_L2G1    0.4140 0.2169 0.0568 

CP_3_L2G1    –0.4661 0.4896 0.3416 

FL_3_L2G1    0.0860 1.0276 0.9333 

− Log L 997.50   990.89   
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