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ABSTRACT 

Multigroup structural equation modeling (SEM) is a frequently used technique to evaluate measurement invariance in 
social and behavioral science research. Before the 9.2 version, SAS was incapable of handling multigroup SEM, but 
this limitation is resolved in PROC TCALIS in SAS 9.2. For the purpose of illustration, this article provides step-by-
step guide to programming the tests of measurement invariance and partial invariance using PROC TCALIS for 
multigroup SEM with mean structures. Fit indices and parameter estimates are validated, thus providing an 
alternative tool for researchers who conduct both applied and simulated studies. Other new features (e.g., different 
types of modeling languages and estimation methods) and limitations (e.g., ordered-categorical SEM and multilevel 
SEM) of the TCALIS procedure are also briefly mentioned. 

INTRODUCTION 

Multigroup structural equation modeling (SEM) is a frequently used technique to evaluate measurement invariance in 
social and behavioral social science research. In the past decades, a variety of commercial software packages have 
been developed for SEM, including EQS (Bentler & Wu, 2002), Mplus (Muthén & Muthén, 1998-2007), LISREL 
(Jöreskog & Sörbom, 1996), Mx (Neale, Boker, Xie, & Maes, 2003), and AMOS (Arbuckle, 2003). Since version 8, 
SAS has also added a procedure into the SAS/STAT product to accommodate SEM (i.e., PROC CALIS). However, 
the CALIS procedure has one major limitation—its inability of handling multigroup SEM (Fan & Fan, 2005). Although 
some researchers tried to ―trick‖ SAS to analyze multigroup models (provided that each group had the same sample 
size), this trick is not generalizable to situations where unequal sample sizes are mostly encountered (Jones-Farmer, 
Pitts, & Rainer, 2008, Marcoulides & Hershberger, 1997). In addition, using such a trick may give incorrect degrees of 
freedom. Thus, one must be cautious about using PROC CALIS for multigroup analyses. 

Because of such a limitation, SAS is not the first choice to implement multigroup invariance tests to some researchers 
(e.g., Jones-Farmer et al., 2008). According to Byrne (2004), most literature addressing multigroup invariance has 
used either LISREL or EQS. However, there might be times when, by convenience or necessity, SAS would be 
preferred. For example, SAS offers quantitative researchers an extremely flexible environment to conduct various 
Monte Carlo simulation studies (Fan, Felsövályi, Sivo, & Keenan, 2003). Data simulation and subsequent analyses of 
the simulated results can be easily implemented in SAS by using a wide variety of descriptive and/or advanced 
statistical procedures (e.g., PROC MEANS and PROC GLM). Because of the previous limitation in multigroup 
analyses, simulation studies using PROC CALIS only involved single-group analyses (see Fan & Sivo, 2005; Yang & 
Green, 2010). Simulation studies involving multigroup SEM can become very laborious if one needs to simulate data 
in SAS, export the data to another software package, say LISREL, for multigroup analyses, and then, import the 
output back into SAS for later analyses (e.g., Fan & Sivo, 2009). Generally, a practice that involves data exchange 
among different software packages is inconvenient and time-consuming in simulation studies. 

In SAS 9.2, an experimental procedure, PROC TCALIS, was introduced. The TCALIS procedure is modified with 
changes and enhancements from the old CALIS procedure. According to the SAS document (SAS Institute, 2008), 
PROC TCALIS is not a simple functional enhancement of PROC CALIS. The basic computational architecture of 
PROC TCALIS is quite different from that of PROC CALIS. New features include, but are not limited to, new modeling 
languages, multigroup analysis, and improved mean structures analysis. With the TCALIS procedure available, the 
inconvenient data exchange between SAS and other SEM packages in simulation studies can be solved. 

Nevertheless, up to this date, no journal article or textbook has provided example program to illustrate the TCALIS 
procedure for multigroup SEM. Therefore, the purpose of this article is to provide a step-by-step tutorial using PROC 
TCALIS. Specifically, tests of invariance and partial invariance of mean and covariance structures between two 
groups are illustrated with an example. We believe that researchers who conduct both applied and simulated studies 
can benefit from such an alternative tool in their future work. 
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MEASUREMENT INVARIANCE 

SEM models are used to describe the relationships between manifest and/or latent variables. When a particular 
theoretical model is justified as a good enough approximation to the sample data for a homogenous group, the 
research question whether the same model holds across heterogeneous groups may come to the interest. Such 
groups may be defined by any categorical variables in practice (e.g., gender, race/ethnicity, social-economic status, 
etc.). Testing measurement invariance in the multigroup framework is becoming increasingly popular to answer such 
related questions. Technically, measurement invariance can be tested at different levels. Detailed discussion of 
measurement invariance can be found in the literature elsewhere (e.g., Bollen, 1989; Byrne, Shavelson, & Muthén, 
1989; Cheung & Rensvold, 2002; Little, 1997; Meredith, 1993; Vandenberg & Lance, 2000), and a brief summary is 
provided below. 

Typically, the first level of invariance is a model with no constraint imposed on any parameter across groups 
(configural invariance). If the configural model adequately fits the data, then, equivalence of all factor loadings are 
placed across groups (weak factorial invariance). The weak invariance model is evaluated with the configural 
invariance model. If model fit between the two nested models are not statistically different, then, equivalence of 
covariance and/or mean structures can be placed across groups. Otherwise, constraints on factor loadings that 
caused the lack of fit should be removed, not simultaneously but one at a time, until partial invariance of factor 
loadings is established. Once the (partial) weak invariance model is satisfied, researchers can examine structures of 
the mean, the covariance, or both, depending on research questions. Difference of mean structures across groups 
can be explored by invariance tests on intercepts for observed measures and factors. Alternatively, if covariance 
structures are of interest, invariance tests of the factor covariance matrix, with or without involving the mean 
structures, can be conducted (strong factorial invariance). Lastly, invariance of covariance structures of measurement 
errors, with or without involving the mean structures, should be examined based on the strong invariance model 
(strict factorial invariance). The invariance tests illustrated in this example only involve factor loadings and mean 
structures for observed measures and factors, which correspond to the 10th model from the taxonomy of 13 partially 
nested models operationalized by Marsh et al. (2009, Table 1, p.443). 

 

Figure 1. Path diagram with the structured means in Group 1. 
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EXAMPLE 

DATA 

This example data from the book chapter by Thompson and Green (2006, p.139, Table 5.2, Dataset 2) were 
borrowed, which contain six measured variables aiming to assess preschool children academic (V1-V3) and social 
school readiness (V4-V6). Preschool children were divided into two groups: Group 1—day-care and Group 2—home-
care. In the book chapter, three means and covariance matrices were provided, two for the separate groups and the 
other for their combined group. What we need here are the two means and covariances matrices for Group 1 and 
Group 2. Sample sizes are 250 and 150 for Group 1 and Group 2, respectively. In each group, there are two 
correlated factors (F1 and F2). F1 has the first three indicators, V1-V3; and F2 has the last three, V4-V6. To create 
the datasets in SAS, different from the raw data collected in rows in applied research, users need to explicitly specify 
the data type as covariance matrix by adding the dataset option in parentheses, type=cov, in the DATA step (Table 
1). Though only two groups are illustrated, it is very easy to generalize the procedures to cases with more than two 
groups. 

Table 1. Creating two separate datasets in the type of covariance matrix in the SAS system 
data group1(type=cov); 

infile datalines missover; 

input _NAME_ $ _TYPE_ $ V1-V6; 

datalines; 

.  MEAN  49.14  82.60 104.95  78.58  54.95 119.91 

V1  COV  154.54 

V2  COV  44.75  90.23 

V3  COV  40.98  22.77  78.76 

V4  COV  41.35   2.83   7.92 220.12 

V5  COV  23.28   9.12   0.75  61.46 159.88 

V6  COV  47.08  22.88  16.05 125.08  84.31 332.26 

; 

 

data group2(type=cov); 

infile datalines missover; 

input _NAME_ $ _TYPE_ $ V1-V6; 

datalines; 

.  MEAN  55.01  81.22  97.01  72.67  46.57 124.28 

V1  COV 124.93 

V2  COV  52.19  80.67 

V3  COV  64.45  42.85  83.56 

V4  COV  59.95  33.10  38.34 290.65 

V5  COV  32.32  16.09  18.29 124.71 169.17 

V6  COV  87.15  39.70  51.82 174.20 108.39 355.22 

; 

run; 

 

STEPWISE ANALYSIS 

The stepwise procedure suggested by Thompson and Green (2006, Table 5.3, pp.141-143) is used to examine 
difference in factor means under partial invariance so that the selected model fit indices, i.e., chi-square, standardized 
root mean square residual (SRMR), and root mean square error of approximation (RMSEA), reported from PROC 
TCALIS can be validated. The metric in this example is defined by fixing the variance of factors to 1 in Group 1 and 
imposing between-group equality constraints of factor loadings (except in Step 1), and by doing so, we are able to 
evaluate all between-group constraints on factor loadings. Decision rules between steps are such that, except for 
Step 1, the chi-square difference test, together with SRMS and RMSEA, is used to assess differential fit of nested 
models; and the decision of removing individual between-group constraint is based on the modification indices (MI), 
also known as the Lagrange multiplier (LM) tests, in order to improve the model fit (Chou & Bentler, 1990). 

The chi-square difference test is not considered as the best practice by some researchers when mean structures get 
involved because it is strongly influenced by sample size, and alternative criteria were proposed recently (Chen, 
2007; Cheung & Rensvold, 2002; Fan & Sivo, 2009). Consequently, different researchers can reach different 
decisions. As a software tutorial, we follow the same steps presented in the book chapter (Thompson & Green, 2006, 
Table 5.4, pp.144-147). Details of these alternative tests for nested models evaluation are not discussed here, but 
readers can find related information from the articles mentioned above or literature elsewhere. A brief summary of the 
steps is listed below: 
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 In Step 1, the same factor model (Figure 1) is evaluated in each group and their combined group (configural 
invariance). Because the model fits the data adequately, we proceed to evaluate the invariance of factor 
loadings. 

 In Step 2a, all factor loadings are constrained to be equal across groups (weak factorial invariance). Because the 
chi-square difference test is significant between the configural model and the weak invariance model, one or 
more constraints needs to be removed to establish the partial invariance on factor loadings. 

 In Step 2b, equality constraints that caused the lack of fit are identified by the LM/MI tests, and multiple nested 

models are evaluated by the chi-square difference test, SRMR, and RMSEA. In the final model retained in 
Step 2b, constraints on loadings for V3 and V6 are removed. 

 In Step 3a, all intercepts for measures are constrained to be equal across groups, except for those for V3 and V6 
because the factor loadings for V3 and V6 are not constrained in the previous model. Intercepts for factors in 
Group 1 (means for F1 and F2) are arbitrarily set to 0, and they are freely estimated in Group 2. Due to the lack 
of fit in this step, we proceed to evaluate the partial invariance of intercepts for measures. 

 In Step 3b Substep 1, the same tests and decision guidelines are used as those in Step 2b. The final model 
retained in Step 3b is the one with additional constraints on intercepts for V2 and V5, compared to the one in 
Step 2b. Then, we proceed to evaluate the invariance of intercepts for factors. 

 In Step 4a, intercepts for both factors are constrained to be equal across groups. Due to the lack of fit in this 
step, we proceed to evaluate the partial invariance of intercepts for factors. 

 In Step 4b, constraints on intercepts for F1 and F2 are examined, separately. Based on the same decision 
guidelines, we conclude that the between-group difference of means for F1 is not statistically significant, but they 
are different for F2. 

SAS PROGRAMMING 

In the TCALIS procedure, there are a collection of modeling languages available to specify models (e.g., LINEQS, 
LISMOD, and PATH), each reflecting different modeling terminology and philosophies. Traditionally, most users 
chose to use the LINEQS language in the old CALIS procedure, and it is still available in PROC TCALIS. Also 
available is the LISMOD language, which stands for LISrel MODeling. It meets the need of users who are familiar 
with LISREL models (Jöreskog & Sörbom, 1996). The PATH language seems to be the most flexible, and the 
following programs are written with the PATH language. Other different modeling languages are also provided (e.g., 
FACTOR and MSTRUCT), but they are mostly designed for their specific purposes, thus omitted in this illustration. 
Essentially, different modeling languages are different ways of doing the same analyses. 

For simplicity, a model specified by using the PATH language is called a PATH model. A complete model 
specification usually needs three major statements (i.e., PATH, PVAR, and PCOV) in a PATH model. When mean 
structures are involved, the MEAN statement is also used. 

By using Convention 1 (McDonald & Ho, 2002) to draw the path diagram, a direct translation from the figure to the 
PATH model is very convenient by following the rules below: 

 Each single-headed arrow in the path diagram is specified in the PATH statement. 

 Each double-headed arrow pointing to a single variable is specified in the PVAR statement. 

 Each double-headed arrow pointing to two different variables is specified in the PCOV statement. 

The TCALIS procedure is invoked by the PROC TCALIS statement, and dataset information and estimation method 
are specified by using options in this statement. The DATA= option tells SAS which dataset is used. For example, in 
Table 2, the single-group model for Group 1 uses the SAS dataset ―group1‖, and because the type of this dataset is 
covariance, the COV and NOBS= options are needed, that is, PROC TCALIS will analyze a covariance matrix instead 
of a raw dataset, and it is based on 250 observations. The METHOD= option specify the estimation method. Normal-
theory maximum-likelihood method is used throughout this example. 

In the PATH statement, all single-headed arrows are translated to the corresponding path entries. An arrow symbol, -
> (or <-), is used between two variables. If A is the antecedent variable to B, then the order of A and B in the path 
entry is interchangeable as long as the head of the arrow points to the outcome variable, B. In other words, A -> B is 
equivalent to B <- A. A fixed value or a unique parameter name is also specified to each path entry. Fixed values 
represent fixed model parameters; whereas a parameter name tells SAS that this particular parameter will be freely 
estimated in the model. Path entries are separated by a comma. For example, in Table 2, the factor loadings from F1 
to V1, V2, and V3 are specified as b1, b2, and b3, respectively; and those from F2 to V4, V5, and V6 are b4, b5, and 
b6, respectively, in both single-group models for Group 1 and Group2. The multigroup model in Table 2 specifies the 
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same path entries in Group 1 as those in single-group models. Path specification for Group 2 in multigroup model will 
be discussed later. 

In the PVAR statement, all double-headed arrows pointing to a single variable, representing variance parameters for 
factor disturbances and measurement errors, are translated to corresponding variances. One or multiple variables are 
listed on the left side of an equality sign, and one or multiple fixed values and/or unique parameter names are listed 
on the right side of an equality sign. Similarly, a fixed value represents a fixed parameter; whereas a parameter name 
represents a freely estimated parameter. Variance entries are separated by a comma. For example, in Table 2, three 
variance entries are specified in single-group models for Group 1 and Group 2, that is, variances of F1 and F2 are set 
to 1 in order to define the metric, and six error variances are defined as freely estimated parameters, labeled as e1 to 
e6 associated with measured variables V1 toV6, separately. The syntax V1-V6 is a handy shortcut to represent the 
list from V1 to V6. So does e1-e6. Users can always type all six entries (i.e., V1=e1, V2=e2, ..., V6=e6) to achieve the 
same thing. The multigroup model in Table 2 specifies the same variance entries in Group 1 as those in single-group 
models. Variance specification for Group 2 in multigroup model is also going to be discussed later. 

In the PCOV statement, all double-headed arrows pointing to two different variables, representing covariance 
parameters, are translated to the corresponding covariances. Two variables separated by a space are listed on the 
left side of an equality sign, and a fixed value or a unique parameter name is listed on the right side of an equality 
sign. The usage of fixed values and parameter names is the same as in the PATH and PVAR statement. Different 
covariance entries are separated by a comma. For example, in Table 2, there is only one pair of correlated 
disturbances in each model, thus one covariance entry specified, in both single-group models for Group 1 and Group 
2, that is, the covariance is a freely estimated parameter, d12, in the model. The multigroup model in Table 2 
specifies the same covariance entry in Group 1 as the single-group models. Covariance specification, together with 
the path and variance specification, for Group 2 in multigroup model is discussed in the next paragraph. 

Now, we come to explain the model specification of Group 2 in multigroup SEM in Table 2. First, there are two 
GROUP statements, each designating a group number. Here, Group 1 and Group 2 are defined. The DATA= and 
NOBS= options in the GROUP statement are self-explanatory, that is, Group 1 uses the SAS dataset ―group1‖, and it 
has 250 observations; whereas Group 2 uses ―group2‖, and 150 observations. Second, there are two MODEL 
statements, each signifying the beginning of a model specification block and designating a model number for the 
model. Until another MODEL statement is encountered, the PATH, PVAR, and PCOV statement in between belongs 
to the precedent model specification block. The GROUP= option in the MODEL statement can list one or multiple 
integers which represent the groups to be fitted by the model. The statement (model 5 / group=6 7;) means that 
model specification 5 fits Group 6 and 7 (if defined in previous GROUP statements). Third, the REFMODEL 
statement (REFMODEL 1 / AllNewParms;), as a referencing tool, is used to build the model specification within the 
scope of the second MODEL statement (model 2 / group=2;), and it tells SAS that the pattern of fixed and free 
parameters in model specification 2 is equivalent to model specification 1. The AllNewParms option, standing for All 
New Parameters, means that the parameter names are totally different from those in Group 1, which allows 
parameters to vary between groups. By default, SAS adds suffix, _mdl2, to the corresponding parameter names in 
Group 1 so as to create unique names in Group 2. With unique names in the combined groups, there is no between-
group constraint placed. 

Starting Table 3, some modifications in the model for Group 2 are needed because some constraints are placed, and 
some constraints are removed. In Table 3 (Step 2a), constraints on all factor loadings are placed across groups, and 
other parameters are freely estimated in each group. This new model in Group 2 is specified by integrating some 
replacements to the referencing model referred to by the REFMODEL statement. In other words, the new entries in 
the PVAR and PCOV statements, nested within the scope of the REFMODEL statement, designate new parameter 
names in Group 2 by replacing those in previous PVAR and PCOV statements in Group 1; while the absence of new 
entries for the rest parameters implies between-group constraints. In Table 3, new parameter names are assigned in 
Group 2 by adding prefix, g2_, to the old parameter names, that is, the variances of F1, F2, V1, V2, …, and V6 are 
g2_d1, g2_d2, g2_e1, g2_e2, …, and g2_e6, respectively, and the covariance of F1 and F2 is g2_d12. The rest of 
parameters in Group 2 keep the same names as those in Group 1. By assigning the same parameter names across 
groups, constraints are placed. Also new in Table 3 is the MODIFICATION option in the PROC TCALIS statement. It 
requests the MI/LM tests on the constraints imposed on parameters in Group 1 and Group 2. 

When we remove certain factor loadings, additional PATH statement is needed to replace the old path entries. In 
Table 4 (Step 2b, Substep 1), the second PATH statement, within the scope of the REFMODEL statement, specifies 
a new path entry, which tells SAS the loading from F2 to V3 is g2_b3 in Group 2. By designating a new name to the 
factor loading in Group 2, the constraint on loadings for V3 is removed. Similarly, in Table 4 (Step 2b, Substep 2 and 
Substep 3), two/three new path entries are specified to remove additional factor loadings in Group 2. 

The use of the REFMODEL statement is not mandatory, if the user chooses to write out the complete model 
specification in Group 2. That is, users can retype all entries in Group 1 assigning the same, or different, parameter 
names in Group 2, depending on whether the between-group constraints are imposed or not. Usually, using the 
REFMODEL statement can save user’s efforts in programming when model specification is very complicated. 
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When mean structures are introduced, the multigroup analyses become more complicated. In the MEAN statement, 
intercepts for measures and factors are specified. One or multiple variables can be listed on the left side of an 
equality sign, and correspondingly, one or multiple fixed values and/or unique parameter names need to be listed on 
the right side of an equality sign. Each specification is separated by a comma. For example, in Table 5, intercepts for 
factors are specified in Group 1 and Group 2, separately. That is, in Group 1, intercepts for F1 and F2 are set to 0, 
and intercepts for V1, V2, V4, and V5 are named as aV1, aV2, aV4, and aV5; whereas in Group 2, intercepts for F1, 
F2, V1, V2, V4, and V5 are freely estimated by assigning different parameter names: g2_aF1, g2_aF2, g2_aV1, 
g2_aV2, g2_aV4, and g2_aV5. In Table 6 through Table 8, different modifications are used in the MEAN statement 
accordingly due to the different between-group constraints placed on intercepts. 

Table 2. Step 1—Evaluainge same factor model in each of the groups and combined groups 
*** Group 1 ***; 

proc tcalis data=group1 cov method=ml nobs=250; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

 

run; 

 

 

 

*** Group 2 ***; 

proc tcalis data=group2 cov method=ml nobs=150; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

 

run; 

 

 

 

*** Combined groups ***; 

proc tcalis method=ml; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 
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    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

 

model 2 / group=2; 

  refmodel 1 / AllNewParms; 

 

run; 

 

Table 3. Step 2a—Evaluating between-group equivalence of factor loadings 
proc tcalis method=ml modification; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

 

model 2 / group=2; 

  refmodel 1; 

 

  pvar 

    F1 = g2_d1, 

    F2 = g2_d2, 

    V1-V6 = g2_e1-g2_e6; 

  pcov 

    F1 F2 = g2_d12; 

 

run; 

 

Table 4. Step 2b—Evaluating between-group equivalence of individual loadings 
*** Step 2b, Substep 1: remove the constraint on loadings for V3 ***; 

proc tcalis method=ml modification; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 
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    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

 

model 2 / group=2; 

  refmodel 1; 

 

  path 

    F1 -> V3  g2_b3; 

  pvar 

    F1 = g2_d1, 

    F2 = g2_d2, 

    V1-V6 = g2_e1-g2_e6; 

  pcov 

    F1 F2 = g2_d12; 

 

run; 

 

 

 

*** Step 2b, Substep 2: remove the constraint on loadings for V6 ***; 

proc tcalis method=ml modification; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

 

model 2 / group=2; 

  refmodel 1; 

 

  path 

    F1 -> V3  g2_b3, 

    F2 -> V6  g2_b6; 

  pvar 

    F1 = g2_d1, 

    F2 = g2_d2, 

    V1-V6 = g2_e1-g2_e6; 

  pcov 

    F1 F2 = g2_d12; 

 

run; 
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*** Step 2b, Substep 3: remove the constraint on loadings for V1 ***; 

proc tcalis method=ml modification; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

 

model 2 / group=2; 

  refmodel 1; 

 

  path 

    F1 -> V1  g2_b1, 

    F1 -> V3  g2_b3, 

    F2 -> V6  g2_b6; 

  pvar 

    F1 = g2_d1, 

    F2 = g2_d2, 

    V1-V6 = g2_e1-g2_e6; 

  pcov 

    F1 F2 = g2_d12; 

 

run; 

 

Table 5. Step 3a—Evaluating between-group equivalence of intercepts for measures 
proc tcalis method=ml modification maxiter=300 maxfunc=300; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

  mean 

    F1 F2 = 0 0, 

    V1-V6 = aV1-aV6; 

 

model 2 / group=2; 

Statistics and Data AnalysisSAS Global Forum 2011

 
 



10 

  refmodel 1; 

 

  path 

    F1 -> V3  g2_b3, 

    F2 -> V6  g2_b6; 

  pvar 

    F1 = g2_d1, 

    F2 = g2_d2, 

    V1-V6 = g2_e1-g2_e6; 

  pcov 

    F1 F2 = g2_d12; 

  mean 

    F1 F2 = g2_aF1 g2_aF2, 

    V3 V6 = g2_aV3 g2_aV6; 

 

run; 

 

Table 6. Step 3b—Evaluating between-group equivalence of individual intercepts for measures 
*** Step 3b, Substep 1: remove the constraint on intercepts for V1 ***; 

proc tcalis method=ml modification maxiter=300 maxfunc=300; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

  mean 

    F1 F2 = 0 0, 

    V1-V6 = aV1-aV6; 

 

model 2 / group=2; 

  refmodel 1; 

 

  path 

    F1 -> V3  g2_b3, 

    F2 -> V6  g2_b6; 

  pvar 

    F1 = g2_d1, 

    F2 = g2_d2, 

    V1-V6 = g2_e1-g2_e6; 

  pcov 

    F1 F2 = g2_d12; 

  mean 

    F1 F2 = g2_aF1 g2_aF2, 

    V1 V3 V6 = g2_aV1 g2_aV3 g2_aV6; 

 

run; 

 

 

 

*** Step 3b, Substep 2: remove the constraint on intercepts for V4 ***; 
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proc tcalis method=ml modification maxiter=300 maxfunc=300; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

  mean 

    F1 F2 = 0 0, 

    V1-V6 = aV1-aV6; 

 

model 2 / group=2; 

  refmodel 1; 

 

  path 

    F1 -> V3  g2_b3, 

    F2 -> V6  g2_b6; 

  pvar 

    F1 = g2_d1, 

    F2 = g2_d2, 

    V1-V6 = g2_e1-g2_e6; 

  pcov 

    F1 F2 = g2_d12; 

  mean 

    F1 F2 = g2_aF1 g2_aF2, 

    V1 V3 V4 V6 = g2_aV1 g2_aV3 g2_V4 g2_aV6; 

 

run; 

 
Table 7. Step 4a—Evaluating between-group equivalence of intercepts for factors 
proc tcalis method=ml modification maxiter=300 maxfunc=300; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

  mean 

    F1 F2 = 0 0, 
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    V1-V6 = aV1-aV6; 

 

model 2 / group=2; 

  refmodel 1; 

 

  path 

    F1 -> V3  g2_b3, 

    F2 -> V6  g2_b6; 

  pvar 

    F1 = g2_d1, 

    F2 = g2_d2, 

    V1-V6 = g2_e1-g2_e6; 

  pcov 

    F1 F2 = g2_d12; 

  mean 

    V1 V3 V4 V6 = g2_aV1 g2_aV3 g2_V4 g2_aV6; 

 

run; 

 

Table 8. Step 4b—Evaluating between-group equivalence of individual intercepts for factors 

*** Step 4b, Substep 1: remove the constraint on intercepts for F1 ***; 

proc tcalis method=ml modification maxiter=300 maxfunc=300; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

  mean 

    F1 F2 = 0 0, 

    V1-V6 = aV1-aV6; 

 

model 2 / group=2; 

  refmodel 1; 

 

  path 

    F1 -> V3  g2_b3, 

    F2 -> V6  g2_b6; 

  pvar 

    F1 = g2_d1, 

    F2 = g2_d2, 

    V1-V6 = g2_e1-g2_e6; 

  pcov 

    F1 F2 = g2_d12; 

  mean 

    F2 = g2_aF2, 

    V1 V3 V4 V6 = g2_aV1 g2_aV3 g2_V4 g2_aV6; 

 

run; 
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*** Step 4b, Substep 2: remove the constraint on intercepts for F2 ***; 

proc tcalis method=ml modification maxiter=300 maxfunc=300; 

fitindex NOINDEXTYPE on(only)=[CHISQ DF PROBCHI SRMSR RMSEA]; 

group 1 / data=group1 nobs=250; 

group 2 / data=group2 nobs=150; 

model 1 / group=1; 

 

  path 

    F1 -> V1  b1, 

    F1 -> V2  b2, 

    F1 -> V3  b3, 

    F2 -> V4  b4, 

    F2 -> V5  b5, 

    F2 -> V6  b6; 

  pvar 

    F1 = 1.0, 

    F2 = 1.0, 

    V1-V6 = e1-e6; 

  pcov 

    F1 F2 = d12; 

  mean 

    F1 F2 = 0 0, 

    V1-V6 = aV1-aV6; 

 

model 2 / group=2; 

  refmodel 1; 

 

  path 

    F1 -> V3  g2_b3, 

    F2 -> V6  g2_b6; 

  pvar 

    F1 = g2_d1, 

    F2 = g2_d2, 

    V1-V6 = g2_e1-g2_e6; 

  pcov 

    F1 F2 = g2_d12; 

  mean 

    F1 = g2_aF1, 

    V1 V3 V4 V6 = g2_aV1 g2_aV3 g2_V4 g2_aV6; 

 

run; 

 

As noted before, when mean structures are involved, multigroup SEM gets more complicated. As a result, 
nonconvergence may occur in the estimation process. One possible solution is to increase both the maximum 
number of iteration and function call. The MAXITER= and MAXFUNC= options in the PROC TCALIS statement 
allows the user to set different numbers of iteration and function call (Table 5 – Table 8). An alternative is to provide 
starting values. In a PATH model, adding a value in paired parentheses after the parameter name tells SAS to use 
this value as the starting value. For example, the following PATH entry, 

F1 -> V1  b1 (0.5), 

means that PROC TCALIS will use 0.5 as the starting value to estimate the parameter b1. 

The use of the FITINDEX statement is optional. In this example, the NOINDEXTYPE option disables the display of 
index types in the fit summary table, and the ON(ONLY)= option turns on the printing of chi-square, degree of 
freedom, p-value, SRMR, and RMSEA. If the FITINDEX statement is omitted, a complete fit summary table is 
displayed. 

RESULTS 

Model fit indices from all steps are collected in Table 9. As noted by Thompson and Green (2006, p.156), fit indices 
produced by EQS were reported in the chapter. For single-group models, the values of SRMR and RMSEA are 
identical between EQS and SAS 9.2. However, for multigroup models, different values of SRMR are reported by SAS 
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compared to EQS. Some of the differences are not trivial (Step 3a, Step 4a, and Step 4b Substep 2). In PROC 

TCALIS, the SRMR for each group is calculated first, and then, the group weight, 1r
r

N
a

N k






 , is used to calculate the 

overall SRMR, that is, 

2

r

1

Overall SRMR SRMR
k

r

r

a


   

where SRMRr is the SRMR for Group r, Nr is the sample size of Group r, N is the total sample size, and k is the 
number of groups. If the FITINDEX statement is omitted, the user can find the SRMR for each group in the complete 
fit summary table. In contrast, there are two reasons that EQS gives different SRMRs. First, when there is mean 
structure, EQS bases the calculation on covariances only, and ignores mean residuals; and second, EQS calculates 
the overall SRMR in a direct way, that is, the squared residuals in each group are added up together and then divided 
by kp(p+1), where k is the number of groups, and p is the number of observed variables in a group (David Sookne, 
personal communication, August, 2010). The discrepancies in the values of RMSEA result from the adjustment for 
multigroup model proposed by Steiger (1998), That is, an averaged degrees of freedom should be employed in the 
calculation of the RMSEA. As Thompson and Green (2006, p.158) noted, EQS had not yet incorporated Steiger’s 

correction at the time of the writing of the chapter, but it does in EQS 6.1. In this example, after multiplying 2   to the 

RMSEA values reported by EQS, they are the same as those reported by SAS. As a cross-validation, we also fit all 
the example models in Mplus 5.21, and the values of SRMR and RMSEA agree with SAS 9.2 perfectly. Many other fit 
indices are available in PROC TCALIS, such as the comparative fit index and the non-normal fit index (also known as 
Tucker-Lewis index). Technical details of these fit indices in PROC TCALIS can be found from the SAS/STAT user’s 
guide (SAS Institute, 2008, pp.6892-6905). 

Table 9. Selected model fit indices results from SAS 9.2 and the book chapter 

  SRMR RMSEA 

 degrees of 
freedom 

book 
chapter 

SAS 9.2 book 
chapter 

SAS 9.2 book 
chapter 

SAS 
9.2 

Step 1: Goup 1 8 8.02 8.02 .031 .031 .003 .003 

Step 1: Goup 2 8 9.77 9.77 .045 .045 .039 .039 

Step 1: Goup 1 & 2 combined 16 17.79 17.79 .039 .037 .017 .024 

Step 2a: place constraints on all 
loadings 

20 26.07 26.07 .048 .048 .028 .039 

Step 2b, Substep 1: remove 
constraint on loading for V3 

19 22.04 22.04 .043 .042 .020 .028 

Step 2b, Substep 2: remove 
constraint on loading for V6 

18 19.16 19.16 .041 .040 .013 .018 

Step 2b, Substep 3: remove 
constraint on loading for V1 

17 17.86 17.86 .039 .037 .011 .016 

Step 3a: place constraints on all 
intercepts except for V3 and V6 

20 54.44 54.44 .053 .060 .066 .093 

Step 3b, Substep 1: remove 
constraint on intercepts for V1 

19 29.43 29.43 .047 .044 .037 .053 

Step 3b, Substep 2: remove 
constraint on intercepts for V4 

18 19.16 19.16 .041 .035 .013 .018 

Step 4a: place constraints on 
intercept for both factors 

20 56.39 56.39 .061 .092 .068 .096 

Step 4b, Substep 1: remove 
constraint on intercepts for F1 

19 21.28 21.28 .041 .039 .017 .025 

Step 4b, Substep 2: remove 
constraint on intercepts for F2 

19 56.17 56.17 .060 .090 .070 .099 

Note. SRMR: standardized root mean square residual. RMSEA: root mean square error of approximation. 

Parameter estimates reported by PROC TCALIS are identical to those obtained by EQS (Table 5.5, p.150), and they 
are omitted here. 

COMMENTS AND CONCLUSIONS 

In addition to the tests of difference in factor means illustrated in this example, invariance can also be tested at more 
stringent levels, such as factor variances and covariances, and possibly error variances. Though the length of this 
article restrained complete illustrations of all of them, any invariance test can be easily carried out as long as one 
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follows the general principle such that, for a particular parameter in one group, identical names in other groups imply 
constraints while different names designate freely estimated parameters. 

Other modeling languages can be used to specify the models in this illustration. Users knowledgeable of EQS and 
LISREL will find it easy to specify models by using the LINEQS and LISMOD language, separately. In fact, the layout 
forms of the output by using different modeling languages (PATH, LINEQS, and LISMOD) are similar to those 
generated by specialized SEM software packages (Mplus, EQS, and LISREL). 

In addition to normal-theory maximum likelihood method, other estimation methods are also available. For example, 
the METHOD=WLS requests weighted least squares method. The user needs to provide a nonsingular weight matrix 
in the INWGT= option in PROC TCALIS. If no weight matrix is provided, the WLS method uses the inverse matrix of 
estimated asymptotic covariances of the sample covariance or correlation matrix as the weight matrix. In this case, 
the WLS method is equivalent to Browne’s asymptotically distribution-free estimation (Browne, 1982, 1984). 

Though the TCALIS procedure in SAS 9.2 is greatly improved from the old CALIS procedure, there are still some 
limitations. For example, PROC TCALIS is not capable of analyzing ordered-categorical data, or data with nested 
structures (multilevel SEM). 

Historically, SEM models specified in SAS PROC CALIS are very limited in scope. In this article, the TCALIS 
procedure is illustrated for multigroup SEM analyses. The fit indices (i.e., chi-square, SRMR, RMSEA) and parameter 
estimates are validated. 
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