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Abstract

The proposed paper presents a methodology for Scenario and Stress
testing of a model based on defining and determining quantiles of
the joint distribution of model’s variables. The implementation of
the methodology in the SAS R© system gives a view on rarely used
SAS R© capabilities for dealing with quite sophisticated algorithms and
uses Interactive Matrix Language (IML) available with SAS R©. The
methodology can serve as a non-parametric method to determining
extremes of a model, when the distribution of model variables is un-
known. The technique we propose can be used in wide range of prob-
lems related to the analysis of multivariate data.

1 Introduction

After an empirical model has been developed using some data set (for exam-
ple, a financial forecast model), the question immediately arises about how
sensitive the model is to extreme events. By ’extreme event’ we mean an
event that has not been observed, but that could realistically be expected
to occur with some low probability. For example, in financial modeling, this
question is equivalent to testing a model’s sensitivity to downturn events that
are considered extreme. The question would have a complete answer if we
knew the distribution function from which the development data is taken.

∗At the time of publication of this paper the second and the third authors are not
employees of Bank of Montreal.
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The extreme scenarios would be the tail events of this distribution. Thus,
if we want to test a model on events (scenarios) at a level corresponding to,
for example, 95-th quantile, we would take the 95-th quantile set (called the
quantile contour), restrict our model to this set and take its maximum or
minimum values. These values will represent extremes of the model on the
events which occur with probability 5 percent.

This ’unified’ framework of Stress testing (when applied to financial mod-
eling problems) was proposed by Berkowitz (2004) (see also McNeil, Smith
(2010)).

Several problems are associated with such approach. First, the joint
distribution function of the model variables is usually unknown and one is
forced to fit distribution to the data (parametric approach) which usually
leads to uncontrolled errors. Second, because there is no natural ordering
in the space of dimension greater than one, the notion of a quantile can be
ambiguous. Another problem is that the model under consideration may be
quite complex (for example non-linear). For such a model it may happen
that extreme points in the sense of their distribution are not extreme for
the model and the values of the model on these points are less (or greater,
depending on the context), than, say, its average value, making the results
meaningless.

In what follows we make use of a notion of half-space depth, also known
as Tukey depth or location depth (cf. Miller et al.(2003)) to approach the
notion of a quantile of a distribution. The half-space depth of a point x
relative to a multivariate data set first occurred as a test statistic of Hodges
(1955) for the hypothesis that x is the center of probability distribution from
which the data was drawn. Half-space depth gives a way to partially ”order”
points in dimensions greater than two, allowing to consider points of equal
depth as the level curves corresponding to some probability. We then restrict
our model to these levels and find its extremes.

With dimension growth an optimization problems (like finding extremes
of a model) become very complex and require certain non-trivial algorithms.
In what follows we make use of two algorithms: the Genetic algorithm (cf.
Goldberg (1989)) implemented in SAS/IML R© and a variation of the Shake-
and-Bake algorithm (cf. Boender et al. (1991)). We give a detailed expla-
nation of how to implement them using SAS/IML R© in the context of our
problem.

Because the nature of problems related to multivariate distributions are
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often very complex, throughout our paper we make certain assumptions un-
der which these problems become more tractable. In particular we restrict
ourselves to consideration of only linear models (which are, for example, the
results of the regression analysis).

2 Description of the methodology

We start with the definition of the main tool used in our analysis – the
notions of half-space depth relative to a data set. For reference regarding the
subject please refer to Miller et al.(2003), McNeil, Smith (2010).

Definition: Let Z be a finite set of data points in (real) n-dimensional
space. The half-space depth of a point x relative to Z is the smallest number
of points of Z lying in any closed half-space determined by a hyper-plane
through x:

min
a∈Rn\{0}

|{z ∈ Z | 〈y, z〉 ≤ 〈x, z〉}|,

where y is the outward normal vector of the closed half-space.

For a fixed positive integer k the set of points with location depth k is a
convex polygonal region. We will call its boundary the k-th depth contour
and denote it by Ck.

Note that if the data set contains m points, then the k-th contour is the
boundary of the intersection of all half-spaces containing m − k + 1 data
points.

The concept of half-space depth was introduced by Hodges (1955) as a
way to extend the univariate notion of ranking to a bivariate configuration
of data points. It was used for robust estimation, hypothesis testing, and
graphical display.

Below we use the depth contours as a proxy for the quantiles of multi-
variate distribution of the data. Thus, finding the extremes of a restriction
of the model under consideration to the p-th depth contour will result in the
p-probable point of model’s extremes.

In the implementation of the methodology below we make use of the
Genetic algorithm to find a proxy of the depth of a point together with the
corresponding boundary hyper-plane. The collection of these hyper-planes
forms a (bounded) polyhedra, representing the corresponding depth contour.
In order to find extremes of the model under consideration on this contour, we
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make use of a variation of Shake-and-Bake algorithm to uniformly generate
a sufficiently large set of points on the contour (cf. Boender et al. (1991))
and then find the model’s extremes on this set.

The complexity of the above algorithms can be found in SAS/IML R© User
Guide and Boender et al. (1991).

3 Implementation into the SAS R© system

In this section we present a code demonstrating the described methodology.

We start with a data set with variables correlated by a matrix s. For
simplicity we assume the data set consists of two variables.

We can simulate the data set with the help of ’proc model’ implemented in
SAS R©. In the code below the data set ’main’ is generated with two variables
’aa’, ’ab’ distributed uniformly on the unit segment with correlation matrix

s =

(
1 0.4

0.4 1

)
.

Note that instead of uniform distribution one could have taken one of the
following distributions implemented in ’proc model’: Normal, t, F, Cauchy,
Chisquare, Poisson.

data s;

_NAME_ = "aa";

aa = 1; ab = 0.4;

output;

_NAME_ = "ab";

aa = 0.4; ab = 1;

output;

run;

data all ;

y = 0 ;

z = 0 ;

output ;

run ;

%let nsim = 10;

proc model data=all ;

aa = 0;

ab = 0;
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errormodel aa ~ uniform (0,1);

errormodel ab ~ uniform (0,1);

solve aa ab / random = &nsim sdata = s

out = sim_uni(where=(_rep_>0)) ;

run;

data main (keep = aa ab);

set sim_uni;

run;

For convenience we keep the variable names and their count. The data
set ’varName’ created below contains the variable names, which are stored
separately in the corresponding macro variables ’vari’, i = 1, 2:

proc contents data=main

out = varName (keep = name type varnum);

run;

proc sort data=varName out=varName;

by varnum;

proc sql;

create table varNum as select sum (1) as rows from varName;

data _NULL_;

set varNum;

call symputx(’nvars’,rows);

run;

data newVar;

set varName;

call symputx(’var’||left(_n_),name);

run;

The following macro ’cVar’ removes the records with missing variables
and writes the variables in the data set ’constVar’:

%macro cVar;

data constVar;

set main;

%do i = 1 %to &nvars;
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if &&var&i ^= . then

%end;

output;

run;

%mend cVar;

The macro ’constraint’ in the following code results in a data set ’indVar’,
containing the scaled ordinal values (ordinal values between 0 and 1) of the
variables from the data set ’constVar’ without allowing repetitions:

%macro constraint;

data tempVar;

set constVar;

run;

%do i = 1 %to &nvars;

proc sort data = tempVar;

by &&var&i.;

data tempVar (drop = ret prevCount);

retain ret prevCount;

set tempVar;

if _n_ ^= 1 then

if &&var&i. = ret then

ind&&var&i. = prevCount;

else

ind&&var&i. = prevCount +1;

else

ind&&var&i. = 1;

ret = &&var&i.;

prevCount = ind&&var&i.;

run;

proc sql;

create table distvar&i. as select distinct(&&var&i.)

as &&var&i. from constVar;

proc sort data=distvar&i.;

by &&var&i.;

%end;

proc sql;

create table indVar as select ind&var1/max(ind&var1) as &var1

from tempVar;

quit;
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%mend constraint;

We now make use of SAS/IML R© in order to calculate the half-space depth
contours relative to the dataset ’indVar’. The code below results in a vector
’maxVarCounts’ of the length equal to the number of variables, and with the
entries equal to the number of distinct records for each variable respectively:

use indVar;

read all into rankedVariables[colname=name];

numberRecords = nrow(rankedVariables);

%do i = 1 %to &nvars;

use distvar&i.;

read all into distinctVarValue&i[colname=&&var&i.];

maxVarCounts = maxVarCounts ||nrow(distinctVarValue&i);

%end;

Let us show how to calculate the half-space depth of a point relative to
the data set. The first function, ’halfspaceCount’, in the following code calcu-
lates the number of points to one side of a given plane through a point. The
function ’halfspaceCount’ has one local variable ’planeCoeffs’ representing
the coefficients determining the plane, and four global variables: rankedVari-
ables, numberRecords, maxVarCounts, pointForDepth.

start halfspaceCount (planeCoeffs) global (rankedVariables ,

numberRecords , maxVarCounts , pointForDepth);

if (planeCoeffs*planeCoeffs ‘) = 0 then

return (numberRecords);

constant =( pointForDepth / maxVarCounts)*planeCoeffs ‘;

diff = rankedVariables*planeCoeffs ‘

- J(numberRecords ,1,constant);

halfspaceCount = 0;

halfspaceCount = ncol(loc(abs(diff)+diff))+( numberRecords

- ncol(loc(diff)));

return (halfspaceCount);

finish halfspaceCount;

The function ’halfspaceDepth’ below minimizes ’halfspaceCount’ using
the Genetic Algorithm, implemented in SAS/IML R©, thus finding the proxy
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for the half-space depth of a point. Once the depth of the point is found, the
function stores the coefficients of the corresponding plane in ’bestPlaneCoeffs
(normalized coefficients) and ’constantForPlane’ (free terms).

start halfspaceDepth(point) global(rankedVariables ,

numberRecords , maxVarCounts , pointForDepth ,

bestPlaneCoeffs , constantForPlane);

pointForDepth = point;

id = gasetup(1, &nvars ,0);

call gasetobj(id , 0, "halfspaceCount ");

call gasetcro(id , 1 ,1);

call gasetmut(id , 0.05, 1);

call gasetsel(id , 10, 1, 1);

call gainit(id , 100, J(1,&nvars ,-1)//J(1,&nvars ,1));

iterations = 1;

do i = 2 to iterations;

call garegen(id);

end;

call gagetmem(bestMember , depth , id , 1);

bestPlaneCoeffs = bestMember/sqrt(ssq(bestMember));

constantForPlane = (pointForDepth / maxVarCounts)*

bestPlaneCoeffs ‘;

return (depth/numberRecords);

finish halfspaceDepth;

Let us assume we are interested in the extremes of a model when restricted
to a depth contour for some value p, which we will keep in a macro variable
’qtile’. We look for all the points in the data set (more precisely, their row
indices) whose depth is within 10% relative error of ’qtile’ (we keep them
in ’equiDepth’) together with the corresponding planes defining the depth
contours (we keep them in ’planes’ and ’constants’).

do i = 1 to numberRecords;

if abs(&qtile -halfspaceDepth(ceil(rankedVariables[i,]#

maxVarCounts))) < 0.02 then do;

equiDepth = equiDepth//i;

planes = planes//bestPlaneCoeffs;

constants = constants//constantForPlane;

end;

end;
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We assume that the model, defined on our data set is represent in SAS R©

as a function ’pModel’ of the variables in the data set, returning a real value.

The following code implements a variation of the Shake-and-Bake algo-
rithm (Boender et al. (1991)), which uniformly populates points on the depth
contour constructed in the previous step (here we populate 1000 points). We
evaluate the model on each of the populated points and print the resulting
maximum value. This maximum is the extreme model’s value on the quantile
represented by the depth contour.

do i = 1 to &nvars;

k = J(1,&nvars ,0);

k[i] = 1;

planes = planes//k;

constants = constants//1;

k[i] = -1;

planes = planes//k;

constants = constants//0;

end;

print equiDepth;

x = rankedVariables[equiDepth [1],];

c = 1;

do i = 1 to 1000;

u = normal(repeat(0,1,&nvars));

do while (ssq(u) = 0);

u = normal(repeat(0,1,&nvars));

end;

u = u / sqrt(ssq(u));

r = uniform (0);

v = r/sqrt(1-( planes[c,]*u‘)**2)*u-(r*(planes[c,]*u‘)/sqrt

(1-( planes[c,]*u‘)**2)+sqrt(1-

r**2))*planes[c,];

l = (constants - planes*x‘)/(planes*v‘);

ind = 1;

do j = 2 to nrow(l);

if (l[ind] <= 10** -14 | (l[j] < l[ind] & l[j] > 10** -14))

then

ind = j;

end;

c = ind;

totx = (x|| pModel(ceil(x#maxVarCounts)))//totx;

x = x + l[ind]*v;

end;

call sortndx(ind ,totx ,{% eval(&nvars +1)},{%eval(&nvars +1)});

print "The highest Model ’s value found is:"
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(pModel(ceil(totx[ind[1],1:&nvars ]# maxVarCounts)));

To visualize the results of the Shake-and-Bake algorithm one can make
use of the following graphical mode:

call gstart;

call gwindow ({-1 -1 2 2});

call gpoint(rankedVariables [,1], rankedVariables [,2],"dot","

black ");

call gpoint(totx[,1],totx[,2],"dot","green");

call gpoint(rankedVariables[equiDepth ,1],

rankedVariables[equiDepth ,2],"dot","red");

call gshow;

call gstop;

For example, the data set of 100 records (’nsim=100’) with the ’qtile =
0.05’ results in the following visualization of the depth contour:

Figure 1: 5-th depth contour

The black dots on this figure are the data set points, and the red points
are those data set points which lie on the corresponding depth contour. The
green dots are the points on the depth contour, generated by the Shake-and-
Bake algorithm.
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4 Conclusion

In the paper we discussed a methodology for Scenario and Stress testing of a
model based on non-parametric estimation of quantiles of the distribution of
model’s variables. The methodology can serve as a unified approach to Stress
testing and can be further improved depending on the model specifications
to obtain even more accurate results. The realization of the methodology is
done with the help of IML procedure available with SAS R©, which serves as
the perfect environment for implementation of very sophisticated algorithms.
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