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ABSTRACT  
 
Data are often encountered that fail the normality assumption, creating a dilemma between implementing 
the most appropriate analysis while maintaining appropriate inference.  A recent extension of generalized 
linear models includes support for the Beta distribution, a flexible and accommodating distribution.  SAS® 
can implement “Beta Regression” through PROC NLMIXED, allowing the model’s likelihood to be 
specified in terms of its mean and a variance component, providing a flexible modeling tool and providing 
intuitive inference.  We provide a brief theoretical introduction to Beta Regression as well as a macro that 
implements Beta Regression and provides residuals plots for model fit diagnostics. 
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INTRODUCTION  
 
The Beta distribution is a highly flexible parametric distribution, able to accommodate both unimodal and 
bimodal densities with varying severity of skewness (Figure 1). It is this flexibility of the Beta distribution 
that is of particular importance as it can be used estimating distributions with intractable skew, making 
normalizing transformations impossible.  Further, the support for the Beta distribution lies within the [0, 1] 
closed interval, leading Beta distributions to be a natural choice for characterizing percentages.   
 
Expanding the generalized linear model (GLM) to regress predictor variables on a dependent variable 
that is considered to be marginally distributed following a Beta distribution is referred to as Beta 
Regression [1-4]. Beta Regression has been shown to provide more accurate and efficient parameter 
estimates than ordinary least squares regression when the dependent variable follows a skewed 
underlying distribution [1] or when there is underlying heteroskedasticity [2].  Recent developments have 
provided for standardized residuals to be calculated when a Beta Regression model is specified with both 
mean and precision covariates [4].   
 
While the Beta distribution is characterized by two shape parameters, a simple algebraic transformation 
of these parameters defines the Beta distribution in terms of its mean and a scaling, or precision, 
parameter [1,4].  In this manner, Beta Regression can provide parameter estimates associated with, and 
thereby allowing inference to be made with respect to changes in the dependent variable's mean and 
precision. To our knowledge, previous discussion of regression on a Beta distributed dependent variable 
in this forum has been limited to models utilizing the shape parameters, not the mean and precision 
parameters [5-6].  In this paper, we present the Beta Regression model using the mean and precision 
parameterization as well as introduce a custom macro implementing Beta Regression within PROC 
NLMIXED based upon an existing example template [7].  Finally, we conclude with an example of an 
analysis using Beta Regression. 
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REGRESSION ON A BETA DISTRIBUTED DEPENDENT VARIABLE  
 
The standard, two-parameter Beta distribution is defined with two parameters,  and :  
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where , 0, 0 1,y      and  is the gamma function[6].  The mean of the Beta distribution is given 
as:  
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where      and given the algebraic substitution 1( ) 1      . This parameterization dictates 
that 0 1  and 0  as it can be easily shown that 0    and (1 ) 0     .  Assuming 
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Figure 1. Examples of Beta Distribution by Varying Shape Parameters. 
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this mean and precision parameterization, the setup of the GLM is relatively straightforward as predicting 
variables will be regressed upon each parameter.  

 
 
Let X be a matrix of size ( 1)n p  independent predicting variables to regress upon the mean 
parameter , withβ the corresponding regression coefficient vector of length 1p   to be estimated.  
Considering that the mean parameter is restricted to the open interval (0,1), a link function that maps the 
parameter from the interval into the real number space is needed.  While there are several choices that 
can be used for this link function, the logit function is the canonical link function and returns parameter 
estimates in terms of log-odds.  Subsequently, the function ( )h   is defined: 
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In a similar manner, let W be a matrix of size ( 1)n p  independent predicting variables to regress 
upon the precision parameter , withδ the corresponding regression coefficient vector.  X and W are 
separate design matrices with respect to the linear model algebra, but do not necessarily have to be 
distinct. Since the precision parameter must be strictly positive, again a link function that maps the 
parameter from the restricted space into the real number space is needed.  Here, the canonical link is the 
natural logarithmic link function, leading to the function ( )g  as: 
 

  ( )  ( ) ( )g ln exp    Wδ Wδ . 
 

Relating the two parameter functions to the dependent variable,  '( ), '( )f h gY Xβ Wδ , leads to the 
likelihood of Y in terms of the regressors:  
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Understanding the GLM setup of Beta Regression allows its specification within PROC NLMIXED.  Based 
upon an existing code template [7], we developed the following macro to automate the execution of Beta 
Regression as well as produce residual plots. 
 
 
DEFINING THE MACRO CALL 
 

 
The macro Beta_Regression is specified in the following manner: 
 
 Dataset – the LIBNAME.DATA file  
 tech – allows for different optimization schemes to be used  
 details – allows for other options to be specified 
 Vars – list of mean covariates or double single quotes [‘’] if none 

%Macro Beta_Regression(Dataset,tech, details, Vars, Vars2, depvar,  
 residuals, gpath ); 
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%Macro Preprocessing(Vars,b0,xb2,b); 
 
data HPG; 
 %global &xb2; 
 length  &xb2 $200.; 
 &xb2=&b0; 
  
 %if &Vars ne '' %then %do; 
  %let n=1; 
  var&n="%scan(&Vars,&n,' ')"; 
  %do %while( %scan(&Vars,&n,' ') ne  ); 
   %let n=%eval(&n+1); 
   var&n="%scan(&Vars,&n,' ')"; 
  %end; 
  %let n_1=%eval(&n-1); 
 
  array xbv {*} $ var1--var&n_1;  
   
  %do j=1 %to &n_1; 
   &b&j= "&b&j"; 
  %end; 
  %let one=1; 
  array &b{*} $8 &b&one--&b&n_1 ;  
  array p{1} $ 8 ('+'); 
  array m{1} $ 8 ('*'); 
   
  do i=1 to dim(xbv) while (xbv{i} ne ''); 
   &xb2= cats(of &xb2 p{1} &b{i} m{1} xbv{i}); 
  end; 
 %end; 
 call symput("&xb2",&xb2); 
run; 
 
%mend; 

 Vars2 – list of precision covariates or double single quotes [‘’] if none 
 depvar – the dependent variable scaled into the (0,1) open interval 
 residuals – specify “1” to generate Pearson and Standardized Residual plots 
 gpath – specify output directory for residual plots. 
 
 
CREATING LABELS FOR PREDICTOR VARIABLES 
 

 
PROC NLMIXED requires the specification of labels for each variable regressed on the dependent 
variable.  For example, “b1 *gender” identifies the parameter estimate “b1” quantifying the effect of 
“gender” in the model. For ease of use, a nested macro Preprocessing creates labels for the intercept and 
each predictor variable.  If no variables are specified, the Preprocessing macro will return intercept labels.  
Mean covariates are specified as “b” parameter estimates, while precision covariates are specified as “d” 
parameter estimates.  Each parameter estimate is labeled in ascending order corresponding to the listing 
order of the variables in the macro statement. 
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IMPLEMENTING BETA REGRESSION 
 
PROC NLMIXED provides maximum likelihood estimation for any programmable likelihood.  The Beta 
Regression likelihood, following the derivation above, can be specified as a GENERAL likelihood.  The 
piecewise specification of the mean and precision parameters is not required, but creates easy to read 
and interpret code [6]. 
 

 
 
 
Moreover, using the PREDICT statement to output the mean and precision parameter estimates for 
residual examination is made easier with the piecewise specification of the Beta Regression likelihood.  
Prediction must be performed in two statements, one for each parameter, leading to the generation of two 
temporary datasets. 
 
 
GENERATING AND PLOTTING THE RESIDUALS 
 
Pearson residuals are calculated by standard definition, taking the difference between actual and fitted 
values and dividing by the estimated standard deviation.  In terms of Beta Regression, this residual is: 

 

 



   1(1 )( 1)

i i
i

i i i

r
y 

   



 
 .   

 
Considering that the Beta distribution is supported within the (0,1) interval, the Pearson residuals are not 
necessarily expected to be normal and centered around zero.  The standardized residuals [4] account for 
the (0,1) mean parameter space by calculating the difference between the logit-transformed dependent  

%Macro Beta_Regression(Dataset,tech,details,Vars,Vars2,depvar, 
 residuals, gpath); 
 
ODS LISTING; 
%Preprocessing(&Vars,'b0',xb,b); 
%Preprocessing(&Vars2,'d0',wd,d); 
 
proc nlmixed data = &Dataset tech =&tech  &details; 
 mu = exp(&xb)/(1 + exp(&xb));   
 phi = exp(&wd);      
 w = mu*phi;       
 t = phi - mu*phi;     
 ll = lgamma(w+t) - lgamma(w) - lgamma(t) +  
  ((w-1)*log(&depvar)) + ((t-1)*log(1 - &depvar));    
 model &depvar ~ general(ll); 
 predict mu out=mu_results (keep=&depvar pred); 
 predict phi out=phi_results (keep=&depvar pred); 
run; 
 
%if &residuals = 1 %then %Beta_Regression_Residuals; 
 
%mend; 
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%Macro Beta_Regression_Residuals; 
 
data mu_results;  
 set mu_results;  
 if &depvar = . then mu_hat = .; 
  else mu_hat = pred; 
 record=_n_; 
 keep record &depvar mu_hat; 
run; 
 
data phi_results;  
 set phi_results;  
 if &depvar = . then phi_hat = .; 
  else phi_hat = pred; 
 record=_n_; 
 keep record &depvar phi_hat; 
run; 
 
data residual;  
 merge mu_results phi_results; 
 by record; 
 pearson = (&depvar - mu_hat) /  
  sqrt( (mu_hat * (1-mu_hat)) / (phi_hat + 1) ); 
 mustar = digamma(mu_hat * phi_hat) –  
  digamma( (1-mu_hat) * phi_hat); 
 astar = trigamma(mu_hat * phi_hat) +  
  trigamma( (1-mu_hat) * phi_hat); 
 logit_y = log(&depvar / (1 - &depvar) ); 
 scoreres = ( logit_y - mustar) / sqrt(astar); 
run; 
 
proc rank data=residual out=qqplot normal=blom; 
 var pearson scoreres; 
 ranks pearsonrank scorerank; 
run; 
 
proc sql;  
 Create table Range As 
 select  ceil(abs(max(pearsonrank))) as Max1,    
   ceil(abs(min(pearsonrank))) as Min1, 
   ceil(abs(max(scorerank))) as Max2,     
   ceil(abs(min(scorerank))) as Min2 
 from qqplot ; 
 
Data Range; 
 set Range; 
 Range1=Max(Max1,Min1); 
 Range2=Max(Max2,Min2); 
 call symput("Range1",Range1); 
 call symput("Range2",Range2); 
run; 
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ods html style= Journal; 
ods graphics on / reset scale=off; 
ods listing gpath=&gpath; 
 
goptions   
 reset=all  
 device=png 
 ftext='Arial' htext=4 gunit=pct 
 hsize = 5 
 vsize = 5 
 cback=white 
 noborder 
 gsfname=outgraph 
 gsfmode=replace; 
 
symbol1 interpol=none cv=black value=circle h=3; 
symbol2 interpol=join cv=black value=none h=3; 
 
axis1 label=("Inverse Normal")  

order=(-&Range1 to &Range1 by 1)  
minor=none; 
 

axis2 label=("Inverse Normal")  
order=(-&Range2 to &Range2 by 1)  
minor=none; 
 

axis3 label=(angle=90 "Pearson Residual")  
order=(-&Range1 to &Range1 by 1)  
minor=none; 
 

axis4 label=(angle=90 "Standardized Residual")  
order=(-&Range2 to &Range2 by 1)  
minor=none; 

 
filename outgraph '.\pearson_qqplot.png'; 
proc gplot data=qqplot; 
 plot pearson*pearsonrank  pearsonrank*pearsonrank / overlay  
   haxis = axis vaxis = axis3; 
run; 
 
filename outgraph '.\standardized_qqplot.png'; 
proc gplot data=qqplot; 
 plot scoreres*scorerank  scorerank*scorerank / overlay  
   haxis = axis2 vaxis = axis4; 
run; 
 
ods _all_ close; 
ods graphics off; 
 
%mend; /* End of Macro Beta_Regression_Residuals*/ 
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variable and the mean and precision parameter estimates. Once calculated, PROC RANK is used to give 
the inverse quantiles associated with each residual.  The ordered quantiles are passed to PROC SQL to 
determine the absolute minimum and maximum value for subsequent usage in setting the axis range in  
the quantile-quantile (QQ) plots.  With all of the calculations complete, PROC GPLOT is used to create 
square QQ plots with an overlaid linear reference line.  The GRAPHIC options are given as example only, 
and can be adjusted to suit the user’s specific style. 
 
 
EXAMPLE – ANALYSIS OF BARTHEL INDEX IN NINDS RT-PA CLINICAL TRIAL 
 
Two concurrent randomized, placebo-controlled, double-blind clinical trials sponsored by the National 
Institute of Neurological Diseases and Stroke (NINDS) were conducted between January 1991 and 
October 1994 [8].  The primary aim of the trials was to assess the effectiveness of “recombinant tissue-
type plasminogen activator” (rt-PA) in treating cerebral artery thrombosis (clot restricting or stopping blood 
flow) given within three hours of ischemic stroke onset , although safety of rt-PA administration was also 
of great importance [8].  624 individuals with ischemic stroke participated in these trials.  
 
The trials were designed to collect the same data using the same procedures, but each was powered to 
test a different primary endpoint.  The Part 1 trial assessed twenty-four hour functional improvement as 
measured by the National Institutes of Health Stroke Scale (NIHSS) as its primary endpoint; the Part 2 
trial assessed the combined functional outcomes at three months as measured by the NIHSS and other 
clinical outcomes [8].  Additional details of the NINDS rt-PA clinical trials are available [8].  
 
A secondary clinical outcome in the NINDS rt-PA trials was the Barthel Index [9], a clinical outcome scale 
ranging from [0-100] that assesses various activities of daily living achieved by an individual post-stroke.  
If an individual can achieve independence in performing activities, the highest score is assigned.  Since a 
majority of study participants achieved functional independence twelve months post-stroke, the resulting 
distribution of raw Barthel Index scores was severely skewed (Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Histogram of Barthel Index Outcome at Twelve Months by Treatment Group. 
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The underlying distribution of the raw Barthel Index scores could be characterized as a Beta distribution 
provided the support interval was transformed.  Given that the absolute minimum and maximum of the 
Barthel Index include 0 and 1, the transformation Z = [Y'(N-1) + 0.5] / N was used where  Y' = [Y - 
Minimum(Y)] / [Maximum(Y) - Minimum(Y)], N is the number of total observations and Y is the original 
scale measurement [10]. This transformation shifted the scores into the open interval while maintaining 
the overall distributional shape. 
 
 
MEAN-ONLY COVARIATE MODEL 
 

 
A model estimating differences in twelve month Barthel Index scores between treatment groups while 
adjusting for age (in decades) was initially fit with the predictor variables only in the mean function, a 
mean-only covariate Beta Regression.  The iteration history (ITDETAILS), optimized Hessian matrix 
(HESS), and covariance matrix of the parameter estimates (COV) were requested in the macro call, but 
are not discussed in detail here.  Convergence criterion was satisfied in 10 iterations and covariance 
between the parameter estimates was negligible. 
 
Parameter estimates for the mean-only model are summarized in Table 1. The mean function estimates 
intercept (b0), treatment group indicator (b1), and age (b2) are the log-odds of an increase in Barthel 
Index per unit change in the parameter.  For example, the odds of having a higher Barthel Index score in 
the rt-PA group are 1.3 times those in the placebo group given this model (exp(b1)=1.326). The precision 
function intercept (d0) is in actuality the log-transformed precision parameter. 
 

Table 1. Parameter estimates from Mean-Only Covariate Beta Regression 

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha

b0 2.1319 0.3440 438 6.20 <.0001 0.05

b1 0.2824 0.1171 438 2.41 0.0163 0.05

b2 -0.1775 0.05137 438 -3.46 0.0006 0.05

d0 -0.2456 0.06347 438 -3.87 0.0001 0.05

 
Examining the residuals for the mean-only covariate model indicates the model may not be fitting the data 
well (Figure 3). While it is common for a Pearson Residual plot from a Beta Regression model to not be 
normal, the Standardized Residual plot should fit the QQ plot.  The disjoint Standardized Residual plot 
further indicates that the mean-only covariate model should be improved. 
 
 
MEAN AND PRECISION COVARIATE MODEL 
 

 
A mean and precision model was fit adding age to the precision function.  Convergence criterion was 
satisfied in 21 iterations due to the added parameter.  Parameter estimates for the mean and precision 
model are given in Table 2. While the parameter estimate for the treatment group (b1) does not change 

%Beta_Regression(tpa.dataset,trureg,hess cov itdetails,tpa decade, '',  
barthel12m_raw, 1, "\\tpa\analysis\" ); 

%Beta_Regression(tpa.dataset,trureg,hess cov itdetails,tpa decade, decade,
barthel12m_raw, 1, "\\tpa\analysis\" ); 
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dramatically, the age parameter (b2) increases almost three-fold.  The age parameter in the precision 
function (d1) is also statistically significant, indicating that the log-precision decreases and concordantly 
overall variance increases as age increases.  
 

Table 2. Parameter estimates from Mean and Precision Covariate Beta Regression 

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha

b0 4.4509 0.4743 438 9.38 <.0001 0.05

b1 0.2902 0.1141 438 2.54 0.0113 0.05

b2 -0.5048 0.06958 438 -7.26 <.0001 0.05

d0 2.9000 0.4865 438 5.96 <.0001 0.05

d1 -0.4505 0.07002 438 -6.43 <.0001 0.05

 
 
The residual plots for the mean and precision model indicate an improved fit of the data as compared to 
the mean-only covariate model (Figure 4).  Improved fit is also seen in comparing the Akaike Information 
Criteria between the two models (mean-only AIC = -1877, mean and precision AIC = -1917). While model 
fit has improved, the residual plots for the mean and precision model indicate that more improvement is 
still desired. 
 
 
CONCLUSION  
 
Beta Regression combines the strength of generalized linear models with the flexibility of the Beta 
distribution, providing utility in modeling skewed and/or bounded variables.  While the Beta distribution 
can be fit in other procedures, PROC NLMIXED can be utilized to model changes in the dependent 
variable’s mean and precision.  We provide a set of macros that allow the user to implement Beta 
Regression in a straightforward manner, providing flexibility in using procedure options, maintaining ease 
of variable selection and assessing model fit through residual plots. 
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 Figure 4. Residual Plots after Fitting Mean and Precision Covariate Model 

Figure 3. Residual Plots after Fitting Mean-Only Covariate Model 
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