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ABSTRACT 
When constructing a general (or generalized) linear model with many possible covariates, it is often 
important to consider very carefully the role of potential confounders and interactions.  Once a model is 
constructed, the interpretation of the coefficients depends on which other terms are included in the model.  
It is especially important to interpret interactions carefully if the model does not include all lower-order 
interactions and main effects.  Depending on the context, you may want to set a low threshold for 
statistical significance for interactions (including them even if they are of borderline significance) or a high 
threshold (including them only if they are highly significant).  Some variables you may want to treat as 
concomitant, including them regardless of statistical significance.  Important confounders may fall into this 
category.  This paper provides practical suggestions for building and interpreting models with interactions.   

INTRODUCTION 
Building a statistical model often includes both art and science.  When you have a carefully-designed, 
randomized study, often the model is established in the design phase.  In that situation, the art may be 
more in the design of the study than in the design of the analysis.  Nonetheless, there may be specific 
interactions between variables that need to be assessed.  Some experimental designs have certain 
factors that are “confounded” with others.  For example, in an incomplete block design it may be that it is 
not possible to provide a separate test of certain interactions: they may be completely confounded with 
other effects.  This technical use of the term confounding in the context of experimental design is an 
important one and is discussed at length in classic texts such as Chapter 6 of Cochran and Cox (1957). 
 
The term “confounding” takes on a slightly different meaning in the context of observational research.  A 
confounding variable (confounder) is one which is associated with the outcome (dependent variable) and 
also a specific predictor of interest (independent variable).  Failure to take account of (control for) a 
confounder can result in erroneous conclusions.  It is for this reason that observational research focuses 
as much attention as it does on identifying and adjusting for potential confounders. 
 
Note that if a variable is associated only with the outcome or only with the predictor of interest (but not 
with both), it is not a confounder.  A variable which is associated with the outcome may be useful to 
include in the model (to reduce residual variance, for example), but omitting it does not confound the 
effect of the predictor of interest.  Similarly, a variable which is associated with the predictor of interest but 
has no effect on the outcome is not a confounder. 
 
One of the most recognizable types of confounding is “confounding by indication.”  This is jargon for “sick 
people get treatments.”  If you simply measured infections and antibiotic treatments, you might well be led 
to the conclusion that antibiotics cause infections.  Or that if you avoid hospitals you’re much less likely to 
die. 
 
Statistical interactions can take many forms.  One form is when the effect of one predictor is modified 
according to the value of another predictor.  For two characteristics, it may be that either characteristic 
alone has no effect but when both characteristics are present there is a measurable effect.  Or it may be 
that either variable alone produces an effect but having both present does not increase the effect.  More 
commonly, the magnitude of the effect may be only somewhat different (but statistically significantly 
different) for combinations of two (or more) variables than one would expect from the effect of each 
variable alone. 
 
In building a statistical model, you may be concerned with both confounders and interactions.  You may 
be especially concerned with interactions involving confounders, but understanding all the interactions in 
a model is key to the interpretation of the model.  It is sometimes difficult to understand models in the 
presence of interactions, especially when not all possible interactions are included in the model. 

 1

Statistics and Data AnalysisSAS Global Forum 2011

 
 



BASICS OF INTERACTIONS AND THE OBSMARGINS OPTION ON LSMEANS 

As a preface to understanding interactions and their interpretation, it is important to understand the way 
that models are parameterized in SAS®.  This includes an understanding of the CLASS statement and 
both the default and the alternative parameterizations available.  This material is covered in numerous 
places, including several of my papers from previous conferences (Pritchard and Pasta 2004; Pasta 
2005; Pasta 2009; Pasta 2010).   
 
Models with a single predictor variable (factor) are reasonably straightforward.  However, once you go 
beyond a single factor, things get more complicated.  Among other things, the question arises whether to 
use the OBSMARGINS option (abbreviated OM) on LSMEANS.  This option causes the LSMEANS to use 
the observed marginal distributions of the variable rather than using equal coefficients across 
classification effects (thereby assuming balance among the levels).  Sometimes you want one version 
and sometimes you want the other, but in my work I generally find that OBSMARGINS more often gives 
me the LSMEANS I want.  The issue of estimability also arises (assuming the model is less than full 
rank).  It is quite possible for the LSMEANS to be nonestimable with the OM option but estimable without, 
or vice versa.  Some time spent understanding the model, together with some tools that SAS provides, 
make the determination of estimability less mysterious.  See Pasta (2010) for additional details. 
 
Let's consider an example with two categorical variables, race (with five levels) and sex (with two levels).  
In order to get a handle on estimability, we can ask for the general form of all estimable functions by 
include the E option on the MODEL statement.  To illustrate the difference, we include one LSMEANS 
statement with the OM option and one without:    

CODE FOR GLM:    
 
proc glm data=anal; 
class race sex; 
model y1 = race sex / solution e; 
lsmeans race sex / stderr tdiff e; 
lsmeans race sex / stderr tdiff e om; 
title3 'GLM by race sex'; 
run; 

 
FROM PROC GLM: 
GLM by race sex 
                 Class Level Information 
Class         Levels    Values 
race               5    Asian Black Hispanic Other White 
sex                2    Female Male 
 
Number of Observations Read        1000 
Number of Observations Used        1000 
 
General Form of Estimable Functions 
Effect                 Coefficients 
Intercept              L1 
race      Asian        L2 
race      Black        L3 
race      Hispanic     L4 
race      Other        L5 
race      White        L1-L2-L3-L4-L5 
sex       Female       L7 
sex       Male         L1-L7 
 
Notice that the levels of RACE are in alphabetic order by formatted value.  The interpretation of the 
"General Form of Estimable Functions," obtained by specifying the E option on the MODEL statement, is 
that the coefficients given as L followed by a number can be assigned any numerical value, but that the 
coefficient for some effects are derivable from the others.  For example, if L2 is assigned a 1 and all the 
other coefficients are assigned 0, then for the function to be estimable the coefficient for White would 
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need to be -1.  This would then estimate the difference between Asian and White.  If you wanted just the 
value for Asian, you could assign L1 and L2 a value of 1, and the estimate would be of the Intercept plus 
Asian (and the coefficient for White would be 1-1=0).   
 
Dependent Variable: y1 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        5       82152.751       16430.550      12.94    <.0001 
Error                      994     1262544.332        1270.165 
Corrected Total            999     1344697.083 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
race                         4     80028.47498     20007.11875      15.75    <.0001 
sex                          1      2590.81573      2590.81573       2.04    0.1535 
 
 
                                             Standard 
Parameter                  Estimate             Error    t Value    Pr > |t| 
Intercept               63.39550656 B      1.65404269      38.33      <.0001 
race      Asian          0.96269902 B      3.79755107       0.25      0.7999 
race      Black         15.72610471 B      3.33992898       4.71      <.0001 
race      Hispanic      23.67301601 B      3.48135125       6.80      <.0001 
race      Other         -2.94225607 B      5.41062521      -0.54      0.5867 
race      White          0.00000000 B       .                .         . 
sex       Female        -3.43990976 B      2.40856801      -1.43      0.1535 
sex       Male           0.00000000 B       .                .         . 
 
NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve 
the normal equations.  Terms whose estimates are followed by the 
      letter 'B' are not uniquely estimable. 
                                                                                                                
The SOLUTION, given above, includes tests of the difference between each race and the White category 
(the last category).  These are more attractively displayed using the LSMEANS and the TDIFF option.  
For more information about SOLUTION, see Usage Note 38384: How to interpret the results of the 
SOLUTION option in the MODEL statement of PROC GLM? at //support.sas.com/notes/index.html. 
 
The first LSMEANS are without the OM option: 
  
Least Squares Means 
                     Coefficients for race Least Square Means 
                                       race Level 
Effect                                 Asian    Black    Hispanic    Other    White 
Intercept                                  1        1           1        1        1 
race      Asian                            1        0           0        0        0 
race      Black                            0        1           0        0        0 
race      Hispanic                         0        0           1        0        0 
race      Other                            0        0           0        1        0 
race      White                            0        0           0        0        1 
sex       Female                         0.5      0.5         0.5      0.5      0.5 
sex       Male                           0.5      0.5         0.5      0.5      0.5 
 
                                Standard                  LSMEAN 
race           y1 LSMEAN           Error    Pr > |t|      Number 
Asian         62.6382507       3.5119521      <.0001           1 
Black         77.4016564       3.0099679      <.0001           2 
Hispanic      85.3485677       3.1771906      <.0001           3 
Other         58.7332956       5.2036501      <.0001           4 
White         61.6755517       1.5532976      <.0001           5 
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                   Least Squares Means for Effect race 
                 t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
                          Dependent Variable: y1 
i/j              1             2             3             4             5 
   1                    -3.20959      -4.82644      0.623286      0.253505 
                          0.0014        <.0001        0.5332        0.7999 
   2      3.209586                    -1.82924      3.112197      4.708515 
            0.0014                      0.0677        0.0019        <.0001 
   3      4.826444      1.829242                    4.376613       6.79995 
            <.0001        0.0677                      <.0001        <.0001 
   4      -0.62329       -3.1122      -4.37661                    -0.54379 
            0.5332        0.0019        <.0001                      0.5867 
   5      -0.25351      -4.70851      -6.79995      0.543792 
            0.7999        <.0001        <.0001        0.5867 
 
NOTE: To ensure overall protection level, only probabilities associated with pre-planned 
comparisons should be used. 
                                                                                                                 
Least Squares Means 
       Coefficients for sex Least Square Means 
                                       sex Level 
Effect                                 Female    Male 
Intercept                                   1       1 
race      Asian                           0.2     0.2 
race      Black                           0.2     0.2 
race      Hispanic                        0.2     0.2 
race      Other                           0.2     0.2 
race      White                           0.2     0.2 
sex       Female                            1       0 
sex       Male                              0       1 
 
                              Standard    H0:LSMEAN=0     H0:LSMean1=LSMean2 
sex          y1 LSMEAN           Error       Pr > |t|    t Value    Pr > |t| 
Female      67.4395095       2.2041923         <.0001      -1.43      0.1535 
Male        70.8794193       1.7677880         <.0001 
 
The second LSMEANS are with the OM option: 
 
Least Squares Means 
                     Coefficients for race Least Square Means 
                                       race Level 
Effect                                 Asian    Black    Hispanic    Other    White 
 
Intercept                                  1        1           1        1        1 
race      Asian                            1        0           0        0        0 
race      Black                            0        1           0        0        0 
race      Hispanic                         0        0           1        0        0 
race      Other                            0        0           0        1        0 
race      White                            0        0           0        0        1 
sex       Female                       0.326    0.326       0.326    0.326    0.326 
sex       Male                         0.674    0.674       0.674    0.674    0.674 
 
                                Standard                  LSMEAN 
race           y1 LSMEAN           Error    Pr > |t|      Number 
Asian         63.2367950       3.4954641      <.0001           1 
Black         78.0002007       2.9918561      <.0001           2 
Hispanic      85.9471120       3.1501100      <.0001           3 
Other         59.3318399       5.2019535      <.0001           4 
White         62.2740960       1.4819289      <.0001           5 
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                  Least Squares Means for Effect race 
                 t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
                          Dependent Variable: y1 
i/j              1             2             3             4             5 
   1                    -3.20959      -4.82644      0.623286      0.253505 
                          0.0014        <.0001        0.5332        0.7999 
   2      3.209586                    -1.82924      3.112197      4.708515 
            0.0014                      0.0677        0.0019        <.0001 
   3      4.826444      1.829242                    4.376613       6.79995 
            <.0001        0.0677                      <.0001        <.0001 
   4      -0.62329       -3.1122      -4.37661                    -0.54379 
            0.5332        0.0019        <.0001                      0.5867 
   5      -0.25351      -4.70851      -6.79995      0.543792 
            0.7999        <.0001        <.0001        0.5867 
 
 
NOTE: To ensure overall protection level, only probabilities associated with pre-planned 
comparisons should be used. 
                                                                                                                 
Least Squares Means 
 
       Coefficients for sex Least Square Means 
                                       sex Level 
Effect                                 Female     Male 
 
Intercept                                   1        1 
race      Asian                         0.104    0.104 
race      Black                         0.142    0.142 
race      Hispanic                      0.128    0.128 
race      Other                         0.047    0.047 
race      White                         0.579    0.579 
sex       Female                            1        0 
sex       Male                              0        1 
 
                              Standard    H0:LSMEAN=0     H0:LSMean1=LSMean2 
sex          y1 LSMEAN           Error       Pr > |t|    t Value    Pr > |t| 
Female      65.1806844       1.9762366         <.0001      -1.43      0.1535 
Male        68.6205941       1.3735697         <.0001 
 
The difference between the two LSMEANS are that the first assumes an equal distribution across the 
categories of the variables, whereas the second uses the observed marginal distribution.  In this context, 
when comparing males and females we can either assume the five levels of the RACE variable each 
have 20% of the population (the default) or we can use the actual distribution of the RACE values (the 
OM option).  In this constructed example, we get the same answer for the difference 'female-male' but 
rather different values for the least squares means.  In general, both the least squares means and their 
differences will change when OM is specified. 

TWO FACTORS AND INTERACTION WITH NON-ESTIMABLE LSMEANS 
Here is an example with a two-way interaction: 

CODE FOR GLM:    
proc glm data=anal; 
class sex race; 
model y1 = race sex race*sex / solution; 
lsmeans race sex / stderr e; 
lsmeans race sex / stderr e om; 
estimate 'male'   intercept 1 sex 0 1 race .2 .2 .2 .2 .2  race*sex 0 0 0 0 0  .2 .2 .2 .2 .2; 
estimate 'female' intercept 1 sex 1 0 race .2 .2 .2 .2 .2  race*sex .2 .2 .2 .2 .2  0 0 0 0 0; 
estimate 'female-male' sex 1 -1 race*sex .2 .2 .2 .2 .2  -.2 -.2 -.2 -.2 -.2; 
title3 'GLM by race sex race*sex'; 
run; 
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It turns out in this example, the OM version of the least squares means are nonestimable.  This is 
because the observed proportion of males varies by race (or, to put it another way, the distribution across 
race is different for the two sexes).  This makes the coefficients inconsistent.  The ESTIMATE statements 
mimic the least squares means for the sex variable without the OM option: 
 
                              Standard 
sex          y1 LSMEAN           Error    Pr > |t| 
Female      68.1117839       2.5611683      <.0001 
Male        70.5239982       1.9646266      <.0001 
 
                                            Standard 
Parameter                   Estimate           Error    t Value    Pr > |t| 
male                      70.5239982      1.96462660      35.90      <.0001 
female                    68.1117839      2.56116830      26.59      <.0001 
female-male               -2.4122143      3.22790036      -0.75      0.4551 

 
Any consistent distribution for the other variables can be used to calculate least squares means – you are 
not limited to the uniform distribution or the observed distribution.  For example, we might want to use the 
distribution over the RACE variable from some reference population.  In the example presented here, it 
might make sense to use the distribution used to generate the simulated data.  Or, we might want to use 
the observed overall distribution of RACE (not separately by sex) instead.  Here's how we might code the 
ESTIMATE statements and the associated output from GLM: 

CODE FOR GLM:    
proc glm data=anal; 
class sex race; 
model y1 = race sex race*sex / solution e; 
estimate 'male (h)' intercept 1  sex 0 1  race  .10 .15 .15 .05 .55   
          race*sex 0 0 0 0 0  .10 .15 .15 .05 .55; 
estimate 'female (h)' intercept 1  sex 1 0 race  .10 .15 .15 .05 .55   
          race*sex .10 .15 .15 .05 .55  0 0 0 0 0; 
estimate 'female-male (h)' sex 1 -1 race*sex .10 .15 .15 .05 .55   
          -.10 -.15 -.15 -.05 -.55; 
estimate 'male (o)' intercept 1  sex 0 1  race  .104 .142 .128 .047 .579   
          race*sex 0 0 0 0 0  .104 .142 .128 .047 .579; 
estimate 'female (o)' intercept 1  sex 1 0 race  .104 .142 .128 .047 .579   
          race*sex .104 .142 .128 .047 .579  0 0 0 0 0; 
estimate 'female-male (o)' sex 1 -1 race*sex .104 .142 .128 .047 .579   
          -.104 -.142 -.128 -.047 -.579; 
estimate 'female-male (off)' sex 1 -1 race*sex .105 .142 .128 .047 .579   
          -.105 -.142 -.128 -.047 -.579; 
title3 'GLM by race sex race*sex with hypothetical and observed race weights'; 
run; 

 
Notice the last ESTIMATE statement, with the difference marked "(off)" in the label.  That ESTIMATE 
statement is nonestimable because the coefficients add up to 1.001 instead of 1.000 within each sex.  It is 
easy to end up with values, even with many decimal places specified, that are off just a bit and which are 
therefore reported as nonestimable.  One solution is to adjust the values slightly to make sure they add 
up to 1.  Another solution is to use the DIVISOR option to ensure the values add up.  See Pasta (2010) 
for details.  Here are the results from GLM: 
 
                                            Standard 
Parameter                   Estimate           Error    t Value    Pr > |t| 
 
male (h)                  69.2219208      1.38231738      50.08      <.0001 
female (h)                65.7862376      1.98334675      33.17      <.0001 
female-male (h)           -3.4356832      2.41753297      -1.42      0.1556 
male (o)                  68.6049088      1.37605701      49.86      <.0001 
female (o)                65.1115576      1.98344075      32.83      <.0001 
female-male (o)           -3.4933513      2.41403606      -1.45      0.1482 
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Notice that we get somewhat different estimates of the female-male difference depending on how we 
weight the levels of RACE (and both differ from the default values in the previous output).     

WHICH INTERACTIONS TO INCLUDE? 
One of the key questions you need to answer is which interactions to include.  Consider a situation with 
four discrete predictor variables (included on the CLASS statement), for example A B C D.  To include all 
the possible interactions means 6 possible two-way interactions, 4 possible three-way interactions, and 1 
four-way interaction.  The total number of terms in the model is 16, including the constant.  Each of the 
four variables can be included or not in each term and there are therefore 2**4 or 16 possible terms 
including the constant and the main effects.  If some of the four factors have many levels, the number of 
degrees of freedom can get large very quickly.   
 
One systematic approach is to start with all possible interactions and systematically remove higher-order 
interactions that are not statistically significant, but never removing an interaction if it is contained in a 
higher-order interaction that is retained.  For example you might drop the A*B*C*D term and then the 
A*B*C and then the A*B*D terms.  But if A*C*D and B*C*D are statistically significant, you would need to 
retain A*C, A*D, C*D, B*C, and B*D, regardless of statistical significance, according to this rule.  You 
could drop A*B if it is not statistically significant, as this term is not part of either A*C*D or B*C*D.   
 
This is a perfectly reasonable approach and leads to results that are reasonably straightforward to 
interpret.  However, it tends to produce models that have “too many” interactions in them.  A more 
parsimonious model may fit the data nearly as well and be much easier to understand.  Whether the 
simpler model or more complex model is preferred depends on the context of the model and falls into the 
“art” part of model building.   
 
There are some approaches that tend to result in fewer interactions.  One is to retain interactions only if 
the effect is “material” as well as statistically significant.  By setting a criterion that the F statistic needs to 
be at least 3 (or even 4), you can eliminate interactions that are “not large” even though they are 
statistically significant.  This stricter criterion can produce a simpler model that fits nearly as well.   
 
Another approach is to test nested groups of interactions.  If the A*B*C interaction is significant, make 
sure that the simultaneous test of A*B*C, A*B, A*C, and B*C is also significant.  In other words, include a 
three-way interaction only if it is significant and the test of it with all the next lower-order interactions is 
also significant.  This idea can be extended to testing each two-way interaction simultaneously with the 
three-way interaction and requiring the test be statistically significant.  If any are not significant (e.g. the 
combined test of A*B*C plus A*C is nonsignificant), then those two interactions would be dropped.   
 
This sort of cavalier model-building with repeated significance tests should not, of course, be considered 
to be a formal test of the associated hypotheses.  In addition to the issue of multiple comparisons, there 
are many aspects of this activity that capitalizes on chance and can lead to suboptimal models.  However, 
it remains a potentially useful exploratory approach. 
 
A related approach to model building with many potential interactions would be to use “all subsets 
regression” modeling to evaluate many models.  This approach, previously accessed through PROC 
RSQUARE, is now available directly in PROC REG.  It takes some effort to make sure all “contained” 
effects are present when higher-order interactions are present.  Which naturally leads to the question, “Do 
I have to always include all ‘contained’ effects?” 

WHAT IF I OMIT SOME OF THE TERMS CONTAINED WITHIN AN INTERACTION? 
What happens if you include the interaction A*B, say, and omit the main effect A or B or both?  Or what if 
you include A*B*C and A*B and the main effects A and B but don’t include A*C or B*C?  You’ve omitted 
some of the “contained” interactions, which violates one of the rules stated in the previous section.  Is the 
resulting model still valid? 
 
Yes, the resulting model is valid.  However, the interpretation of the parameter estimates changes and 
even the interpretation of the statistical tests for the various terms.  Consider a model that includes a term 
for A and A*B but not for B.  The test for A*B now includes the main effect of B and so it is no longer a 
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test of the A*B interaction only; it is a broader test of the effect of B.  If you omit the A main effect as well 
and include only the A*B interaction, you are in essence “putting all the degrees of freedom in one 
basket.”  You are asking about the impact of A and B without dividing the effect between the variables 
and without separating main effects from interactions.   

INTERACTIONS BETWEEN DISCRETE AND CONTINUOUS VARIABLES 
When you have a mix of discrete and continuous variables, it is sometimes quite handy to include 
interactions without main effects.  Consider a discrete variable A and a continuous variable X.  If you 
include A, X, and A*X you get a test of the interaction between A and X which essentially asks whether 
the effect of X is parallel for the different levels of A.  If you find the interaction is statistically significant, it 
may be easier to interpret the SOLUTION if you model A and A*X.  Then the parameters estimated for 
A*X are the slopes for each of the individual levels of A rather than deviations from the slope of the 
reference category of A (which is what you get when you model A, X, and A*X).   
 
With a more complicated high-order interaction between two discrete variables and one continuous 
variable, such as A*B*X, it is almost always a good idea to include A*B in the model (this allows the effect 
of X to vary across the various levels of A*B without any imposed structure).  However it may not be 
especially useful to include A*X and B*X as separate terms once you have established that A*B*X is 
significant in the presence of those terms.  It’s easier to see the results if you have just A, B, A*B, and 
A*B*X as the terms in the model.  
 
EXAMPLE  
 
Here’s an extended example, as usual using simulated data.  First we run a model with just the discrete 
variables.  We find we have a sex*race interaction. 
 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
race                         2      35171.7257      17585.8629       7.16    0.0008 
sex                          1     161037.6917     161037.6917      65.59    <.0001 
sex*race                     2      45268.2749      22634.1375       9.22    0.0001 

The SOLUTION is as usual a bit hard to read: 
                                                    Standard 
Parameter                         Estimate             Error    t Value    Pr > |t| 
 
Intercept                      170.8942836 B      2.44121082      70.00      <.0001 
race      Black                 40.1552047 B      5.63958911       7.12      <.0001 
race      Hispanic               7.9353461 B      5.90301678       1.34      0.1792 
race      White                  0.0000000 B       .                .         . 
sex       Female               -22.1911783 B      4.63675523      -4.79      <.0001 
sex       Male                   0.0000000 B       .                .         . 
sex*race  Female Black         -42.6693767 B     10.09492850      -4.23      <.0001 
sex*race  Female Hispanic       -1.3841721 B     10.30476992      -0.13      0.8932 
sex*race  Female White           0.0000000 B       .                .         . 
sex*race  Male Black             0.0000000 B       .                .         . 
sex*race  Male Hispanic          0.0000000 B       .                .         . 
sex*race  Male White             0.0000000 B       .                .         . 
 
However, the LSMEANS make it easier to see what is going on.  These are the same whether you 
specify OM or not because these are the fully interacted values so we’re just fitting the marginal means.  
The LSMEANS for SEX and RACE are also available without the OM option but if you specify OM they 
are non-estimable for the reasons given above. 
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                                          Standard 
sex       race           y3 LSMEAN           Error    Pr > |t| 
 
Female    Black         146.188933        7.386652      <.0001 
Female    Hispanic      155.254279        7.470120      <.0001 
Female    White         148.703105        3.942079      <.0001 
Male      Black         211.049488        5.083843      <.0001 
Male      Hispanic      178.829630        5.374579      <.0001 
Male      White         170.894284        2.441211      <.0001 
 
Now let’s introduce the continuous variable, EDUYRS. 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
race                         2      35558.6216      17779.3108       7.35    0.0007 
sex                          1     161148.5447     161148.5447      66.65    <.0001 
sex*race                     2      49930.0508      24965.0254      10.33    <.0001 
eduyrs                       1      33688.3103      33688.3103      13.93    0.0002 
 
It definitely has an effect – what about interactions?  Start with a full model. 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
race                         2      3847.52395      1923.76198       0.81    0.4462 
sex                          1      7063.70798      7063.70798       2.97    0.0854 
sex*race                     2      3756.39302      1878.19651       0.79    0.4548 
eduyrs                       1     11307.44124     11307.44124       4.75    0.0296 
eduyrs*race                  2      4617.62450      2308.81225       0.97    0.3797 
eduyrs*sex                   1     29523.41710     29523.41710      12.40    0.0005 
eduyrs*sex*race              2     10014.48954      5007.24477       2.10    0.1228 
 
It look like we can eliminate the EDUYRS*SEX*RACE interaction. 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
race                         2      7222.18410      3611.09205       1.51    0.2210 
sex                          1      1591.31036      1591.31036       0.67    0.4146 
sex*race                     2     44542.78631     22271.39315       9.33    <.0001 
eduyrs                       1     15655.34469     15655.34469       6.56    0.0106 
eduyrs*race                  2     13573.55566      6786.77783       2.84    0.0589 
eduyrs*sex                   1     20718.49220     20718.49220       8.68    0.0033 
 
It is borderline and under some circumstances we might want to keep it, but for this example let’s 
eliminate the EDUYRS*RACE interaction. 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
race                         2     39430.31041     19715.15520       8.22    0.0003 
sex                          1      1058.00228      1058.00228       0.44    0.5068 
sex*race                     2     44888.94205     22444.47103       9.36    <.0001 
eduyrs                       1      6599.23905      6599.23905       2.75    0.0976 
eduyrs*sex                   1     18373.47865     18373.47865       7.66    0.0058 
 
This looks like it might be a reasonable model.  What about the nonsignificant F test for EDUYRS?  As a 
Type III test, it is testing the EDUYRS effect in the presence of the EDUYRS*SEX interaction and is 
generally not of importance.  Here is the associated SOLUTION. 
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                                                     Standard 
Parameter                          Estimate             Error    t Value    Pr > |t| 
 
Intercept                       129.9580466 B      9.19099945      14.14      <.0001 
race       Black                 41.3190203 B      5.57974484       7.41      <.0001 
race       Hispanic              12.0077010 B      5.90073985       2.03      0.0422 
race       White                  0.0000000 B       .                .         . 
sex        Female                28.5285226 B     18.42262692       1.55      0.1219 
sex        Male                   0.0000000 B       .                .         . 
sex*race   Female Black         -43.2573867 B     10.02230453      -4.32      <.0001 
sex*race   Female Hispanic       -5.9127486 B     10.24861249      -0.58      0.5641 
sex*race   Female White           0.0000000 B       .                .         . 
sex*race   Male Black             0.0000000 B       .                .         . 
sex*race   Male Hispanic          0.0000000 B       .                .         . 
sex*race   Male White             0.0000000 B       .                .         . 
eduyrs                            2.8537614 B      0.61825338       4.62      <.0001 
eduyrs*sex Female                -3.5687416 B      1.28942573      -2.77      0.0058 
eduyrs*sex Male                   0.0000000 B       .                .         . 
 
It is easier to interpret this if we remove the EDUYRS main effect.  The ANOVA table and the SOLUTION 
become the following: 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
race                         2     39430.31041     19715.15520       8.22    0.0003 
sex                          1      1058.00228      1058.00228       0.44    0.5068 
sex*race                     2     44888.94205     22444.47103       9.36    <.0001 
eduyrs*sex                   2     52061.78894     26030.89447      10.85    <.0001 
 
 
                                                     Standard 
Parameter                          Estimate             Error    t Value    Pr > |t| 
 
Intercept                       129.9580466 B      9.19099945      14.14      <.0001 
race       Black                 41.3190203 B      5.57974484       7.41      <.0001 
race       Hispanic              12.0077010 B      5.90073985       2.03      0.0422 
race       White                  0.0000000 B       .                .         . 
sex        Female                28.5285226 B     18.42262692       1.55      0.1219 
sex        Male                   0.0000000 B       .                .         . 
sex*race   Female Black         -43.2573867 B     10.02230453      -4.32      <.0001 
sex*race   Female Hispanic       -5.9127486 B     10.24861249      -0.58      0.5641 
sex*race   Female White           0.0000000 B       .                .         . 
sex*race   Male Black             0.0000000 B       .                .         . 
sex*race   Male Hispanic          0.0000000 B       .                .         . 
sex*race   Male White             0.0000000 B       .                .         . 
eduyrs*sex Female                -0.7149802        1.13153942      -0.63      0.5276 
eduyrs*sex Male                   2.8537614        0.61825338       4.62      <.0001 
 
We have combined the tests for EDUYRS into a single test with 2 degrees of freedom.  More importantly, 
we now can easily read the coefficients for the slope of EDUYRS for Females and Males.  Compare the 
two sets of estimates associated with EDUYRS: 
 
                                                     Standard 
Parameter                          Estimate             Error    t Value    Pr > |t| 
 
eduyrs                            2.8537614 B      0.61825338       4.62      <.0001 
eduyrs*sex Female                -3.5687416 B      1.28942573      -2.77      0.0058 
eduyrs*sex Male                   0.0000000 B       .                .         . 
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                                                     Standard 
Parameter                          Estimate             Error    t Value    Pr > |t| 
 
eduyrs*sex Female                -0.7149802        1.13153942      -0.63      0.5276 
eduyrs*sex Male                   2.8537614        0.61825338       4.62      <.0001 

For the first set of values the coefficient for EDUYRS is the estimate for Males and the second one is the 
difference Females minus Males.  That provides a convenient test of the difference in slopes, which has 
t=-2.77 and P=0.0058.  This corresponds to the F test in the ANOVA table with F=7.66 and P=0.0058.  It 
is in fact the equivalent test (the square of a t is an F).  The second set of values gives us the actual 
estimates for the slope of EDUYRS for Female and for Male and tests each against zero.  The test for 
Female is nonsignificant, so under some circumstances it might be worth treating it as zero and including 
the EDUYRS effect only for males.  This would produce a slightly different overall model with 6 instead of 
7 parameters.  It turns out this matches the model used to create the data. 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
race                         2     38797.68438     19398.84219       8.09    0.0003 
sex                          1       139.22315       139.22315       0.06    0.8096 
sex*race                     2     46624.30159     23312.15080       9.73    <.0001 
male*eduyrs                  1     51104.14833     51104.14833      21.32    <.0001 
 
                                                      Standard 
Parameter                           Estimate             Error    t Value    Pr > |t| 
 
Intercept                        129.9580466 B      9.18768067      14.14      <.0001 
race        Black                 41.3190203 B      5.57773004       7.41      <.0001 
race        Hispanic              12.0077010 B      5.89860914       2.04      0.0421 
race        White                  0.0000000 B       .                .         . 
sex         Female                18.7450587 B      9.97914766       1.88      0.0607 
sex         Male                   0.0000000 B       .                .         . 
sex*race    Female Black         -43.8331922 B      9.97718550      -4.39      <.0001 
sex*race    Female Hispanic       -5.4565270 B     10.21945577      -0.53      0.5935 
sex*race    Female White           0.0000000 B       .                .         . 
sex*race    Male Black             0.0000000 B       .                .         . 
sex*race    Male Hispanic          0.0000000 B       .                .         . 
sex*race    Male White             0.0000000 B       .                .         . 
male*eduyrs                        2.8537614        0.61803013       4.62      <.0001 

One note of caution.  Be careful about using two names for related variables – you can confuse SAS if 
you’re not careful (and get wrong answers).  Here we use MALE as a zero-one dummy variable that is 
essentially the same as the SEX variable.  It turns out everything is fine here, but if we were to mix the 
two variables in constructing interactions we could get in trouble. 

INTERACTIONS AMONG CONTINUOUS VARIABLES 
When multiple continuous variables are involved and you are concerned about interactions, there is a 
temptation simply to include cross-product terms such as X*Y, X*Z, and Y*Z.  Inclusion of these cross-
product terms certainly tests for interactions among the continuous variables, but it tests only a very 
specific form of interaction, unlike the situation with discrete variables.  Furthermore, the statistical 
significance of cross-product terms is dependent on the form of the underlying variable, especially when 
some but not all cross-product terms are included.   
 
Of perhaps even more practical importance is that the effect of interactions for continuous variables is 
sensitive to the linearity assumption.  In general any ordinal variable can be profitably treated as 
approximately linear with equal spacing without much loss of statistical power.  (See Pasta 2009 for 
additional discussion on this point.)  However, the product of two ordinal variables is much more sensitive 
to the assumption of equal spacing between levels.  Special attention needs to be paid if either 
continuous variable can take on zero values, as the cross-product term degenerates at that point. 
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INTERACTIONS AMONG CONFOUNDERS 
Remember that a variable cannot be a confounder unless it is related both to the variable of interest and 
the outcome.  Interactions between confounders must meet the same test to themselves be confounders 
– an interaction among confounders is not a difficulty if the interaction is not related to the variable of 
interest or is not related to the outcome.  In practice, if there is a statistically significant interaction 
between confounders it is usually also a confounder.  In general it does not hurt to include those 
interactions in the model – or indeed any possible confounders.   
 
Deserving special attention are interactions with the variable of interest, whether the interaction is with a 
confounder or with another variable that is not a confounder (because, for example, it is not related to the 
variable of interest).  For example, in a model where sex is unrelated to treatment (the variable of 
interest), it may be that the effect of the treatment is different for the different sexes.  That does not make 
sex a confounder; it merely has an interaction with treatment.  Suppose men have a greater response to 
a treatment than women.  As long as there is no relationship between treatment and sex (e.g. because 
this is a randomized study), sex is not a confounder.  But there is a sex-by-treatment interaction that is 
important and should be evaluated. 
 
CONCLUSION 
 
Confounding and interactions are important to consider when building statistical models.  Confounding 
has the potential to lead to incorrect conclusions if not addressed through modeling or other means such 
as stratification or matching.  The inclusion of interactions (whether of confounding variables or other 
variables) can lead to complicated models that are difficult to interpret.  Sometimes it is worthwhile to 
simplify models by eliminating all but the largest interactions.  After testing for the statistical significance of 
the marginal effect of interactions in models that include all lower-order interactions, it is sometimes useful 
to parameterize models without the lower-order interactions in order to get coefficients that are easier to 
interpret.  Special care needs to be taken when evaluating interactions involving multiple continuous 
variables. 
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