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Abstract  
 
Techniques for which the 2003 Economics Nobel Prize was awarded are illustrated with examples. These are 
cointegration and autoregressive conditionally heteroscedastic models.  For this second topic, an introductory 
example without the heteroscedasticity leads into the more complex scenario.  
 
1. Introduction 
 
The 2003 Nobel Prize in Economics, formally the “Sveriges Riksbank Prize in Economic Sciences in Memory of 
Alfred Nobel,” was awarded in 2003 to Robert F. Engle and Sir Clive W. J. Granger who worked together on the two 
research projects for which the prize was given while they were at the University of California San Diego. The first 
project, cointegration, is an extension of the unit root testing area in time series.  The second, the ARCH model, 
(AutoRegressive Conditionally Heteroskedastic models) is a way of dealing with variances that change locally over 
time.  Extensions of these have been derived by researchers such as Stock and Watson (1988), Johansen (1988), 
Bollerslev (1986) and others.  The easier of the two to explain is ARCH.  Section 2 of this paper gives the underlying 
idea behind the ARCH model and Bollerslev’s extension called the GARCH model.  Section 3 gives an example of 
interest in economic history.  Section 4 introduces the idea of cointegration and explains some of the mathematical 
ideas behind the technique.  Section 5 is a cointegration example and section 6 is a brief conclusion section.  Most  
examples here come from the book SAS® for Forecasting Time Series (Brocklebank and Dickey, 2003).   
 
2. ARCH Models – Motivation and Introductory Example 
 
We begin by looking at a main motivation for ARCH models, namely returns on investments.  In particular we think 
about the stock market. What is usually of most interest to investors is the percent gain that they get for an 
investment.  In that light, a gain of $10 on a $10,000 investment in, say, the stock market is a 0.01% gain, the same 
as a gain of $1 on a $1000 investment.  Whatever we had to start with got multiplied by 1.001. If the investment 
period is short, overnight for example, we would expect the gain to be not too far from 0 and the multiplier then to be 
close to 1.  We think of a loss as a negative gain here.  For a number X near 1, the (natural) logarithm of X is 
approximately X-1. The logarithm of 1.001 is very close to 0.001, the logarithm of 0.999 is very close to -0.001.  Here 
are two graphs of log(X) and X-1 as X goes from 0.4 to 1.6 (left) and as X goes from -0.9 to 1.1 (right) .  
 

                                    
 
Figure 1:  log(X) and X-1 over two domains.  
 
The ratio of what my investment is worth today, Xt to what it was worth yesterday Xt-1 is unlikely to lie outside the 
narrower range in the right graph.  If Xt/Xt-1 is 1.01, a 1% overnight return, then the return is approximately  
 1 1ln( / ) ln( ) ln( ) 0.01t t t tX X X X− −= − ≈ , that is, within a reasonable range the return is approximately the first 
difference of the log transformed series 
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Taking logarithms and differencing them is often advantageous from a statistical point of view as well as an 
interpretation point of view.  That is, these differences of logarithms seem more stable in terms of their mean and 
variance as well as seeming to satisfy the conditions for stationarity better than the original measured variables do.  
The conditions for stationarity are that the mean is constant and the covariance function between responses at two 
time points is a function only of the difference between those times.  Tests for stationarity are available in SAS/ETS 
PROC ARIMA.  
 
The example in the next section involves the Dow Jones Industrials Average (DJIA).  In Figure 2 we see a plot of the 
returns on the DJIA over an interesting historical period.  The vertically paired dots in the figure are for interesting 
historical dates.  The dates are, from left to right, 29OCT1929 (Great Depression begins), 04Mar1933 (FDR takes 
office), 12Sept1939 (WW II begins),  07Dec1941 (Pearl Harbor),  12Apr1945 (FDR leaves office), 14Aug1945 (VJ 
day - war ends).  The mean return is 0.000070174 which seems small until you realize it is a daily percentage return 
(gain) in a rather early period in US economic history.   A striking feature of the graph is the changes in the local 
variation shown by the data.  Local (in time) variation is referred to as “volatility” and we see periods of low volatility 
and periods of high volatility, especially during the Great Depression.   

 
 
Figure 2:  Returns on DJIA 
 
Clearly, the periods of low and high volatility last for days, weeks, or months at a time and a good model should 
incorporate the fact that a high volatility day is more likely to be followed by another high volatility day than by a low 
volatility day.  Likewise low volatility days seem to occur in runs over time.  This suggests autocorrelation in the 
volatility.  We have lots of models for autocorrelated data, most notably the ARIMA models.  Here, however, it is the 
squares of the deviations from the mean that seem autocorrelated rather than the values themselves.  Because there 
is such a strong tradition in statistics of measuring variation by the statistic we know as the variance, we might 
propose a model in which the variances change over time in an autocorrelated way.  If a stationary ARMA 
(AutoRegressive Moving Average) model can describe the behavior, then we might be able to estimate appropriate 
parameters.  
 
In general, the series might not have a constant mean but rather may be trending in some way or have deterministic 
seasonal components, for example. For this series, however, it appears that a constant mean is sufficient for the 
deterministic part of the returns.   
   
Thinking of the deviation of each day’s return Rt from the sample mean as Dt = Rt-0.000070174, and treating the 
sample mean as though it were the true mean, we could create the square of these Dt deviations 2

tD .  Each 2
tD  

would then be an estimate of variance (volatility) for that day.  Continuing with this somewhat simple idea, we could 
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model the 2
tD  series as a time series.  In Figure 2, we see a plot of 2

t tY D=  versus t and its autocorrelation function 
(ACF, upper right) as well as the partial and inverse autocorrelation functions (lower left and right).  These graphics 
were created with the ODS GRAPHICS ON; statement and PROC ARIMA.  
 

 
 
Figure 3.  Diagnostic Plots for Dow Jones Industrials Average  
 
Notice especially the ACF (autocorrelation function) in the upper right corner.  The rather severe drop in 
autocorrelation from lag 0 to lag 1, followed by slow decay, is characteristic of autoregressive moving averages of 
orders 1 and 1, ARMA(1,1). If the decay is extremely slow, the series might even have a unit root and thus be in a 
class of nonstationary series. It would be an IMA or integrated moving average.  The ARCH models and their variants 
GARCH and IGARCH will provide nice machinery for analysis of this kind of volatility.  The models are available in 
the SAS/ETS package with PROC AUTOREG.  The idea here is to propose a model whose error term has theoretical 
variance 2

tσ  at time t and from there, model 2
tσ   with an ARIMA model.  Before demonstrating its ARCH capacity, 

we begin with a simpler introductory PROC AUTOREG example for a regression with time series errors and no 
volatility changes.  
 
3. PROC AUTOREG 
 
The basic model in PROC AUTOREG, in matrix form, is Y=Xβ+Z which looks just like an ordinary least squares 
regression model.  The difference is that the elements Zt of the error vector are assumed to have an autoregressive 
structure, for example it might be that Zt = ρ Zt-1 + et where the et series is an independent mean 0 and constant 
variance process, that is, et is “white noise.”   In such a case, the best estimates of the parameters use generalized 

least squares, that is, the estimates of the βs are given by 1 1 1ˆ ( ' ) ( ' )X V X X V Yβ − − −= where V is the variance-
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covariance matrix of the random vector Z. The problem is that this matrix V involves unknown parameters, ρ for 
instance. Nevertheless it is possible to write down the likelihood for the model and maximize it.  If one then assumes 
the estimated autoregressive parameters are the true ones, one can compute a V and then the generalized least 
squares estimates.   In addition, the errors can have the kind of autocorrelated variances as described in Section 2, 
but before describing this situation, an example of the discussion thus far, from Brocklebank and Dickey (2003) will 
be given.   
 
The data here are energy usage numbers for the campus of North Carolina State University during the July 1, 1979 
through June 30 1980 academic year.  In 1979, the Shah of Iran was evicted and the flow of oil from the Arab world 
disrupted resulting in the second so-called “oil crisis” the first having been an embargo in 1973 by the Organization of 
Arab Petroleum Exporting Countries. This heightened concern over energy consumption in the U.S.  A sign listing the 
previous day’s energy consumption greeted anyone entering the campus.  Temperature is a rather obvious input as 
is a class variable for type of day, this having three levels.  One level (lower circles in Figure 4) is a non workday, 
meaning that neither faculty nor students were required on campus.  This includes weekends of course.  Another 
level (upper stars in Figure 4) is a class day.  The third level (middle squares in Figure 4) is a work day that is not also 
a class day.  On such days, faculty and staff are expected to report to work but not students.     
 

       
 
Figure 4:  Energy Demand at a University 
 
In the data set we will label the resulting 2 indicator variables as WORK (0 for a non work day, 1 otherwise) and, to 
avoid confusion with the CLASS statement TEACH (1 for days when classes were taught, 0 otherwise).  These 
variables will have coefficients and it should be understood that on a day when classes are taught, both the WORK 
and TEACH variables will take on the value 1, that is, the effect will be the sum of those two coefficients. 
 
The left panel in Figure 4 shows energy demand versus time (day, July 1 1979-July 1 1980) and on the right demand 
versus temperature. On the left, a general pattern of lower demand in the cooler months and higher in the warmer 
months may result from just temperature effects in the North Carolina area as well as relative costs of cooling versus 
heating. Temperature effects shown in the right panel are consistent with this idea and seem to show a nonlinear 
response that will be modeled as a quadratic effect in temperature.  The code for this model includes a sine and 
cosine of 1 year duration, S and C, and is given by  
 

PROC AUTOREG data=energy;  
MODEL DEMAND = TEMP TEMPSQ TEACH WORK S C  
   /NLAG=15 BACKSTEP; 

 
The procedure starts with an AR(15) model, eliminating insignificant parameters (BACKSTEP) and arriving at a 
model with all parameters highly significant and a total R2 over 95%. This does not involve heterogeneous variances 
and is included simply to show the power and ease of use of PROC AUTOREG.  The final coefficients and 
appropriate standard errors that account for autocorrelation are in the following output:  
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                      Parameter Estimates 
 
                                  Standard               Approx 
 Variable       DF    Estimate       Error   t Value   Pr > |t| 
 
 Intercept       1        6076    296.5261     20.49     <.0001 
 TEMP            1     28.1581      3.6773      7.66     <.0001 
 TEMPSQ          1      0.6592      0.1194      5.52     <.0001 
 TEACH           1        1159    117.4507      9.87     <.0001 
 WORK            1        2769    122.5721     22.59     <.0001 
 S               1   -764.0316    186.0912     -4.11     <.0001 
 C               1   -520.8604    188.2783     -2.77     0.0060 
 
We see there is a quadratic temperature component (TEMPSQ is the square of (temperature-65) ), a sinusoidal trend 
over and beyond the sinusoidal movement of temperature, and an intercept 6076.  Add to this 2769 on work days 
plus another 1159 if the work day is also a class day.  Several autoregressive parameters, dominated by lags at 1, 7, 
and 8, were retained for the error term as indicated by this part of the output:  
 
            Estimates of Autoregressive Parameters 
 
                                     Standard 
          Lag     Coefficient           Error    t Value 
 
            1       -0.559658        0.043993     -12.72 
            5       -0.117824        0.045998      -2.56 
            7       -0.220105        0.053999      -4.08 
            8        0.188009        0.059577       3.16 
            9       -0.108031        0.051219      -2.11 
           12        0.110785        0.046068       2.40 
           14       -0.094713        0.045942      -2.06 
 
 
4. PROC AUTOREG for ARCH, GARCH, and IGARCH models. 
 
The flexibility of PROC AUTOREG extends beyond autocorrelated errors.  We now explore the case, as exemplified 
in the DJIA example, in which the error variance is autocorrelated. The idea originally proposed by Engle (Engle, 
1982) is to write the variance of the error term et as 2

tσ  and then to model it as a linear combination of past squared 

errors: 22
110

2
qtqtt ee −− +++= ααασ  where it is assumed that the αs are positive and the sum of α1 through αq 

is less than 1.  In this case, there is a long run unconditional variance )1/( 10
2

qLR ααασ −−−=  .  Our ad hoc 

idea of squaring the errors and estimating autocorrelations is seen to be reasonable when )( 22
tte σ−  is added to 

both sides of the basic ARCH equation, obtaining )( 2222
110

2
ttqtqtt eeee σααα −++++= −−  ,  This looks like 

an autoregressive model in the variable 2
te as the error term )( 22

tte σ− has mean 0.  Engle’s student Bollerslev 
(1986) generalized this to include terms analogous to moving average terms.  He termed this model “Generalized 

ARCH” or GARCH.  The model can be written  22
11

22
110

2
ptptqtqtt ee −−−− −−−+++= σθσθααασ  .  The 

structure here is similar to an ARMA model.  If the variance 2
tσ is very persistent (long periods of high volatility and 

long periods of low volatility) then one might entertain the possibility of a unit root in the so-called “characteristic 

equation”  11 0p
pB Bθ θ+ + + = .  See section 5. Analogous to the AutoRegressive Integrated Moving Average 

(ARIMA) models this is called an integrated GARCH or IGARCH. As expected, this implies that the time to time 
changes in the variance, 2 2

1t tσ σ −− satisfy a GARCH model.  
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Often, time series analysis is done in order to forecast.  If prediction intervals are to be placed around the forecasts, 
then estimates of the future values of the variance at lead times L, 2

t Lσ + are needed.  As happens in ARMA models, 
the GARCH estimates will approach the historic mean of the variances while in an IGARCH, the estimates will not be 
mean reverting.  
 
The models discussed are available in PROC AUTOREG.  An example of the code that illustrates the syntax and a 
discussion of the resulting output will conclude this section.  We look at the returns Yt = ln(Xt)-ln(Xt-1) where the Xt 
values are levels of the DJIA.  For most procedures any differencing and transformation that is desired must be done 
outside the procedure and this is true of PROC AUTOREG.  For purposes of illustration we will fit both a GARCH and 
IGARCH model to the data.  Arguments in favor of the IGARCH model are given by Brocklebank and Dickey (2003).  
Code for the IGARCH model is  
 

PROC AUTOREG DATA=MORE; 
   MODEL DDOW = / NLAG=2 GARCH=(P=2,Q=1,TYPE=INTEG,NOINT); 
   OUTPUT OUT=OUT2 HT=HT PREDICTED=F LCLI=L UCLI=U; 
RUN; 

 
The data set MORE has the Dow Jones series with 500 additional dates with missing Y values concatenated at the 
end for illustrating forecasts into the future. In this case an AR(2) model (NLAG=2) is needed to account for error 
autocorrelation.  The TYPE=INTEG and NOINT indicate that we have a unit root model for the innovation variance 
and there is no drift in it, that is, the differences of these time varying variances , 2 2

1t tσ σ −− ,  have mean 0.  This 

implies that the forecast of future variances will be just the last observed variance 2
tσ , plus some local adjustments 

arising from the autocorrelation in the differences.  In particular there is no reversion to the historic average variance.  
Upper and lower confidence limits along with forecasts and values HT, these being estimates of the local variance 

2
tσ , are output and used to make a graph.  In Figure 5, two types of 95% confidence intervals are shown.  The 

PROC AUTOREG default intervals use an average historical variance and plot as nearly parallel lines, the fuzziness 
arising from the AR(2) errors, not from the use of HT.  The more dramatically differing intervals are computed by 
adding and subtracting 1.96 times the square root of HT to (from) the forecast. The motivation is that HT is the 
estimate of the time varying innovations variance 2

tσ , the one step ahead forecast error variance. The unit root 
(IGARCH) nature of the error variance models manifests itself in the almost horizontal lines associated with prediction 
intervals into the future.  Notice how the HT based intervals reflect variation toward the end of the series and are 
much narrower than those that equally weigh recent and depression era variation.  

 
Figure 5. Default and User Defined Confidence Limits for Figure 2 Data. 
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The output from the above PROC AUTOREG includes a parameter estimate section  
 
                                  Standard               Approx 
 Variable       DF    Estimate       Error   t Value   Pr > |t| 
 
 Intercept       1    0.000363   0.0000748      4.85     <.0001 
 AR1             1     -0.0868    0.009731     -8.92     <.0001 
 AR2             1      0.0323    0.009576      3.37     0.0008 
 ARCH1           1      0.0698    0.003963     17.60     <.0001 
 GARCH1          1      0.7078      0.0609     11.63     <.0001 
 GARCH2          1      0.2224      0.0573      3.88     0.0001 
 
The interpretation here is that the return Yt satisfies  

Yt -0.000363 = Zt where Zt = 0.0868Zt-1 -0.0323Zt-2 + et and where the local variance 2
tσ of et satisfies the unit root 

model equation 2 2 2 2
1 2 10.7078( ) 0.2224( ) 0.0698t t t teσ σ σ− − −= + + . 

 
By omitting the two options that distinguish IGARCH from GARCH we have the code 
 

PROC AUTOREG DATA=MORE; 
   MODEL DDOW = / NLAG=2 GARCH=(P=2,Q=1); 
   OUTPUT OUT=OUT3 HT=HT PREDICTED=F LCLI=L UCLI=U; 
RUN; 

 
The resulting one step ahead prediction limits in Figure 6 look quite similar through the historic data to those in Figure 
5 while their forecasts into the future are quite different in that the HT based intervals approach the long run default 
intervals as we forecast further out.   

 
Figure 6. GARCH Prediction Limits Differ From IGARCH.  
 
The maximum likelihood method used to estimate these models is quite sensitive to the assumption of a normal 
distribution.  The output includes the Jarque-Bera test for normality which is )24/)3(6/( 2

2
2
1 −+ bbn where n is 

the sample size and the bs are third and fourth moments (0 and 3 in theory for a normal distribution) and are defined 
in terms of residuals tr , as 
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distribution for normal data. The output shows a test statistic χ2 = 3886 as the “normality test” (Jarque-Bera) which is 
way too large to accept the normal assumption.  Further details in Brocklebank and Dickey (2003) and references 
therein indicate that the estimates of parameters on the regressors (just the mean in this example) can be biased as 
a result, but that the confidence limits are still valid for large samples.  Further analysis of the data appears in that 
book.  
 
5.  Cointegration. 
 
The 2003 Nobel Prize citation also mentions cointegration which is closely related to unit root tests. Here we briefly 
review some background on unit root tests as can be found in many time series texts. The idea of unit root tests can 
be seen in the model tttt eYcYY +−−−=− −− )()(2.1 21 µµµ which is rewritten in differences and one lagged 

level as 1t tY Y −− = 1 1 2(1 1.2 )( ) ( )t t t tc Y c Y Y eµ− − −− − + − + − + , using the fact that, for example,  

1 1( ) ( ) ( )t t t tY Y Y Yµ µ− −− − − = − .  We see that if c=.2 there is no dependence on µ, and in fact the whole model 

is expressed in terms of differences as an AR(1): ttttt eYYYY +−=− −−− )(2. 211 .  There is no tendency to return 

to the mean.  If c>.2, say .32 for example, then we have  tttttt eYYcYYY +−+−−=− −−−− )()(12.0 2111 µ which 
in turn says that if last period’s Y is above the mean (positive deviation) then, ignoring the lagged difference,  the next 
change will tend to be negative, specifically - 0.12 times the deviation. Likewise a negative deviation will tend to be 
followed by a positive change.  This is the idea of mean reversion and is a simple case of an error correction model, 
one in which an “error” (deviation from the mean) tends to be followed by movement back toward the mean.  The 
model tttttt eYYcYcYY +−+−+−−=− −−−− )())(2.11( 2111 µ can be fit by simply regressing the differences 
on a lagged level and enough lagged differences so that the error term appears to be uncorrelated noise, one 
difference in our case.  A test of the hypothesis of no mean reversion is a test that the lagged Y coefficient is 0.  The t 
test can be used, but due to violations of the standard regression assumptions (in particular the assumption of fixed 
regressors, not lagged values of the response) the t test does not have a t distribution and a special distribution, the 
Dickey-Fuller test distribution, must be used.  It is available in PROC ARIMA.  The term “unit root” comes from the so-
called “characteristic equation” of the process, in our case 1-1.2B+cB2=0 with roots 1 and 5 when c=0.2, our “unit 
root” case with no mean reversion, and roots 1.25 and 2.5 when c=0.32, our stationary mean reverting case.  Roots 
larger than 1 in magnitude are associated with mean reversion, that is, with stationarity.  
 
The idea of cointegration is that two or more series, say Ht and Lt , may have unit roots, but some linear combination 
of them, like Yt = Ht  – Lt is stationary, meaning that its roots are larger than 1 in magnitude and thus that the 
difference is mean reverting.  Thinking about Ht as the weekly high price for a stock and Lt as the low price, we know 
that Yt has a nonzero mean, the long run average spread between high and low, and we expect the high and low to 
track each other pretty well so we would then expect the spread  Yt to be mean reverting around the long run 
difference in these prices, that is, you would expect the difference variable Y to reject unit roots even though the 
individual H and L series appear to have unit roots. Thus our plan is to simply calculate the difference Y in a data step 
then test Y to see if it is stationary.  
 
Figure 7 is a plot of weekly IBM high and low stock prices from January 3, 2005 through February 19, 2011.  The 
picture seems to indicate that the high and low prices rise and fall together but it is clear from the graph (and 
consistent with the unit root tests with p-values near 0.9) that the two components are nonstationary, likely unit root 
processes.  
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Figure 7.  IBM high and low stock prices. 

Define the spread to be the difference between the high and low prices, a measure of profit for a perfectly timed 
trade. If that spread,  Spread=(1)High+(-1)Low, is stationary, then it is very unlikely that the high and low prices will 
become far apart.  We say that the high and low prices are then cointegrated and the vector of weights (1,-1) is called 
the “cointegrating vector”.  The idea applies to stationary weighted averages of several nonstationary series and with, 
say, 3 such series one could have 0, 1, or 2 linearly independent cointegrating vectors.  In many applications, there is 
just one such vector.  For the IBM data, the spread can be tested for stationarity in PROC ARIMA using 

 
proc arima; 
i var=spread stationarity=(ADF=(0 1 2 3 4 5 6 7 8)); 
e p=1 q=1 ml; run; 

Here the use of up to 8 lagged differences may be overkill, but even so, all of the unit root test p-values were less 
than 0.0125 so the evidence against unit roots is reasonably strong.  The fitted model, ARMA(1,1) for the error terms 
had lack of fit p-values up through 48 lags all of which exceeded 0.09 so the fit seemed reasonable and the stationary 
model for the spread Yt was estimated as =− 43.4tY  11 64.0)43.4(93.0 −− −+− ttt eeY .  A plot of the spread is 
shown in Figure 8. 

 

Figure 8.  High-low spread, IBM stock.  

When the cointegrating vector, (1,-1) in our case, is known, the problem is simple given the many software packages 
that perform unit root tests. What if the cointegrating vector is unknown?  Engle and Granger (1987) originally 
suggested regressing one series on the other and testing the residuals for unit roots.  That way the cointegrating 
vector would be (1,-b) where b is the regression coefficient when Y is regressed on X – but which variable is X and 
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which Y? It does make a difference and several researchers looked into multivariate methods of estimation with a 
method due to Johansen (1988) being implemented in PROC VARMAX. Before illustrating VARMAX, let us take a 
simple but well justified approach to estimation.  We have a bivariate vector ),( ′−−= LtHtt LHV µµ  and will 
postulate a vector autoregressive model in which this vector is related to lags of itself by 

tptptt EVAVAV +++= −− 11  with the As being matrices and the E a vector of possibly cross correlated white 

noise series. The elements of each A can be found, row by row, by regressing each element of V on the lags of all 
the elements in V. Further, mimicking the unit root tests, the model can be rewritten in terms of differences and just 
one lagged level as tptpttt EVBVBVV +∇+∇+=∇ +−−− 1111 π where ∇  symbolizes a difference. Regressing 

the differenced low and high prices on the lagged levels and 2 lagged differences of both (after using the multivariate 
MTEST option in PROC REG to determine that p=3 lags were sufficient) we obtain an estimate  

( )11
08.0
23.0

08.008.0
23.023.0

081.0076.0
235.0226.0

ˆ −




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−

−
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


−

−
=π  

Notice that with some minor rounding, the so-called “impact matrix” π is a column vector α times our previously 
assumed cointegrating vector (1, 1)β ′ = −  . The matrix is said to be rank one since each of its columns is a scalar 

multiple of one column, α .   We then have π αβ ′= from which  

( ) sdifferencelagged
L
H

L
H

V
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t

t
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
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
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∇
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µ
µ

1

111
08.0
23.0

   (1) 

Thus when Ht-1-Lt-1 is larger than 4.43, the estimated long run mean spread,  say C units above, then (ignoring lagged 
differences) the next change in H tends to be -.23C and in L tends to be 0.08C, that is, the low moves up and the high 
down.  If the difference is less than 4.43 the next changes in L and H tend to separate them. There is continual 
pressure to move H and L so that the spread between them is close to µH −µL which we estimated as 4.43. This is the 
general idea of cointegration.  Another interesting fact is that if we fill out a full rank square matrix by listing the 
cointegrating vector(s) β ′ as its first row(s) then adding a row(s) α⊥′  orthogonal to α  in the factored impact matrix 

π  (for exampleα⊥′ = (0.08, 0.23) is orthogonal to α because (0.08)( 0.23) (0.23)(0.08) 0α α⊥′ = − + = )  then 
we have a transformation matrix T which, when multiplied by the vector of observations, gives a transformed vector 
time series whose first row(s) are stationary series, the stationary linear combinations for the cointegrating vectors, 
and the remaining row(s) are unit root processes referred to as stochastic trends in the series.  As an analogy, think 
of two lifeboats adrift in a choppy sea.  They move around tossed by the waves, but if they are tied together by a 
bungee cord, they cannot get too far apart.  A drunken person walking a dog on a leash is another analogy.  

In the vector representation (1) above, notice that multiplying both sides by ( )23.008.0=′⊥α ,  eliminates the 
lagged levels of the variables and their means, leaving a driftless unit root process, a process specified strictly in 
terms of differences with no constant term.  This is so because we assumed we could write things in terms of 
deviations from the mean and that in doing so ⊥′α removes not only the lagged levels but also the two means, leaving 
a driftless unit root process (no constant). If the two separate means are not in the right ratio then the unit root 
process will have an up or down drift over time, a stochastic trend.  The absence of such a drift will be called the 
“restriction” in the upcoming VARMAX output.  

We still face a testing problem.  While we were able to use relatively basic procedures for this data, ending up with a 
matrix that, after mild rounding, could be factored into a column times a row, it is not clear in general how much 
“rounding” should be allowed, that is, we need a test to see if we are statistically close to an impact matrix that factors 
as π αβ ′= , and if so, what are the factors – especially the rows of β ′ that show us the cointegrating vector.  

Johansen gave such a test and it is implemented in PROC VARMAX.  We close by running the procedure on the IBM 
data.  
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6. A Cointegration Example – Stock Prices. 

Here is the code for applying PROC VARMAX to our IBM data:  
 
PROC VARMAX DATA=IBM;  
MODEL HIGH LOW/P=3 LAGMAX=4 ECM=(RANK=1 NORMALIZE=HIGH ECTREND) COINTTEST; 

     COINTEG RANK=1 H=(1 0, -1 0, 0 1);  
 ID DATE INTERVAL = WEEK; RUN;  
 
Here P=3 refers to the 3 lag vector autoregressive model, LAGMAX is a maximum lag for diagnostics, and 
COINTTEST asks for tests of 0 vs.1 and 1 vs. 2 cointegrating vectors. The ECM (Error Correction Mechanism) option 
has several parts. The term “error correction” refers to the existence of a stationary linear combination, an equilibrium 
relationship between the variables, Ht-Lt = 4.43 for example, the violation of which is an error which is then at least 
partially corrected by movement back toward equilibrium.  The RANK=1 specifies that we want a solution for which 
the impact matrix involves only 1 column vectorα in its factored form. Thus 1 is the “rank” of the impact matrix π. The 
ECTREND specifies that the only nonzero constant allowed is in the error correction mechanism itself, that is, it 
imposes the restriction that the nonstationary transformed series, tV⊥′α , has no drift.  The COINT statement tests the 
hypothesis that in a rank 1 model the cointegrating vector can be taken as (1,-1) without statistically degrading the fit. 
If weights (1,-1) produce a stationary linear combination then so do (-2,2), (3,-3) and any (c,-c) combination. It is 
therefore possible to specify that one of the variables have a coefficient 1 and here it is high (NORMALIZE=HIGH).  

With these items in mind, we present relevant portions of the output, starting with the “no stochastic trend” restriction  
  
                              Hypothesis Test of the Restriction 
 
                                    Restricted 
              Rank    Eigenvalue    Eigenvalue        DF    Chi-Square    Pr > ChiSq 
                 0        0.1144        0.1157         2          1.64        0.4395                           
                 1        0.0002        0.0039         1          1.19        0.2749 
 
In the rank 1 model we propose, there is thus no evidence of a drift in the nonstationary part (p=0.2749). The 
ECTREND option is justified. We next check for the number of cointegrating vectors. 
 
                      Cointegration Rank Test Using Trace Under Restriction 
 
                                                           5% 
         H0:       H1:                                  Critical     Drift        Drift in 
       Rank=r    Rank>r    Eigenvalue         Trace       Value      in ECM       Process 
            0         0        0.1157       40.2134         19.99    Constant     Constant 
            1         1        0.0039        1.2433          9.13  
 
 
In the model with no drift, we reject the hypothesis of no cointegration (40.2134>19.99) but cannot reject the 
hypotheses of 1 in favor of 2 (or more - here only 2 are possible). Our test is labeled “Trace” as it is Johansen’s trace 
test. We have one cointegrating vector and hence a rank 1 impact matrix. We turn to the form of that matrix, first 
looking at the beta then the alpha matrix.  Some output has been highlighted in bold for presentation here.  
 
 
                              Long-Run Coefficient Beta Based 
                                    on the Restricted Trend 
 
                            Variable               1               2 
 
                            High             1.00000         1.00000 
                            Low             -1.04515        -1.42493 
                            1               -0.23428        74.47035 
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                                  Adjustment Coefficient Alpha 
                                 Based on the Restricted Trend 
 
                            Variable               1               2 
 
                            High            -0.22974         0.00325 
                            Low              0.07046         0.00513 
 
 
Our impact matrix factors as βαπ ′= but we are given 2 columns in each output matrix. The leftmost columns are 
used to construct the rank 1 impact matrix we desire. The rank 2 version, not of interest here, would be obtained by 
using both columns of each display.   
 
The extra row in “beta” is due to the intercept entering (only) the error correction mechanism.  Recall that this is the 
“restriction” investigated at the outset. It increases the cointegrating vector by 1 parameter which in turn multiplies a 1 
that has been added to the lagged level vector.  Ignoring lagged differences and substituting numbers from the 
display , the leading part of our solution is  
 

( )
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 which is seen to be the product αβ′using the 

“Variable 1” columns (in bold) of the two displays above.  
 
The next part of our interest lies in the table of estimates. The coefficients in the matrix product above, with the 
intercept coefficient listed first, comprise the first 3 (in bold) entries in the two sections of the “Model Parameter 
Estimates” output.  The other elements are entries of the two 2x2 matrices associated with the 2 lagged difference 
vectors.  
 
                                       The VARMAX Procedure 
 
                 Type of Model                                             VECM(3) 
                                      with a Restriction on the Deterministic Term 
                 Estimation Method                   Maximum Likelihood Estimation 
                 Cointegrated Rank                                               1 
 
 
                                     Model Parameter Estimates 
 
                                               Standard 
 Equation    Parameter         Estimate           Error    t Value    Pr > |t|    Variable 
 
 D_High      CONST1             0.05382         0.01350                           1, EC 
             AR1_1_1           -0.22974         0.05762                           High(t-1) 
             AR1_1_2            0.24011         0.06023                           Low(t-1) 
             AR2_1_1            0.05311         0.07608       0.70      0.4856    D_High(t-1) 
             AR2_1_2            0.16823         0.07024       2.39      0.0172    D_Low(t-1) 
             AR3_1_1           -0.11786         0.06769      -1.74      0.0827    D_High(t-2) 
             AR3_1_2           -0.00332         0.06212      -0.05      0.9574    D_Low(t-2) 
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 D_Low       CONST2            -0.01651         0.01693                           1, EC 
             AR1_2_1            0.07046         0.07228                           High(t-1) 
             AR1_2_2           -0.07364         0.07554                           Low(t-1) 
             AR2_2_1            0.53719         0.09543       5.63      0.0001    D_High(t-1) 
             AR2_2_2           -0.25195         0.08811      -2.86      0.0045    D_Low(t-1) 
             AR3_2_1            0.18072         0.08491       2.13      0.0341    D_High(t-2) 
             AR3_2_2           -0.17446         0.07792      -2.24      0.0259    D_Low(t-2) 
 
 
                                    Covariances of Innovations 
 
                             Variable            High             Low 
 
                             High             5.80640         4.97097 
                             Low              4.97097         9.13591 
 
The last matrix above indicates that the shocks (errors) in the high and low prices have variances 5.8 and 9.1 and a 
positive correlation.  One final interesting question is investigated.  Looking at the beta listed above, the estimate of 
the cointegrating relationship is HIGH-1.04(LOW) which differs a bit from HIGH-LOW.  Our H=(1 0, -1 0, 0 1) option 

asks for a test that the beta vector can be taken to be 

1 0
1 0

0 1

c
c

H c
d

d
β γ

   
    = = − = −        

   

which would mean that 

the cointegrating vector can be taken to be (1,-1), scaled by c, as we proposed.  Recall the arbitrariness of the scaling 
factor.  The relevant output begins with 
 
                      Restriction Matrix H 
                      with Respect to Beta 
 
            Variable               1               2 
 
            High             1.00000         0.00000 
            Low             -1.00000         0.00000 
            1                0.00000         1.00000 
 
                      Long-Run Coefficient 
                      Beta with Respect to 
                       Hypothesis on Beta 
 
                    Variable               1 
 
                    High             1.00000 
                    Low             -1.00000 
                    1               -0.12635 
 
                     Adjustment Coefficient 
                     Alpha with Respect to 
                       Hypothesis on Beta 
 
                    Variable               1 
 
                    High            -0.01439 
                    Low              0.04353 
 
The last element of beta and more dramatically, the elements of alpha, have been changed by this small adjustment 
to the second beta entry. The test that this change is statistically acceptable gives a significant (p=0.0154) lack of fit 
test, that is, the (1,-1) structure is rejected at the 5% but not at the 1% level.  This is an interesting (but not 
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unprecedented in this author’s experience) phenomenon. We rejected unit roots for HIGH-LOW and yet we also 
reject the hypothesis that the stationary linear combination here has that equal but opposite weights form. This is not 
likely a result of power as both results were rejections of null hypotheses. The output is below.  
 
 
 
 
         Test for Restricted Long-Run Coefficient Beta 
 
                    Restricted 
 Index  Eigenvalue  Eigenvalue      DF  Chi-Square  Pr > ChiSq 
 
     1      0.1157      0.0992       1        5.87      0.0154 
 
 
7. Summary. 
 
Two Nobel Prize winning ideas have motivated technology available to SAS users in the ETS package. The first is a 
family of models related to the ARCH idea in which volatility in a series rather than in its level is of interest.  This 
technology is available in PROC AUTOREG along with other tools such as regression with autocorrelated errors both 
of which were illustrated here.  The second is cointegration, available in PROC VARMAX, in which two nonstationary 
series are linked together by a “cointegrating vector,” a stationary linear combination of the series which, because it is 
stationary, is a relationship that cannot be too badly violated in a statistical sense.  
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