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ABSTRACT  
Bivariate count models are used in situations where two count dependent variables are correlated and they need to 
be jointly estimated.  Most research on count data regression models focus on univariate cases where the single 
dependent variable takes on non-negative integer.  While Chou and Steenhard (2009) provided a SAS

®
 macro 

program that handles a wide variety of univariate count data distributions, no study has provided a SAS program to 
estimate bivariate count regression models.  This paper develops a SAS

® 
macro program jointly estimate two 

correlated count data series---the bivariate count regression model.  Our SAS
® 

macro allows for ten bivariate count 
data distributions: bivariate Poisson, bivariate Poisson-LogNormal, bivariate negative binomial, bivariate generalized 
Poisson, bivariate Poisson inverse Gaussian, bivariate Borel-Tanner, bivariate Neyman Type A, bivariate generalized 
Waring, Poisson-Laguerre polynomial, and bivariate Poisson series expansion. In addition, the macro also provides 
estimation of the above bivariate distributions using a copula approach.  Bivariate zero-inflated, bivariate hurdle, 
bivariate truncated, and bivariate censored regression models can also be estimated with this SAS

® 
macro. We apply 

this SAS
® 

macro procedure to a healthcare utilization data.  The AIC (Akaike Information Criterion) and BIC 
(Bayesian Information Criterion) of these bivariate regression models are provided for model evaluation.   
 

1. INTRODUCTION  
Bivariate count data regression models are used when the event counts are jointly dependent; while the univariate 
count regression models estimate a single event count data (Chou and Steenhard, 2009).  Applying two independent 
count regressions to paired joint event counts leads to inconsistent and inefficient estimators.   Paired count events 
exhibiting correlation should be estimated jointly; and the bivariate count regression models are designed to handle 
such cases.  Bivariate count regression models analyze correlated event counts such as: the number of doctor visit 
and non-doctor professional visit; the number of visits to general practitioners and visits to specialists; the number of 
insurance claims with and without bodily injuries; the number of voluntary and involuntary job changes.  Studies that 
apply bivariate count models often assume a bivariate Poisson distribution which assumes the conditional mean of 
each count variable equals the conditional variance. Most of the paired events do not exhibit Poisson distribution.  For 
the common case of overdispersed count data, the bivariate negative binomial, bivariate Poisson inverse Gaussian, 
or the Poisson-lognormal models are potentially useful. Another shortcoming of commonly used bivariate count 
models is they can only accommodate non-negative correlation between the paired counts. The bivariate Poisson-
lognormal, bivariate Poisson-Laguerre polynomials and the bivariate Poisson-series expansion models can handle 
distributions that are more generalized than the bivariate Poisson or bivariate negative binomial models. Cameron 
and Trivedi (1998) provide an overview of standard bivariate count models.  Our paper develops a SAS macro 
regression that is capable of handling various types of bivariate count data distributions.     

 

There are studies apply bivariate count regression models to analyze correlated count events.  Gurmu and Elder 
(2000) proposes a bivariate Poisson-Laguerre model to analyze an Australian healthcare utilization data: the number 
of visit with doctor and the number of visit with non-doctor health professionals. Wang (2003) examines the same 
dataset using a bivariate zero-inflated negative binomial model to account for excessive zeros. However, the bivariate 
model proposed by Wang (2003) restricts the correlation between the two count variables to be non-negative. Gurmu 
and Elder (2008) further develops a bivariate zero-inflated Poisson-Laguerre count regression model with an 
unrestricted correlation pattern to analyze the same data. Cameron et. al. (2004) uses copula functions to obtain a 
flexible bivariate parametric model. They applies this model to healthcare utilization data: the self-reported number of 
doctor visits and true number of doctor visits.  Atella and Deb (2008) apply a bivariate negative-binomial regression 
model to examine the relationships between the number of visits to general practitioners and specialists using data 
from Italy. Riphahn et. al. (2003) applies a bivariate random effect count regression to test the adverse selection and 
moral hazard problems in German healthcare utilization.  Mayer and Chappell (1992) use a bivariate Poisson model 
to examine the factors affect U.S. industries’ entry and exit.  Morata (2009) applies a bivariate Poisson distribution 
model to analyze automobile insurance ratemaking.    Ho et. al. (2009) uses a bivariate zero-inflated negative 
binomial model to jointly examine two types of Japanese merger: M&A (merger and acquisition), and FDI (foreign 
direct investment) into the United States.  Wang et. al. (2003) uses a bivariate zero-inflated Poisson regression model 
to analyze two types of occupational injuries.  Lee et. al. (2005) further develops a bivariate zero-inflated Poisson 
autoregression model to analyze the same occupational injuries data.    
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This paper develops a versatile SAS
® 

macro to model ten different bivariate discrete distributions, this SAS
® 

macro 
also includes bivariate zero-inflated, hurdle, truncated and censored models.  By using the PROC NLMIXED 
procedure, one can jointly estimate bivariate count regression models through the log likelihood functions. We 
demonstrate the versatility of this macro by applying it to a healthcare utilization data.  We further evaluate the 
performance of the different bivariate count regression models using AIC and BIC.   
 
Section 2 briefly discusses five commonly used bivariate count data distributions and their respective log likelihood 
functions.  It also briefly discusses zero-inflated, hurdle, truncated and censored models. Section 3 explains the 
capabilities of the SAS

® 
macro-- %bicount. Section 4 applies our SAS

® 
macro to a healthcare utilization data set 

where we further discuss and evaluate the results of these bivariate count regression models.  Summary and 
concluding remarks are presented in section 5. 
 

2. BIVARIATE COUNT MODELING DISTRIBUTIONS AND THEIR PROPERTIES 
In this section we discuss five bivariate count data distributions and their respective log likelihood functions.  The five 
data distributions are: bivariate Poisson, bivariate negative binomial, bivariate generalized Poisson, bivariate Poisson 
inverse Gaussian and the Poisson-Laguerre polynomial distribution. The bivariate zero-inflated, hurdle, truncated, 
and censored models are also briefly discussed.  Other data distributions such as: bivariate Poisson-lognormal, 
bivariate Borel-Tanner, bivariate Neyman type A, bivariate generalized Waring, and the Poisson series expansion, 
are modeled into our SAS

®
macro procedure; but not discussed here due to the space limitation.   

 

2.1   BIVARIATE POISSON MODEL 
Among the bivariate count models, the bivariate Poisson regression model is the most widely used model. A well 
established approach is to generate the bivariate Poisson distribution by convolutions of Poisson random variables 
(Kocherladota and Kocherlakota 1992) is: 

 

 
Where  are independently distributed. The joint probability 

density function of the bivariate Poisson can be obtained as: 

 

 
Where   and  this model allows only for non-negative correlation between the 

counts and restricts the mean to be equal to the variance for each of the respective marginal distributions. The 
marginal distributions of the model are still Poisson, and the correlation between the two count variables (conditioned 

on the covariates) is individual specific, being a function of the   

 
The log likelihood function of a bivariate Poisson model is derived by taking the log of the density function specified 
above.    
 

2.2   BIVARIATE NEGATIVE BINOMIAL MODEL 
As in the univariate case, bivariate count models can be generalized to allow for overdispersion. Consider a bivariate 

model with unobserved heterogeneity. Let where  is the unobserved heterogeneity 

component. The mixture bivariate density has the form: 

 
Where  is a vector of all regressors. If  has a gamma distribution with mean unity and variance  then you have 

the bivariate negative binomial regression model with a joint probability density function  

 
Where  and   
The marginal distributions of this model are still negative binomial, and the correlation between the two count 
variables (conditional to the covariates) is individual specific, 
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2.3   BIVARIATE GENERALIZED POISSON MODEL 
This distribution is derived from the generalized Poisson distribution using a trivariate reduction method (Vernic, 
1997): 

 

 
Where  are independently distributed. The 

joint probability density function of the bivariate generalized Poisson can be obtained as: 
 

 

 
Where   and  This model allows only for non-negative correlation between the 

counts. The marginal distributions of the model are still generalized Poisson, and the correlation between the two 

count variables (conditioned on the covariates) is individual specific, being a function of the  : 

 
  

 
 

2.4   BIVARIATE POISSON INVERSE GAUSSIAN 
Several forms of the bivariate distribution can be developed by compounding the bivariate Poisson distribution with 
the inverse Gaussian distribution of the form discussed by Jorgensen (1987). For this paper we use the case of the 

inverse Gaussian distribution when  (Brown et al. 2006). The joint probability density function of the 

bivariate Poisson inverse Gaussian can be obtained as: 

 
Where  and   and  is the modified Bessel function of the second kind. 

This model allows only for non-negative correlation between the counts. The correlation between the two count 

variables (conditioned on the covariates) is individual specific, being a function of the  : 

 
 

2.5   BIVARIATE POISSON-LAGUERRE POLYNOMIAL MODEL 
A major shortcoming of the commonly used multivariate models (Poisson, negative binomial, generalized Poisson, 
and Poisson inverse Gaussian) is that they do not allow for negative correlations between the count variables.  
Gurmu and Elder (2000) proposes semiparametric estimation models in which dependence between count variables 
is introduced through correlated unobserved heterogeneity components. These models allow for both positive and 
negative correlation between the two count variables. 

Gurmu and Elder (2000) modeled the dependence between  and  by means of correlated unobserved 

heterogeneity components  and . Each of the components is associated with only one of the event counts. 

Suppose   with  having a bivariate distribution . The mixture density 

can be expressed as: 

 
      
Let   denote the bivariate moment generating function of  

evaluated at   then (1) takes the form of:  

 
Where   is the derivative of M  of order . Correlation based on the mixture model (2) 

can be positive or negative. 
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The form of the density (2) depends on the choice of the distribution of the unobservable . If  

follows a bivariate lognormal distribution, you get the bivariate Poisson-lognormal distribution. If  is 

approximated by Laguerre polynomial of order one, we obtain the bivariate Poisson-Laguerre polynomial density 
given by: 

 
Where 

 
With  

 
and 

 
 

  and . Unlike the bivariate Poisson-lognormal distribution, the 

Poisson-Laguerre polynomial model has a closed form, and can be easily implemented within the likelihood 
framework. The correlation between the two count variables (conditional to the covariates) is: 
 

 
Where 

 
 

 
and for  just replace  and  in the preceding equation by  and  respectively. The conditional 

correlation can take on zero, positive or negative values. 
 

2.6   BIVARIATE MODELS USING COPULA 
Existing techniques of estimating joint distributions of nonlinear outcomes are very computationally demanding. 
Interest in copula approach arises from several reasons. First, one often possess more information about marginal 
distributions of related variables than their joint distribution. The copula approach is a useful method for deriving joint 
distributions given the marginal distributions, especially when the variables are nonnormal. Copulas are functions 
that connect multivariate distributions to their one-dimensional margins (Trivedi and Zimmer 2007). If F is an m-

dimensional cumulative distribution function (cdf) with one-dimensional margins ,…,    then there exists an m-

dimensional copula C such that   where  is a parameter of the copula 

called the dependence parameter, which measures dependence between the marginals. Some common copulas 
used in modeling include: 

Farlie-Gumbel-Morgenstern Copula          

Gaussian (Normal) Copula                     

Clayton Copula                                   

Frank Copula                                      

 
We use Frank copula in our SAS

® 
macro %bicount for the following reasons. First, unlike some other copulas, it 

permits negative dependence between the marginals. Second, dependence is symmetric in both tails, similar to the 

Gaussian copula. The bivariate joint distribution function using the Frank copula is: 

 
The bivariate joint probability function corresponding to is obtained iteratively, as follows: 
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2.7   BIVARIATE HURDLE AND ZERO-INFLATED MODEL   
Zero-modified count models are used when the observed data displays a high frequency of the zero-zero state, 

. There are two ways of handling this situation. First, the bivariate hurdle model (Mullahy 1986) or 

two-part model where the first part is a binary outcome model (logit or probit) and the second part is a bivariate 
truncated count model. Such partition permits the interpretation that positive observations arise from crossing the 
zero-zero hurdle or threshold. The bivariate hurdle model is appealing because it reflects a two-part decision-making 
process. The probability density function of the bivariate hurdle model is given by: 

           

Where  is the cumulative density function (CDF) of the logit or probit regression selection 

model and   is the probability density function of a bivariate truncated count regression model.  Based 

on the above probability density function, we can derive the log likelihood function of bivariate hurdle model. 
 
Another way to model excess zeros in the count data is the bivariate zero-inflated count models (Lambert 1992). A 
bivariate zero-inflated model is a special case of a finite mixture model. Bivariate zero-inflated model assumes that 
the zero counts come from two sources not one source as in the bivariate hurdle model.  A logit or probit model is 
used to determine the probability of counts being the zero-zero state. The bivariate zero-inflated probability density 
function is given by   

           

Where  is the CDF of the logit or probit regression, and  is the density 

function.  The log likelihood function of a bivariate zero-inflated count regression model is derived based on the above 
density function. 

 

 

2.8   BIVARIATE TRUNCATED MODEL 
The bivariate truncated models are used if the observations or both in some range are totally lost 

and the joint distribution of observed counts is restricted. A series may be truncated from below (left truncated) or 
truncated from above (right truncated). The most popular truncated model is the zero-truncated model (Gurmu and 
Elder, 2008), where the zero class is missing for both dependent variables. The zero truncated bivariate distribution 
takes the form: 

 
This approach can be easily extended to the case where only a single variable is truncated at zero, for example, if 

only  then . 

 
 
2.9   BIVARIATE CENSORED MODEL 
A censored model is required when one set of the observations or both are available for 

restricted range but those for the explanatory variables  are always observed. A series maybe 

censored from below (left censored) or censored from above (right censored). Censored samples may result when 
high counts are not observed, or may be imposed by survey design. Thus right censoring is the most common form in 

the analysis of bivariate count models. Given the bivariate counts are right censored at  so that 

 for . Letting  denote the complete bivariate density (Gurmu and Elder, 2000), 

the log-likelihood function for the right-censored bivariate count model is: 

 
Where if y falls in the uncensored region, and otherwise. 
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3. SAS® MACRO %BICOUNT CAPABILITIES 
We develop a versatile SAS

® 
macro program “%bicount” that is capable handling ten different bivariate count data 

distributions.   Below is the calling program for the %bicount SAS
® 

macro:  
*------------------------------------------------------------------------------------; 

%macro bicount (indata=,summary=,dist=,type=,depend1=,depend2=,indep1=,indep2=,order=, 

               zip=,hurdle=,zindep=,trunc1=,ltrunc1=,rtrunc1=,trunc2=,ltrunc2=, 

               rtrunc2=,censor1=,lcensor1=,rcensor1=,censor2=,lcensor2=,rcensor2=, 

               gfit=,vuong=,vdata1=,vdata2=); 

*-----------------------------------------------------------------------------------* 

|  Macro bicount performs bivariate count regression modeling using the Proc NLMIXED| 

|  procedure. The inputs into the macro include:                                    |                                        

|                                                                                   | 

|  indata  =  The name of the SAS data set that contains all the independent and    | 

|             dependent variables this also contains the library name.              | 

|  summary =  Identify if you want to run summary statistics on the dependent and   | 

|   independent variables(0=No,1=Yes)                                    | 

|  dist    =  dist is the type of distribution that is used to estimate the         | 

|             count regression model. Choices of distribution include:              | 

|             1  Bivariate Poisson                                                  | 

|             2  Bivariate Poisson-Normal                                           | 

|             3  Bivariate Generalized Poisson                                      | 

|             4  Bivariate Negative Binomial                                        | 

|             5  Bivariate Poisson Inverse Gaussian                                 | 

|             6  Bivariate Borel                                                    | 

|             7  Bivariate Neyman Type A                                            | 

|             8  Bivariate Generalized Waring                                       | 

|             9  Bivariate Poisson With Series Expansion                            | 

|             10 Bivariate Poisson Laguerre Polynomials                             | 

|  type    =  How the likelihood function is derived. Choices include:              | 

|             1  assumes independence between the two equations                     | 

|   2  trivariate/reduction or convolution                               | 

|   3  copula (Frank--Copula)                                            | 

|  depend1 =  Name of the dependent variable for equation1                          | 

|  depend2 =  Name of the dependent variable for equation2                          | 

|  indep1  =  Name of the independent variables for equation1                       | 

|  indep2  =  Name of the independent variables for equation2                       | 

|  order   =  Order of the series expansion models (1, 2, or 3) dist=9              |                                                                                    

|  zip     =  If you want to estimate a zero-inflated model(0=No,1=Yes)             |  

|  hurdle  =  If you want to estimate a hurdle model(0=No,1=Yes)                    | 

|  zindep  =  Name of the independent variables that are used in the zero-inflated  | 

|             or hurdle models.                                                     | 

|  trunc1  =  Dependent variable 1 is truncated (0=No, 1=Yes)                       | 

|  ltrunc1 =  What value the dependent variable 1 is left truncated at              | 

|  rtrunc1 =  What value the dependent variable 1 is right truncated at             | 

|  trunc2  =  Dependent variable 2 is truncated (0=No, 1=Yes)                       | 

|  ltrunc2 =  What value the dependent variable 2 is left truncated at              | 

|  rtrunc2 =  What value the dependent variable 2 is right truncated at             | 

|  censor1 =  Dependent variable 1 is censored (0=No, 1=Yes)                        | 

|  lcensor1=  What value the dependent variable 1 is left censored at               | 

|  rcensor1=  What value the dependent variable 1 is right censored at              | 

|  censor2 =  Dependent variable 2 is censored (0=No, 1=Yes)                        | 

|  lcensor2=  What value the dependent variable 2 is left censored at               | 

|  rcensor2 = What value the dependent variable 2 is right censored at              | 

|  gfit    =  Identify if you want to run the goodness of fit summary joint and     | 

|   marginal prediction vs. actual (0=No, 1=Yes)                         | 

|  vuong  =  If you want to test two non-nested models with the Voung test          | 

|            (0=No, 1=Yes)                                                          | 

|  vdata1 =  Name of the first data set that contains the log-likelihood values     | 

|            for the first model you want to use with the Vuong test                | 

|  vdata2 =  Name of the 2nd data set that contains the log-likelihood values       | 

|            for the 2nd model you want to use with the Vuong test                  | 

*----------------------------------------------------------------------------------*; 
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4. APPLICATIONS AND MODEL EVALUATION 
We use our SAS

® 
macro program to analyze healthcare utilization data from the 1977-1978 Australian Health 

Survey.  The data contains 5190 single-person households’ healthcare service utilization information.  Cameron 
et al. (1988) was the first using this data to analyze health service utilization.  However, they applied two 
independent univariate negative binomial regression models to analyze doctor visits, days in hospital, and 
number of medicines taken.   Gurmu and Elder (2000) analyzed the same data using a bivariate Poisson-
Laguerre polynomial regression model to jointly estimate the factors affecting the number of doctor visits and the 
number of non-doctor professional visits.  Wang (2003) proposes a bivariate zero-inflated negative binomial 
regression model to analyze the same data. Gurmu and Elder (2008) further analyzes the same data using a 
bivariate zero-inflated Poisson-Laguerre polynomial regression model.  We analyze two possibly jointly 
dependent variables of health service utilization measures: (1) the number of consultations with doctors during 
the 2-week period prior to the survey (Doctorco); and (2) the number of prescribed medicines used in the past 
two weeks (Prescrib).   

 

As in previous research, the explanatory variables consist of three groups: four socio-economic variables, four 
insurance status variables, and five health status variables. The socio-economic variables are: (sex) a dummy 
variable for gender; (Age) age in years divided by 100; (Agesq) squared of (Age); and (Income) annual income in 
ten-thousands of dollars.   The four insurance status variables are: (Levy), default government insurance 
converges paid by income levy;  (Levyplus), private insurance coverage; (Freepoor), free government insurance 
due to low income; (Freerepa) free government coverage due to old age, disability or veteran status.  The five 
health status variables are: (Illness), number of illnesses in the past two weeks; (Actdays), number of days of 
reduced activity in the past two weeks due to illness or injury; (Hscore), general health questionnaire score using 
Golberg’s method with high score indicating bad health; (Chcond1), indicator variable for chronic condition not 
limiting activity; and (Chcond2), indicator variable for chronic condition limiting activity.  Cameron et al. (1988) 
provides summary statistics of dependent and explanatory variables.   

 

Table 1 reports the results of parameter estimates for the zero-inflated bivariate Poisson Laguerre polynomial 
(Frank-copula) model.  This model has the best AIC (Akaike Information Criterion) among all models.  The 
estimates show that recent health status measures (illness, actdays) and two of the long-term health measures 
(hscore, chcond1) are important determinants of both doctor visits and number of prescribed medicines.  The 
positive coefficient on the health insurance status (levyplus) indicates that private insurance is associated with 
higher use of doctor’s visits and prescription drugs.  While age and gender are unimportant determinants in 
doctor’s visits; they are positively related to use of prescription drugs.    

 

Table 1   
      Estimates  for the Zero Inflated Bivariate Poisson Laguerre Polynomial (Frank--copula) 

              

 

Doctor Visits 
Prescription 
Medicines 

Zero Inflation 

Parameter Estimate T-value Estimate T-value Estimate T-value 

intercept -1.649 -6.86 -2.244 -14.71 0.279 1.93 

freepoor -0.501 -2.15 0.019 0.11 0.418 0.82 

freerepa 0.167 1.45 0.237 3.42 -0.614 -2.54 

illness 0.155 6.25 0.166 11.74 -0.455 -2.82 

actdays 0.122 16.22 0.029 5.79 -1.819 -1.8 

hscore 0.038 2.89 0.017 2.14 -0.062 -1.1 

chcond1 -0.174 -1.98 0.440 7.05 -1.487 -5.76 

chcond2 -0.093 -0.86 0.654 9.05 -2.425 -2.48 

sex 0.107 1.54 0.488 11.51 

  age -0.145 -0.11 2.747 3.81 

  age_squ 0.587 0.43 -0.951 -1.25 

  income -0.158 -1.4 0.010 0.16 

  levyplus 0.201 2.3 0.252 4.35 

  
 

1.534 7.15 2.541 3.04 

  a11 0.490 8.43 -1.613 -3.45 

  
 

  

1.532 8.18 

  

Statistics and Data AnalysisSAS Global Forum 2011

 
 



8 

 

  
  

   
Table 2 summarizes all bivariate models incorporated in our SAS

® 
macro.  The three sets of model evaluation 

statistics are:  maximum log likelihood function, the AIC (Akaike Information Criterion), and BIC (Bayesian information 
criterion).  Table 2 indicates that estimating the two count events jointly is better than estimating the two count events 
independently.  Among all bivariate models, the bivariate generalized Waring (Frank-copula) is the best model based 
on log likelihood function and AIC; and the Poisson-lognormal (copula) model is the best based on the BIC.  
Formulas for the AIC (Akaike information criterion) and BIC (Bayesian information criterion) include: 
 

                 k= number of parameters estimated 

       n=number of observations in the data set 

 

 
Table 2 Model Evaluation Statistics for Bivariate Models 

Bivariate Model 
Log Likelihood 

Function AIC BIC 

Independent Poisson -8,886.31 17,825 17,995 

Bivariate Poisson -8,825.74 17,706 17,882 

Bivariate Poisson (Frank--copula) -8,773.32 17,601 17,778 

Independent Poisson-LogNormal -8,632.73 17,321 17,505 

Bivariate Poisson-LogNormal -8,551.51 17,161 17,351 

Bivariate Poisson-LogNormal (Frank--copula) -8,506.03 17,071 17,261 

Independent Generalized Poisson -8,648.78 17,354 17,537 

Bivariate Generalized Poisson -8,576.88 17,214 17,410 

Bivariate Generalized Poisson (Frank--copula -8,534.65 17,127 17,317 

Independent Negative Binomial -8,640.23 17,336 17,520 

Bivariate Negative Binomial -8,600.72 17,255 17,432 

Bivariate Negative Binomial (Frank--copula) -8,522.70 17,103 17,293 

Independent Poisson Inverse Gaussian -8,635.23 17,326 17,510 

Bivariate Poisson Inverse Gaussian -8,603.09 17,260 17,437 

Bivariate Poisson Inverse Gaussian (Frank-- copula) -8,517.98 17,094 17,284 

Independent Borel-Tanner -9,238.44 18,529 18,699 

Bivariate Borel-Tanner -8,570.49 17,199 17,386 

Bivariate Borel-Tanner (Frank--copula) -9,091.58 18,237 18,414 

Independent Neyman Type A -8,668.85 17,394 17,577 

Bivariate Neyman Type A -8,602.56 17,261 17,445 

Bivariate Neyman Type A (Frank--copula) -8,555.46 17,169 17,359 

Independent Generalized Waring -8,618.52 17,297 17,494 

Bivariate Generalized Waring -8,576.90 17,210 17,393 

Bivariate Generalized Waring (Frank--copula) -8,503.76 17,070 17,273 

Independent Poisson Series Expansion -8,680.29 17,421 17,617 

Bivariate Poisson Series Expansion -8,576.22 17,214 17,418 

Bivariate Poisson Series Expansion (Frank--copula) -8,563.27 17,189 17,392 

Independent Poisson-Laguerre Polynomial -8,629.01 17,318 17,515 

Bivariate Poisson-Laguerre Polynomial -8,559.04 17,176 17,366 

Bivariate Poisson-Laguerre Polynomial (Frank--copula) -8,511.64 17,085 17,288 

 
The model evaluation statistics for zero-inflated bivariate count regression models are reported in Table 3.  Since 
almost 54% of all observations occur when doctor visits and the number of prescribed medicines are zero a zero-
inflated model would seem more appropriate. Comparing the model evaluation criterion between Table 2 and Table 
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3, one can conclude that the zero-inflated bivariate models perform better than their counter parts in table 2.  Among 
zero-inflated bivariate models, the bivariate Poisson Laguerre polynomial (Frank copula) is the best model.   
 

Table 3.  Model Evaluation Statistics of Zero-inflated Bivariate Models 

  

Bivariate Model 

Log 
Likelihood 
Function AIC BIC 

Bivariate Poisson -8,592.32 17,255 17,484 

Bivariate Poisson (Frank--copula) -8,576.22 17,222 17,452 

Bivariate Poisson-LogNormal -8,463.06 17,001 17,243 

Bivariate Generalized Poisson -8,487.80 17,052 17,301 

Bivariate Generalized Poisson (Frank--copula -8,476.88 17,028 17,270 

Bivariate Negative Binomial -8,507.00 17,084 17,313 

Bivariate Negative Binomial (Frank--copula) -8,449.05 16,972 17,215 

Bivariate Poisson Inverse Gaussian -8,507.82 17,086 17,315 

Bivariate Poisson Inverse Gaussian (Frank-- copula) -8,444.76 16,964 17,206 

Bivariate Borel-Tanner -8,470.60 17,015 17,258 

Bivariate Borel-Tanner (Frank--copula) -9,081.63 18,163 18,463 

Bivariate Neyman Type A -8,507.67 17,087 17,323 

Bivariate Neyman Type A (Frank--copula) -8,495.70 17,065 17,308 

Bivariate Generalized Waring -8,506.79 17,086 17,322 

Bivariate Generalized Waring (Frank--copula) -8,455.72 16,989 17,245 

Bivariate Poisson Series Expansion -8,474.73 17,027 17,283 

Bivariate Poisson Series Expansion (Frank--copula) -8,456.39 16,995 17,264 

Bivariate Poisson-Laguerre Polynomial -8,458.65 16,991 17,234 

Bivariate Poisson-Laguerre Polynomial (Frank--copula) -8,440.71 16,959 17,215 

 
 

5. CONCLUSIONS 
This paper develops a SAS

® 
macro program using PROC NLMIXED to model a variety of bivariate count data 

regression models.  The SAS
® 

macro is capable of estimating ten count data distributions with the option of fitting 
zero-inflated, hurdle, truncated and censored models for each of these distributions.  We demonstrate the power and 
versatility of the proposed SAS

® 
macro by applying it to a healthcare utilization data.   By specifying the parameters of 

the proposed SAS
® 

macro, we can estimate a variety of bivariate count data regression models.   Table 2 shows a 
number of bivariate count data regression models that are incorporated into our SAS

® 
macro program.  In addition to 

providing coefficient estimates, it also provides the model evaluation statistics such as log-likelihood function, AIC 
and BIC to help model selection.   The proposed SAS

® 
macro also provides comparisons between the predicted and 

actual values (goodness -of-fit test) that can also be used in the model evaluation.    
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