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ABSTRACT

Forecasters often deal with data accumulated at different time intervals (for example, monthly data and daily data). A
common practice is to generate the forecasts at the two time intervals independently so as to choose the best model
for each series. That practice can result in forecasts that do not agree.

This paper shows how the SAS® High-Performance Forecasting HPFTEMPRECON procedure uses the lower-
frequency forecast as a benchmark to adjust the higher-frequency forecast to take the best advantage of both forecasts.

INTRODUCTION

Forecasters often need to produce forecasts for a certain time series at more than one frequency. For example, a
company that provides warranty repairs for appliances might want to forecast the number of daily calls for staffing and
operational planning, such as ordering supplies. The company might also want to forecast service calls at a monthly
frequency to plan long-term expansion and to plan for financial concerns such as the purchase of more vehicles or the
hiring of new staff.

This paper deals with the problem of forecasting one time series at different frequencies, with a focus on stock variables.
For a stock variable, the low-frequency series is the temporal aggregation of the high-frequency series. The term
accumulation indicates temporal aggregation, and thus distinguishes it from other forms of aggregation, such as the
aggregation of series within a subclass that can take place in a hierarchical forecasting context.

The problem of forecasting at multiple frequencies is easily solved in an ideal world where data are plentiful, series
are well behaved (meaning they have mostly nonzero values and and are easily transformed to a covariance stationary
series), and the correct model is chosen for each series. In this Lake Wobegon of Statistics! the accumulation of the
high-frequency forecasts is at least as efficient as the forecasts generated by modeling the low-frequency series, in
the sense that the mean squared error of the &-step-ahead prediction of the former is less than or equal to the mean
squared error of the h-step-ahead prediction of the latter.

A formal outline of this argument for seasonal ARIMA processes can be found in Wei (1990), Chapter 16. The idea
is simple: a forecast (prediction) is the linear projection onto the Hilbert space generated by the observed series. The
space spanned by the low-frequency data is a subset of the space spanned by the high-frequency data. Therefore,
the accumulation of the projection on the finer space generated by the high-frequency data is at least as “close” to the
actual future value as the projection on the coarser space spanned by the low-frequency data. Another way to express
the same concept that is simpler and does not require any mathematical jargon is that the accumulation process is a
form of compression that involves loss of information. The original high-frequency data cannot be regenerated using
only the accumulated data. Therefore, forecasts generated with the restricted information contained in the accumulated
data cannot be better than forecasts generated with full information of the non-accumulated data.

Reality, however, rarely comes in textbook format (or radio-show format). Consider the following real-life examples (the
name of the companies are retained for confidentiality reasons):

Example 1. The spare-parts branch of a large company operates nationwide and manages more than 40,000 spare parts.
Three-months-ahead daily forecasts are needed for each ZIP code for replenishing the repair trucks and for
making staffing decisions. Very few parts are needed with regularity. Approximately only 10% of the parts show
a somewhat regular demand for each ZIP code. For the remaining parts, the daily demand is almost always zero.
Long-term monthly forecasts are needed for part production, hiring purposes, and long-term investments.

Example 2. A large retail store chain collects POS (point-of-sale) data in each store. Hourly forecasts are needed in the
medium term for staffing purposes. The hourly data are kept for three months, after which they are discarded due
to the cost of storing such a large amount of data. Only data accumulated at daily intervals are kept. Long-term
monthly forecasts are needed for expansion and financial planning.

In both examples, forecasts are needed at different frequencies for different purposes. However, there are good reasons
to believe that the accumulation of the high-frequency forecasts will not lead to good forecasts for the low-frequency
data.

"Lake Wobegon is a fictional town in the U.S. state of Minnesota, said to have been the boyhood home of radio-show host Garrison Keillor. It is
characterized by the fact that all the women are strong, all the men are good looking, and all the children are above average.



In the first example, most series show intermittent behavior. Intermittent series consist mostly of a single value, usually
zero. Models for intermittent data, such as the popular Croston (1972) model, cannot capture important features such as
trend, seasonality, and dependency on events or other external variables. Additionally, multiple seasonal components
might be present in the high-frequency data, whether they are intermittent or not. Modeling and estimating multiple
seasonal components simultaneously can be complex and computationally intensive.

In the second example, the duration of the hourly (high-frequency) data is not sufficient to produce monthly (low-
frequency) forecasts of any value. Indeed, you can reasonably argue that the information contained in the longer
history of the daily data can be used with benefit to forecast the hourly data. For example, when making staffing
decisions about the very important winter holiday season, the retailer should use the information contained in the daily
data, which covers the previous holiday seasons, and not rely solely on the hourly data forecasts which are based only
on the previous three months.

In practice, the forecasts for the two or more frequencies of interest are often derived independently from each other
by selecting at each frequency a model that provides the best results according to criteria, such as minimizing the
MAPE (mean absolute percentage error). However, when the forecasts are derived independently, the accumulation
of the high-frequency forecasts is generally different from the forecasts generated by the model for the low-frequency
data. Additionally, as in Example 2, you might want to use the low-frequency forecasts to improve the high-frequency
forecasts.

This paper shows a method for revising the low-frequency forecasts such that their accumulation at the low frequency is
equal to the forecasts generated by the model selected for the low-frequency data. The first section details the method.
The second section introduces the HPFTEMPRECON procedure in SAS® High Performance Forecasting and shows
how it can reconcile monthly forecasts to daily forecasts for the Box and Jenkins’ airline data. The third section presents
the results of applying the method to a data set that consists of several time series that exhibit intermittent behavior.
Finally, the last section draws the conclusions.

METHOD

The combination of a series of high-frequency data with a series of more reliable but less frequent data is seen often
in business statistics. For example, surveys are conducted at quarterly intervals on a subsample of the population of
interest to determine the interannual variations, while comprehensive surveys on the whole population are conducted
only on a yearly basis. The process of adjusting the more frequent data to match the less frequent but more reliable
data is known in the literature as benchmarking. Denton (1971) provided the first general framework for benchmarking
based on minimizing a quadratic function. A recent and comprehensive review on the topic can be found in Dagum and
Cholette (2006).

The lower-frequency forecasts are also referred to as the benchmark forecasts. The higher-frequency forecasts are
also referred to as the indicator forecasts. Benchmarking procedures can be applied more generally to any two series
that are measured at different time intervals. Therefore, this paper more generally refers to the benchmark series and
indicator series to indicate the forecasts involved in the benchmarking.

Denote the indicator series by x; witht = 1,... < T, where ¢ is associated with a date. Denote the benchmark series
by am, m =1..., M. The benchmarks have a starting date ¢ ,, and ending date 5 ,, suchthat1 <t;;, <toy <T.
You want to find an optimal benchmarked series 6;, r = 1,..., T such that the accumulation of benchmarked series at
the frequency of the lower-frequency forecasts is equal to the benchmark series. That is,

.m

Z 0 = am, m=1,....M

t=t1,m

The bias is defined as the expected discrepancy between the benchmark and the indicator series. You can decide
whether to adjust the original indicator series to account for the bias. Denote the bias-adjusted indicator series by s;.
When no adjustment for bias is performed, s; = x;.

The additive bias correction is given by:

M M 2.m
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In this case, the bias-adjusted indicator is s; = b + x;.
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The multiplicative bias correction is given by:
M
_ Zm=1 Am
b= M 2,m
2m=1 Zt:tlm Xt

In this case, the bias adjusted-series is s; = b-x;. Note that the multiplicative bias is not defined when the denominator
is zero.

Lets := [s1,s2,...,s7] be the vector of the bias-corrected indicator series, and let 6 := [0;, 02, ..., 07] be the vector of

its reconciled values. Let D be the T x T diagonal matrix whose main-diagonal elements are d; ; = |s,|A, t=1,...,T.
Indicate by V' the tridiagonal symmetric matrix whose main-diagonal elements are vi;; = vr,r = land v, = 1 + 02,
t =2,...,T — 1, and whose sub- and super-diagonal elements are v;;4+1 = vs4+1; = —p, t = 1,...,T — 1. Define
Q := DTVDT and ¢ := —Qs, where D7 indicates the Moore-Penrose pseudo-inverse of D.
The benchmarked (reconciled) series is given by the values 6;, ¢t = 1, ..., T that minimize the quadratic function
1
F0:7,p) = Ee”Qe’ +c'0 (1)

under the constraints
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Z 0 = am, m=1,....M @)

1=t1,m
where 0 < p <1 and A € i are parameters that you select.

When s does not contain zeros, the target function described by equation (1) is equivalent to the one proposed by
Quenneville et al. (2006).

Two issues are considered when benchmarking. The first one is to preserve the movement in the high-frequency series
as much as possible (movement preservation). The second is to account for the timeliness of the benchmarks, in
the sense that the benchmark for the last period might not be available if the indicator series extends beyond the last
benchmark value. Bias correction is a way to improve the timeliness of the benchmark in that it attempts to reduce the
expected discrepancies between the benchmark and the indicator function. The parameter p is a smoothing parameter
that controls the movement preservation. The closer p is to one, the more the original series movement is preserved.
The parameter A usually takes values 0, 0.5, or 1. For A = 0, you have an additive benchmarking model. For A = 0.5
and p = 0, you have a prorating benchmarking model.

In the traditional application of benchmarking, the goal is to regain the additivity of some seasonal adjusted series with
respect to the benchmark. In the context of this paper, the goal is to find the optimal forecasts for the high-frequency
series that respect the accumulation constraint (2). Therefore, it is suggested that you select the bias correction and
values of the parameters p and A in such a way as to optimize the selection criteria that was originally used to select the
models for the high-frequency data. For example, if the model for the high-frequency data was selected by minimizing
MAPE, likewise the parameters p, A, and the bias correction should be chosen to minimize MAPE for the benchmarked
forecasts.

When 0 < p < 1, the constrained minimization problem described by equations (1) and (2) can be derived from the
constrained regression problem

s = 9t+C;€t t=12,...,T
eg = pe—1+ée t=12,....,T
2.m
Z 91‘ = dm, m=1,...,M

t=t1,m

where ¢, is a white-noise process with variance o2, and ¢; are weights proportional to Is;|*. Therefore, when A = 0,
the minimization problem is equivalent to a constrained regression problem where the error between the bias-adjusted
indicator and the benchmarked series follows an AR(1) process with an autoregressive parameter proportional to p.

Leta = (a1,az,...,ap). The constraint equation (2) can be rewritten as
JOo =a (3)

where J is a matrix of zeros and ones such that J is the accumulation of the benchmarked series at the frequency of
the benchmark.



The solution of the minimization problem then becomes
0 =5s+Cx.CI'(JCS.CI) Y@a—-Js) (4)
where C is a diagonal matrix whose main-diagonal elements are ¢;, and X, is the covariance matrix of ;.

When benchmarking can be interpreted as a regression problem, it is also possible to derive the covariance of the
reconciled forecasts. See Quenneville et al. (2006) for the details.

A further interpretation of this method is as a way to combine the forecasts at the two frequencies to produce forecasts
for the higher frequency. The weights for the combination are derived using the solution of the minimization prob-
lem. The lower-frequency forecasts are assigned unit weights since they provide the right-hand side of the constraint
equations.

THE HPFTEMPRECON PROCEDURE

Using the method outlined in the preceding section, the HPFTEMPRECON procedure reconciles high-frequency fore-
casts to low-frequency forecasts in such a way that the accumulation of the reconciled high-frequency forecasts is equal
to the low-frequency forecasts. PROC HPFTEMPRECON reconciles forecasts for the same item at two different time
frequencies whose intervals are nested in one another. In other words, it reconciles a two-level hierarchy of forecasts in
the time dimension. For example, it reconciles monthly forecasts for the Box and Jenkins airline passenger data (in the
Sashelp.Air data set) to the quarterly forecasts for the same series. For this reason, the HPFTEMPRECON procedure
not only requires two input data sets for the predictions, but also it requires that the two frequencies of the forecasts be
specified in two separate statements: the ID statement for the high-frequency data, and the BENCHID statement for
the low-frequency data.

SAS High Performance Forecasting procedures are used to generate the forecasts at monthly and quarterly frequen-
cies. These forecasts become the inputs to PROC HPFTEMPRECON . A full discussion about the SAS High Per-
formance Forecasting system is outside the scope of this paper. Details can be found in SAS High-Performance
Forecasting: User’s Guide.

First, the HPFESMSPEC procedure generates an exponential smoothing model specification which is then selected by
the HPFSELECT procedure:

proc hpfesmspec
rep=work.repo
specname=myesm;
esm;
run;

proc hpfselect
rep=work. repo
name=myselect;
spec myesm;
run;

Then, forecasts are generated with PROC HPFENGINE at the monthly and the quarterly frequencies using the selected
model specification:

proc hpfengine
data=Sashelp.Air
rep=work.repo
globalselection=myselect
out=0OutMon
out for=OutForMon
outmodelinfo=0OutMod;
id date interval=month;
forecast air;
run;

proc hpfengine
data=Sashelp.Air
rep=work. repo
globalselection=myselect
out=0utQtr
outfor=0utForQtr
outmodelinfo=0OutModQrt;
id date interval=gqtr accumulate=total;
forecast air;
run;



Note that the variable air appears in the FORECAST statement of both PROC HPFENGINE instances. The INTERVAL=
option in the ID statements are different. In the first instance, the time ID interval is month; in the second instance, it
is quarter. The monthly forecasts are stored in the PREDICT variable of the OutForMon data set, and the quarterly
forecasts are stored in the PREDICT variable of the OutForQtr data set.

Finally, the monthly forecasts are reconciled to the quarterly forecasts using PROC HPFTEMPRECON:

proc hpftemprecon
data=OutForMon
benchdata=OutForQtr
outfor=BenFor
outstat=BenStat
exp=0.5
smooth=0.5;
id date interval=month;
benchid date interval=qtr;
run;

First, notice that the data set of the monthly forecasts is the argument of the DATA= option in the HPFTEMPRECON
statement, and the quarterly forecasts data set is the argument of the BENCHDATA= option.

Second, notice that there are two statements to specify the frequency of the data, one for each input data set that
contains the predictions. The ID statement is associated with the DATA= data set and specifies the variable that
contains the time index of the indicator predictions and its relative frequency (interval). The BENCHID statement is
associated with the BENCHDATA= data set and specifies the variable that contains the time index of the benchmark
predictions and its relative frequency. Remember that the interval of the ID variable needs to be fully nested in the
interval of the BENCHID variable. For example, months are fully nested in quarters. On the contrary, weeks are not
fully nested in months, since a week can span two months. Therefore, the frequency of the indicator series cannot be
weekly when the benchmark series has a monthly frequency.

The A and p parameters of equation (1) are set by the EXP= and SMOQOTH= options, respectively, in the HPFTEM-
PRECON statement.

Figure 1 displays the first 20 rows of the output data set BenFor, which contains the reconciled forecasts.

Figure 1 Reconciled Forecasts, EXP=0.5, SMOOTH=0.5

BenFor

Obs _NAME_ DATE ACTUAL PREDICT LOWER UPPER ERROR STD _RECFLAGS_

AIR JAN1949 112 109.938 88.984 130.892 2.0622 10.6910 00000000
AIR FEB1949 118 118.226 97.272 139.180 -0.2259 10.6910 00000000
AIR  MAR1949 132 133.826 112.872 154.780 -1.8256 10.6910 00000000
AIR  APR1949 129 131.466 110.512 152.420 -2.4659 10.6910 00000000
AIR  MAY1949 121 125.627 104.673 146.581 -4.6269 10.6910 00000000
AIR JUN1949 135 142.449 121.495 163.403 -7.4494 10.6910 00000000
AIR JUL1949 148 158.523 137.569 179.477 -10.5228 10.6910 00000000
AIR AUG1949 148 158.197 137.243 179.152 -10.1975 10.6910 00000000
AIR SEP1949 136 144.722 123.768 165.676 -8.7219 10.6910 00000000
10 AIR OCT1949 119 124.420 103.466 145.374 -5.4202 10.6910 00000000
11 AIR NOV1949 104 109.181 88.227 130.135 -5.1808 10.6910 00000000
12 AIR DEC1949 118 127.755 106.801 148.709 -9.7547 10.6910 00000000
13 AIR JAN1950 115 133.440 112.486 154.394 -18.4401 10.6910 00000000
14 AIR FEB1950 126 138.205 117.251 159.159 -12.2048 10.6910 00000000
15 AIR MAR1950 141 153.241 132.287 174.195 -12.2414 10.6910 00000000
16 AIR APR1950 135 147.096 126.142 168.050 -12.0956 10.6910 00000000
17 AIR MAY1950 125 136.073 115.119 157.027 -11.0727 10.6910 00000000
18 AIR JUN1950 149 149.300 128.346 170.254 -0.2997 10.6910 00000000
19 AIR JUL1950 170 163.708 142.754 184.662 6.2918 10.6910 00000000
20 AIR AUG1950 170 166.357 145.402 187.311 3.6435 10.6910 00000000

wooJouUu s WNR

Figure 2 displays the BenStat data set, which contains the statistics of fit for the reconciled forecasts.
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Figure 2 Reconciled Forecasts Statistics of Fit

BenStat
_NAME__REGION_DFE NMISSA NOBS N NPARMS NMISSP TSS SST SSE
AIR FORECAST 144 12 156 156 0 0 13371737 2058044.16 22594.43
MSE RMSE UMSE  URMSE MAPE MAE RSQUARE ADJRSQ AADJRSQ RWRSQ

156.906 12.5262 156.906 12.5262 3.89198 9.87504 0.98902 0.98910 0.98902 0.86132
AIC AICC SBC APC MAXERR MINERR MAXPE MINPE ME
728.013 728.013 728.013 156.906 33.2377 -35.2824 10.5057 -18.2718 0.035721
MPE MDAPE GMAPE MINPPE MAXPPE MPPE MAPPE MDAPPE GMAPPE
—-0.73963 3.18661 2.56165 —-15.4490 11.7390 -0.50276 3.81678 3.21198 2.54583
MINSPE MAXSPE MSPE SMAPE MDASPE GMASPE MINRE MAXRE MRE
-16.7422 11.0881 -0.61906 3.84958 3.18773 2.55297 -24.6884 11.9863 -0.16515
MRAE MDRAE GMRAE MASE MINAPES MAXAPES MAPES MDAPES GMAPES

0.98866 0.39664 0.35882 0.38186 0.11913 29.4103 8.23151 7.37656 5.45001

You can vary the reconciled forecasts by selecting the values of the SMOOTH= and EXP= options. Figure 3, Fig-

ure 4, and Figure 5 show the original forecasts versus the reconciled forecasts for different combinations of the two
parameters.

Figure 3 Original versus Reconciled Forecasts, SMOOTH=0.9, EXP=0

SMOOTH=0.9,EXP=0.0: Original versus Reconciled Forecasts
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Figure 4 Original versus Reconciled Forecasts, SMOOTH=0.5, EXP=0.5

SMOOTH=0.5 EXP=0.5: Original versus Reconciled Forecasts
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Figure 5 Original versus Reconciled Forecasts, SMOOTH=0.9, EXP=0.99

SMOOTH=0.9 EXP=0.99: Original vs Reconciled Forecasts
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DATA ANALYSIS

This section applies the method discussed in the preceding sections to a data set of real data that consists of several
time series, most of which show intermittent behavior. The data represent six years of monthly demand for 753 parts at
the British Royal Air Force (RAF), between July 1992 and June 1998, for a total of 72 observations. Demand for spare
parts is a typical example in which intermittent demand is usually encountered. And, indeed, a majority of the series in
this collection exhibit intermittent behavior.

First, forecasts are generated independently at the monthly and quarterly intervals. Two years of data are used to fit the
model. One year is used for out-of-sample model selection. After model selection, the model parameters are estimated
again to use the full three years of data. That leaves two years of data for evaluation of the performance of the forecasts.
SAS Forecast Server is used to perform model selection. The full details of the model selection procedure it uses can
be found in Leonard (2002).

Figure 6 Model Selection and Evaluation

For each series at each frequency, the best model is selected as the one that minimizes the out-of-sample root mean
squared error (RMSE) among a large class of models that include ARIMA (autoregressive integrated moving aver-
age), ESM (exponential smoothing models), UCM (unobserved component models), and models for intermittent series.



RMSE is chosen as selection criterion because it can be computed unequivocally regardless of the value of the series.
The most common selection criterion in the forecasting practice, the mean absolute percentage error (MAPE), is not
meaningful with intermittent series.

Figure 7 and Figure 8 display the model family selected for the monthly and the quarterly data, respectively. You can
see that for approximately 50% of the monthly series, a model for intermittent data is selected. This proportion is
dramatically reduced for the quarterly data.

Figure 7 Model Family Distribution for Monthly Data
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Figure 8 Model Family Distribution for Quarterly Data
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The monthly forecasts are reconciled to the quarterly forecasts for a grid of values of p and A, with p = 0,0.1,...,0.9,1
and A = 0,0.5,1. For each series the set of values of p and 1 is selected as those that minimize the out-of-sample
RMSE in the selection interval. Finally, the RMSE of the reconciled forecasts is compared to the RMSE of the original
model forecasts in the two-year evaluation period.

The RMSE of the reconciled monthly forecasts for the selected values of p and A is improved for 562 of the 753 series
when compared to the original model RMSE. The average improvement for these 562 series is 52%.

CONCLUSION

This paper presents a method for reconciling higher-frequency forecasts to lower-frequency forecasts for a time series
accumulated in a hierarchy of time intervals. The method is a based on the minimization of a quadratic loss function
subject to the constraint that the reconciled lower-frequency forecasts accumulate to the higher-frequency intervals.
Under certain circumstances, the problem can also be interpreted as a regression problem. This method is implemented
in the SAS HPFTEMPRECON procedure.

The target function depends on two parameters whose selection can depend on the same criteria that are used to
select the models for the forecasts at the two frequencies.

The application of this method can lead to more accurate forecasts when the data at higher frequency are mostly
intermittent and therefore are not suitable for models that include features such as input variables, events, and seasonal
components.
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