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ABSTRACT 
Phenomenal growth in computational power from 1970 through 2010 enabled a parallel expansion in linear model 
methodology. From humble beginnings in agriculture, linear model applications are now essential in sciences of genetics, 
education, and biostatistics, to name a few. Indeed, the meaning of "linear models" has evolved accordingly. Developers at 
SAS Institute have been in the forefront of invention and implementation of these methods at the core of statistical 
science. Pathways will be traced in steps of SAS® procedures, beginning with GLM and REG, proceeding through VARCOMP, 
NLIN, MIXED and GENMOD, and arriving at NLMIXED and GLIMMIX. Along the way, some problems have disappeared, new 
ones have emerged, and others are still along for the ride. 
 

INTRODUCTION 
The purpose of this paper is to chronicle the evolution of linear models in SAS® from the perspective of an outsider 
who has closely followed the progression and whose professional career was influenced by it.  Linear models have 
been in the core of statistical methodology and SAS procedures followed that pattern. 

The year 1976 can be considered the birth date of SAS as we now recognize it.  SAS·76 was the first release of SAS 
Incorporated. So one may think of time since 1976 as the Common Era of SAS.  The hallmark statistical procedure in 
SAS·76 was GLM.  It was highly innovative for its time and caught attention of statisticians and others engaged in 
data analysis across the US and beyond.  GLM established a pattern for statistical procedures in SAS.  Instead of a 
large number of special purpose linear model applications, GLM provided a comprehensive platform that enabled a 
user to obtain solutions for most problems falling in the arena of linear models; for regression analysis, analysis of 
variance and covariance, and multivariate analysis.  Whereas most of the capabilities of GLM were inspired by 
statisticians working in agriculture research, GLM became the workhorse procedure for pharmaceutical statisticians 
and biostatisticians.   

A few years later the REG procedure was released.  It expanded regression capabilities to include diagnostic 
techniques that had been the subject of active research, and recently published in a major text book by Belsley, Kuh 
and Welsch (1980).  Now the user not only had the capability to compute inferential statistics in regression analysis, 
but could also obtain statistics to help decide what variables to include in the analysis and to identify problematic 
data. 

The VARCOMP procedure provided estimates of variance components in mixed linear models, giving the user four 
choices of methods of estimation that have also been incorporated into later SAS procedures.  This procedure, like 
GLM, brought forth computing machinery that opened the door to evaluation and comparison of statistical methods 
which were previously infeasible. 

The NLIN procedure, although not really intended for linear models, permitted the formulation of models with linear 
components, such as segmented polynomials, as nonlinear models.      

Capabilities for analysis of categorical data were limited in early versions of SAS.  They were enhanced by the 
CATMOD and GENMOD procedures.  CATMOD was based on methodology of Grizzle, Starmer and Koch (1969) 
that innovated using linear models for categorical data analysis.  A later procedure GENMOD was based on 
generalized linear models introduced by Nelder and Wedderburn (1972). 

During the 1980’s GLM added useful enhancements, but was nagged by the need for features to adequately 
accommodate problems related to analysis of correlated data.  The immensity of this need inspired the development 
of the MIXED procedure.  Now data with random effects and repeated measures could be analyzed by incorporating 
those features into the statistical model for the data.  Whereas GLM was built around the model for the expected 
value of the response variable taking all independent variables as fixed, MIXED is built around models for both the 
expected value of the response as a function only of the fixed variables, and the variance of random effects.  This 
turned the tables in the relation between statistical methodology and its computational implementation.  MIXED 
revealed the need for further development of methods to adjust for the effects of using variance estimates in place of 
true variances 

Shortly following MIXED, macros were provided for fitting nonlinear mixed models and generalized linear mixed 
models using MIXED to make iterative computations.  These macros later evolved into the procedures NLMIXED and 
GLIMMIX.  The GLIMMIX procedure extends the capabilities of GLM and MIXED to generalized linear models. 
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SAS·76: THE GLM PROCEDURE 
The GLM procedure is the first in a line of SAS statistical procedures that have a similar syntax for defining a model 
and various options.  It was released in what was to be known as SAS·76 (SAS Institute, 1976), the first commercial 
release by SAS Institute.   
 
GLM is essentially a regression procedure utilizing least squares to fit the model.  You would fit the following 
statistical model, with three independent variables 1x , 2x , 3,x and dependent variable y , 
 
 exxxy ++++= 3322110 ββββ , 
 
by using the statements 
 
 proc glm; 
 model y = x1 x2 x3; 
 run; 
 
Results printed in the output include parameter estimates and other regression computations, including an analysis of 
variance and associated statistics.  The parameter estimates yield the prediction equation 
 

 0 1 1 2 2 3 3
ˆ ˆ ˆ ˆŷ x x xβ β β β= + + + . 

 
Standard errors, t-statistics and p-values are automatically printed.  These statistics assume the probability 
distribution 
 

 2~ (0, )e NID σ . 
 
The analysis of variance partitions the total variation into the portions associated with the independent variables and 
that not associated with the independent variables, 
 

 2 2 2ˆ ˆ( ) ( ) ( )SSTotal y y SSModel SSError y y y y= − = + = − + −∑ ∑ ∑ . 

 
When it is necessary to more precisely describe which variables are included in the model, we write  
 
   1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( , , )SSTotal x x x SSModel x x x SSError x x x= + . 
 
And if it is necessary to clarify that there is an intercept in the model, we write 
 
 1 2 3 1 2 3 1 2 3( , , | int) ( , , | int) ( , , | int)SSTotal x x x SSModel x x x SSError x x x= + . 
 
Equivalently, it may be convenient to write  
 
 1 2 3 0 1 2 3 0 1 2 3 0( , , | ) ( , , | ) ( , , | )SSTotal SSModel SSErrorβ β β β β β β β β β β β= + . 
 
This fundamental idea of partitioning variation is useful for obtain a conceptual, if not mathematical, understanding of 
some of the many computations brought forth by GLM.  In particular, it yields the meaning of variation associated with 
a set of variables adjusted for (or controlling for) another set of variables.  Specifically, the variation due to 2x , 

adjusted (controlled for) 1x , is  
 

  
2 1 1 2 0 1 0

1 0 1 2 0

( | ) ( , | ) ( | )
                 ( | ) ( , | )
SS SSModel SSModel

SSError SSError
β β β β β β β

β β β β β
= −
= −

 

 
The quantity 2 1( | )SS β β is also called the reduction in error sum of squares due to adding the variable 2x to the 

model that already contains the variable 1x  (and only the variable 1x ).   
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The basic feature that gives GLM power beyond ordinary regression is the CLASS statement, which provides 
automatic computation of indicator variables corresponding to the levels of a classification variable.  The indicator 
variables enable GLM to compute, for example, sums of squares for classification variables and combinations of 
classification and continuous variables, and perform test of hypotheses.  This is the source of the word “general” in 
the acronym GLM, which was entirely appropriate in 1976 when GLM was released.  The landmark paper on 
generalized linear models by Nelder and Wedderburn (1972) was not yet widely known.  Since then, however, there 
has been confusion between “general linear models” and “generalized linear models.”  And later, there were mixed 
models, linear mixed models, and generalized linear mixed models.  Even yet, universally accepted terminology is 
lacking.  But for now, let’s look closely at innovations that appeared in GLM, because they are also found in the later 
methodologies. 
 
One on the innovations that received a lot of attention after GLM was released was that of the different types of sums 
of squares, of which there are four.  These are labeled Type I, Type II, Type III, and Type IV in GLM.  The concepts of 
two types of sums of squares, sequential and partial, were well know and straightforward to understand from a 
regression perspective.  In terms of the reduction in error sum of squares notation, the sequential and partial sums of 
squares for the variables are: 
 
 Variable  Sequential  Partial                 . 
  
 1x   1 0( | )SS β β   1 2 3 0( , , | )SS β β β β  

 2x   1 2 0( , | )SS β β β   1 2 3 0( , , | )SS β β β β  

 3x   1 2 3 0( , , | )SS β β β β  1 2 3 0( , , | )SS β β β β  
 
The Type I sum of squares is always sequential, and depends on the order of variables specified in the model 
statement.  In a ordinary regression context, Types II, III and IV are all partial.  Distinctions between Types II, III and 
IV occur when class variables are specified.  Then these latter three types may all differ, but time and space do not 
permit a complete description.  See Littell, Stroup and Freund (2005), Hocking, Hackney and Speed (1978), and 
Searle (1987) for details.  In brief, the topic can be illustrated in terms of a two-way cross-classification of data, with 
factors A and B, that have a and b levels, respectively.  Then a model would be  
 
 ( )ijk i j ij ijky eμ α β αβ= + + + + , 1,..., ;  1,..., ;  iji a j b k n= = ≤ , 

 
where ijn is the number of observations corresponding to levels i of A and j of B.  Types III and IV will be the same 

if 0ijn > for all ,i j .  Probably the most popular way to try to interpret the different types of sums of squares for a 

factor is in terms of the “hypothesis tested” by the F statistic derived based on the sum of squares for the factor.  To 
describe further, denote ( )ijk ijE y μ= , which represents the “population cell mean” corresponding to levels i of A 

and j of B.   . Then, in term of the model parameters, ijμ  is represented as  

 
 ( )ij i j ijμ μ α β αβ= + + + . 

 
A statistic about A would have null hypothesis of the form  
 
 0 1. .: ... aH μ μ= = . 
 

where .i ij iji
wμ μ=∑ is a weighted average of the cell means.  The different types of sums of squares for factor A 

are determined by the values of the weights, ijw .  These can be exceeding complicated to obtain and comprehend in 

many situations.  But if 0ijn > for all cells, then Types III and IV will be equal, and the weights are 1/ijw b= for all 

,i j .  If 0ijn = for one or more cells, then Types III and IV typically differ.   

 
The question of practical importance is whether one can obtain a test of the desired hypothesis; or, more 
fundamentally, whether a meaningful hypothesis can be specified.  With so-called unbalanced data (or worse, with 
empty cells), this is not a simple matter.  Arguments and discussions abounded during the late 1970’s and the 1980’s.   
 
It is important recognize that these concepts apply as well in M IXED, GLIMMIX other procedures.  Unfortunately, this 
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issue seems to be more forgotten with each decade, as statistical methods become more complex and less attention 
is paid to fundamental concepts.  Focus these days is as much on computation as statistical inference. 
 
Prior to about 1970, there were almost no statistical computing packages generally available.  Individual institutions 
developed their own software, with varying degrees of quality.  Computational power was in its infancy, and if one 
was able to obtain any feasible looking answer, it was seldom challenged.  Only in the 1970’s did statistical 
computing packages become commonplace, and it became apparent that they did not all provide the same 
computations for the same questions of the same data.  This is the setting in which GLM was designed and written.   
 
Along with questions of what computations should be made (e.g., what sums of squares to compute) were questions 
of how to approach the computations.  This is where GLM was on the forefront.  Certain specifications of statistical 
models were too restrictive to design a procedure that would accommodate a vast array of problems,.  In particular, 

standard assumptions in textbooks such as 0ii
α =∑ or 0aα =  in order to obtain full-rank models were limiting.  

Instead of building in such assumptions, GLM presumes no artificial restrictions on the parameters.  Parameter 
estimates are obtained through generalized inverses.  But then interpretations of parameters may be obscure, so the 
so-called estimable functions were made available for almost all linear computations.  In principle, one could 
determine “what hypothesis was being tested” from the estimable functions. 
 
Numerous technical problems have been encountered by SAS developers.  How to implement the model in GLM 
must have been one of the most challenging.  James H. Goodnight, who designed and wrote all of the early versions 
of GLM, chose the road less traveled and cleared the way for many developers to follow.  A notable contribution in 
the statistical literature is his paper on the sweep operator (Goodnight, 1979).  Anyone who wonders how the 
parameter estimates for classification variables are computed will be enlightened by the paper.   
 
In parallel with computations of sums of squares were computations of means for levels of a classification variable.  
Corresponding to the weighted means in the test of hypothesis are various ways the means could be formulated; i.e., 
how averages should be computed across level of another factor.  GLM provided three statements for obtaining 
means.  One is the MEANS statement which computes mean and other statistics for combinations of classification 
variables without regard to other variables.  A second is the LSMEANS statement, which computes estimates of the 
expected values defined by the model, and, in fact, are referred to as “model-based” means in certain literature.  
Basically, weights were assigned that gave equal values to levels of the other factor, subject to estimability.  In that 
sense, the LSMEANS correspond to the Type III sums of squares.  In other situations, typically where there are 
empty cells, estimability breaks down for LSMEANS.  Types III and IV sums of squares are available in all situations, 
but their interpretation may be suspect where there are empty cells.  The other option offered by GLM is the 
ESTIMATE statement (and its companion, the CONTRAST statement) which permits the user to specify any 
estimable function desired.  These devices are extremely powerful and flexible, but are difficult to use without a good 
knowledge of their inner works.   
 
Again, LSMEANS are computed by both MIXED and GLIMMIX with possibly different meaning from GLM.  One may 
consider the term “LSMEANS” inappropriate for the procedures MIXED and GLMMIX because these procedures 
technically are not “least squares” the usual sense.   
 
Historically, the term LSMEANS came from the field of animal breeding, and was introduced to the broader statistical 
community through SAS via Walter Harvey and Bill Sanders.  Harvey (1975) wrote a remarkable technical bulletin for 
its time describing least squares computational techniques that were implemented into GLM, including “absorption,” 
which permits computation of a subset of regression parameters in a model with a large number of variables without 
completely solving the normal equations.  This technique is implemented in the ABSORB statement in GLM due to 
influence of animal breeders who deal with large numbers of observations and variables.  It also is in the package 
SYSTAT, which is popular among econometricians.  I speculate that knowledge of the technique may have come 
from its implementation in SAS.  This is just one of many advances in statistical methodology and computing that 
came from a community of statisticians who consider themselves primarily as members of another profession. 
 
The concept of LSMEANS is similar to the concept for Type III hypotheses; to average across levels of other factors 
using equal weights.  For example, the LSMEAN for level 1 of factor A is  
 

 .11111.1 )(/)(// αββαμαββαμμμ +++=+++== ∑∑∑ bbb jj jj j  

 
The other way to obtain means (or any other estimable linear combination) is to use the ESTIMATE statement.  To 
illustrate, assume a=3 and b=5.  You can duplicate the LSMEAN using the statement 
 
 ESTIMATE intercept  1  A 1 0 0  B .2 .2 .2 .2 .2  A*B .2 .2 .2 .2 .2  0 0 0 0 0  0 0 0 0 0;  
 
The ESTIMATE statement is available in MIXED and GLIMMIX in essentially the same syntax, but with a vast array 
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of options. 
 
The power and generality of SAS procedures, like everything else, comes at a cost to the user.  Perhaps the most 
prominent illustration of the extracted cost is the necessity of dealing with the concept of estimability, which arises 
because of utilizing singular systems of normal equations and getting solutions using generalized inverses.  The cost 
to the user is learning enough to be fluent in the technical aspects.  In terms of the ESTIMATE statement above, this 
means knowing how and where to place the coefficients on model parameters.  But the benefit to the user is doing it 
correctly rather than guessing and hoping it’s right. 
 
GLM was the first SAS procedure in the Common Era of SAS to explicitly provide applications that accommodate 
random effects.  Suppose that factor B in the model above is random rather than fixed.  Then the model might be 
written  
 
  ijkijji ebby ++++= )(ααμ , 

 
where ),0(~ 2

bj NIDb σ and ),0(~)( 2
bij NIDb ασα .   

 
This is specified using the RANDOM statement 
 
 RANDOM B A*B; 
 
The basic output of the RANDOM statement in GLM is a table of expected means squares, which allow the user to 
determine, among other things, the appropriate denominators for F statistics.  The probability distribution of random 
effects (shown above) is incorporated into the expected mean square computations of GLM.  Users who have studied 
expected mean squares in the classical textbooks have been confused because the expected mean squares 
computed by GLM do not agree with those they know from the classical texts.  This issue, not unlike to one regarding 
computations of sums of squares, caused a flurry of attention.  Basically, there are alternative ways to prescribe the 
model.  This issue is discussed in Hocking (1987) and Littell, Stroup and Freund (2000), but it is still unresolved how 
to correctly specify a model for random effects for a given application. 
 
Like the LSMEANS and ESTIMATE statement, the RANDOM statement is available in MIXED and GLIMMIX.  Its 
purpose is essentially the same, but technical differences exist.  The dilemma of how to define the random effects in 
GLM carries forward in MIXED and GLIMMIX, but receives little or no attention. 
 
As noted earlier, estimability in GLM is judged on the basis of all effects in the model being fixed, even if some are 
listed in the random statement. This often results in judging a linear combination of parameters as being non-
estimable when in fact it is estimable in concert with the random effects.  For example, if there are empty cells in the 
example of the A-by-B two-way classification, A is fixed and B is random, then LSMEANS for A would be considered 
non-estimable by GLM, when they are theoretically estimable.  Practical examples where this occurs are in 
randomized block design, multi-center clinical trials, and cross-sectional studies where blocks, clinics, and sections 
are considered random, respectively.  One of the major advancements from GLM to MIXED and GLIMMIX is that 
computational machinery in MIXED and GLIMMIX is based on modeling framework that builds in the random effects, 
which will be discussed more thoroughly in the section on MIXED.  First, we take a look at other procedures that were 
also introduced in SAS·76. 

 

VARIABLE SELECTION PROCEDURES: STEPWISE AND RSQUARE 

Two procedures for variable selection in regression are STEPWISE and RSQUARE.  STEPWISE provided five 
options of rules for variable selection based on forward selection, backward elimination, a combination of thereof, and 
R2 improvement.  RSQUARE gave variable names and the value R2 for all possible models.  These procedures were 
powerful tools for selecting variables for a regression equation, which could then be fitted with GLM. 

 

ECONOMETRIC PROCEDURES: AUTOREG AND SYSREG 
Two procedures with roots in econometrics are AUTOREG and SYSREG.  AUTOREG fits autoregressive models and 
allows the user to specify the order of lags.  SYSREG fits interdependent systems of linear equations.  These two 
procedures extended the community of SAS users beyond the realm of experimental statistics. 
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OTHER PROCEDURES: NLIN AND VARCOMP 
The NLIN and VARCOMP procedures were included in SAS·76.  Both were substantially enhanced in later versions.    
NLIN, of course, is not really a linear models procedures, but is useful for fitting models with linear components, such 
as so-call linear plateau models.  Such models consist of a line segment from, say x=a to x=b, and another line 
segment from x=b to x=c with slope=0 and joining the first segment at x=b, where b in not known.  NLIN can be used 
to fit this model.  NLIN also contained a feature not found in other SAS statistical procedures.  It essentially had a 
built in programming language that allowed the user to define functions of variables in mathematical equation form.   

VARCOMP provided variance component estimates based on the expected mean squares from and analysis of 
variance.  Later versions of VARCOMP implemented contemporary method of estimation.  

  

ADVANCEMENTS IN LATE 1970’S AND 1980’S 
During the period of time from 1976 to 1990 some new statistical procedures were released, notably REG and 
CATMOD.  In addition, GLM and VARCOMP were enhanced to accommodate computations that were previously not 
available. 

 

REPEATED MEASURES IN GLM 
Analysis of repeated measures data was becoming increasingly important, due in part to the expansion of drug 
evaluations over time in the pharmaceutical industry.  Repeated measures is a topic that was developed largely in the 
fields of psychology and education, stemming from the use of repeated testing in these fields.  Multivariate analysis in 
GLM could be used to perform certain analyses of repeated measures data, taking the sequence of repeated 
measures on each subject as a multivariate vector of data.  In SAS, that meant recording all the repeated measures 
in a single OBS.  The REPEATED statement in GLM essentially automated several of these multivariate 
computations, and presented output in the context of repeated measures terminology.  In addition, the REPEATED 
statement implemented methods to assess the degree of departure of the covariance of the repeated measures data 
from the structure necessary for straight-up analysis of variance methods (Huynh and Feldt, 1970), and made 
adjustments to significance probabilities that were calculated from an analysis of variance.  These adjustments are 
useful, but do not substitute for the methods in MIXED, which gives the user a means of formulating the actual 
covariance according to an specified structure.  The REPEATED statement in GLM established terminology that was 
carried forth in later procedures; the terms REPEATED and SUBJECT, which have broader meaning than the words 
imply.     

 

RANDOM EFFECTS IN GLM 
The TEST statement was available in SAS·76, which allowed the user to specify both the numerator and denominator 
mean square in a F test.  The RANDOM statement presented a table of expected mean squares that enabled the 
user to determine an appropriate denominator for the test, if one existed directly.  The TEST option on the RANDOM 
caused GLM to identify and compute linear combinations of mean squares to form an appropriate denominator, and 
also computed approximate degrees of freedom based on Satterthwaite’s formula.  This was done for all effects in 
the MODEL statement.  In addition, the user could specify a linear combination of effects to test using a CONTRAST 
statement.  GLM gave an expected mean square for the linear combination (which, by the way, was not limited to 
contrasts).  A creative user could use this facility to compute an appropriate standard error by hand for any linear 
combination of effects specified in an ESTIMATE statement.  This capability was never built into GLM, even though 
the analogous method for testing was an option in the RANDOM statement. 

   

VARIANCE COMPONENT ESTIMATION 
The concept of random effects has been familiar to students of statistics (at least in the land grant universities) for 
several decades.    Models such as the one from the previous section,  

 ijkijji ebby ++++= )(ααμ  

are discussed in some of the earliest test books; e.g. Steel and Torrie ( 1960) and Snedecor and Cochran (5th ed, 

1967).  But estimation of the variance components ( 2
bσ and ( )

2
bασ ) was generally limited to analysis of variance 

derived from the expected mean squares.  By 1976 several other methods had been developed but not implemented 
in statistical data analysis systems.  The VARCOMP procedure, which contained in SAS·76, received major later 
enhancements in computational capability.  It allowed the user to choose from four methods, called Type1, 
MIVQUE0, ML, and REML. Type1 is the analysis of variance method, based on the Type 1 expected mean squares.  
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MIVQUE0 is a method related to Type1, but adjusts mean squares only for fixed effects, thereby being 
computationally more efficient.  ML is the maximum likelihood method of estimating the variance components.  REML 
(Patterson and Thompson, 1971) is maximum based on the residuals from fitting a model with only fixed effects.  The 
residuals thereby are functions only of random effects.  REML has become the method of choice of most statisticians.  
Although comprehensive optimality properties have not been established, REML is has known attractive features.  
For example, REML estimates are less biased than ML, and in many cases are unbiased.  The classical example is 
computation of the variance of a single sample of data.  One obtains an unbiased estimate of the population variance 
by using the denominator n-1, which is REML.  The ML estimate has n in the denominator, and is biased by a factor 
of (n-1)/n.  In broader applications, ML estimates of variances lead to inflated test statistics and optimistic confidence 
intervals.  Swallow and Monahan (1984) made a comprehensive comparison of methods for estimating variance 
components, and therein established a protocol for simulation studies in statistics.   

 

THE REG PROCEDURE 
For strictly regression applications, the most important advancement during the 1980’s was the REG procedure, 
designed and written by John Sall.  REG had built-in applications for variable selection. It also implemented the vast 
array of diagnostic techniques described by Belsley, Kuh and Welsch (1980).  It immediately jumped to the front of all 
available regression programs, as it contained essentially every known method for models with homoscedastic and 
independent errors.  In addition, REG has facilities for variable selection.  To this day, REG is unsurpassed in ease of 
use, wealth of features, and computational efficiency.    

 

THE CATMOD, GENMOD, AND LOGISTIC PROCEDURES 
The CATMOD procedure is based on the landmark paper by Grizzle, Starmer and Koch (1968), which gave a linear 
model approach to analysis of categorical data.  It assumed that one or more of the categorical variables may be 
considered response variables, and the others independent variables.  It models functions the outcomes of the 
dependent variable as linear functions of the independent variables, and permitted analysis of variance-type 
inference about the factors.   

The GENMOD procedure is based on the methods proposed by Nelder and Wedderburn (1972).  It also assumes 
one of the variables plays the role of a dependent variable that is to be related to another set of variables.  Any of the 
variables may be continuous or discrete.  The modeling approach set the stage for a revolution in methods for 
analyzing data.  It proposes a regression-type model which relates the expected value of the dependent variable to a 
function of a linear combinations of the other variables.  Commonly used notation specifies 

  ( ) 'g xη μ β= = and ( ) ( ' )E y h xμ β= = . 

The functions g and 1h g −= are called the “link” and “inverse link” functions, respectively. 

called a “generalized linear model.”  Certain conditions are assumed about the conditional distribution of |y x  and  
properties of the link function that make maximum likelihood estimates feasible to compute. 

The term “generalized linear model” is often confused with “general linear model.”  The former is more general, and 
was given the acronym GLIM.  This held up for several years, but eventually generalized linear models laid claim to 
the name GLM.  If everything were renamed, GLM would be changed to LM and GLIM to GLM.  In this paper, the 
earlier meaning of GLM and GLIM will continue to be used avoid confusion.  GLM is actually a special case of GLIM, 
with the link function being the identity function and the distribution of |y x normal. 

The LOGISTIC procedure implements logistic regression, which also is a special case of the generalized linear 
model, with link function given by the inverse of the logistic distribution function and Bernoulli distribution for |y x .       

 

THE 1990’S 
Most statisticians would consider the advent of the MIXED procedure to be the seminal event in SAS/STAT of the last 
decade of the 20th century.  The procedure was released in 1992, but has a history long before that.  In previous 
years, users were trying to make GLM perform mixed model computations that went beyond the basic capabilities of 
the procedure.  Some of these could be obtained by manipulating GLM and exploiting the RANDOM statement, but 
obtaining some standard errors were beyond practical hope.  Demands for high-quality analyses of repeated 
measures and split plot (hierarchical) data were principle drivers.  At the head of the pack of such users were 
statisticians representing land grand university agricultural experiment stations.  One group in particular, known 
informally as University Statisticians of Southern Experiment Stations (USSES) has been in place since at least the 
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early 1960’s.  USSES members collaborated on many projects over the years, and in the late 1980’s developed 
software and authored a publication Applications of Mixed Models in Agriculture and Related Disciplines, 
Southern Cooperative Series Bulletin No. 343, Louisiana Agricultural Experiment Station (1989).  A meeting of 
USSES was hosted by SAS Institute, and shortly after that meeting SAS embarked on development of MIXED.  
Documentation of MIXED refers to articles in this bulletin, e.g. Stroup (1989) and Giesbrecht (1989).  Articles of other 
members of USSES are also cited in MIXED documentation, notably (McLean and Sanders (1988) and McLean, 
Sanders and Stroup (1992), Giesbrecht and Burns (1985), and Fai and Cornelius (1996).   

It can fairly be said that one person, Bill Sanders, had more influence on the development of GLM and MIXED than 
anyone else outside of SAS Institute.  Undoubtedly, his efforts have had an immense impact on the use of statistics.  
This is all the more remarkable because he does not hold a degree in statistics, but rather in animal science.  It may 
not be widely known that some of the most important work in applied linear models came from such people, notably 
Shayle Searle, David Harville, Walter Harvey, Charles Henderson, Oliver Schabenberger, and many others.  Sanders 
may not be well-known among card-carrying statisticians, but he has surely affected their ability to perform statistical 
analyses.  During the past two decades, Sanders has focused on using mixed models to evaluate student, teacher 
and school achievement, based on the general concept of best linear unbiased prediction (Henderson, 1984), and 
has achieved national stature in that arena. 

  

THE MIXED PROCEDURE 
The MIXED procedure was the most hailed statistical development at SAS Institute in the 1990’s.  It brought forth 
mixed model methodology that was only a dream a decade earlier, and in my opinion, resulted from a perfect storm 
of need and input from users combined with technical capability, resources and commitment from SAS Institute.  
MIXED is one more example of an humble idea finding its way to great a product.  Russell Wolfinger designed and 
wrote MIXED.  Related to MIXED, he has conducted seminal research and published widely in the statistical 
literature. 

The basic statistical method implemented in MIXED is based on generalized least squares.  The statistical model is  

 

   Y X Z eβ γ= + + ,         (1) 

where Y is a vector of data, β is a vector of fixed effect parameters, γ is vector of random effects, and e is a vector 

of errors.  The random vectors are assumed to have the distributions ~ (0, )N Gγ and ~ (0, )e N R , and are 

independent of each other.  Thus Y has the distribution 

 

 ~ ( , ' )Y N X ZGZ Rβ + . 

 

The model could be equivalently specified 

 

 Y X β ε= + ,          (2) 

 

where ~ (0, )N Vε and 'V ZGZ R= + . 

 

MIXED and GLM have similar syntax, with important distinctions.  Most importantly, in MIXED you specify the fixed 
effects in the MODEL statement and the random effects in RANDOM and/or REPEATED statements.  Thus, the 
syntax reveals the essential distinction between the GLM and MIXED procedures.  In MIXED, the fixed effects and 
the random effects are formulated separately, whereas in GLM the fixed effect and random effects are all included in 
the same model statement. 

 

The generalized least squares (GLS) estimate of β is 

 1 1 1ˆ ( ' ) 'X V X X V Yβ − − −= . 
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In many situations, the inverses do not exist, and generalized inverses must be used, but we shall not get into the 

ramifications of that.  The covariance matrix of β̂ is 1 1ˆ( ) ( ' )V X V Xβ − −= .  But therein lies the rub: V must be 

known in order to estimate β and compute the covariance matrix of the estimate. This is hardly ever the case in 

reality.  In certain special cases, such as a balanced randomized blocks design, β̂ can be computed using ordinary 

least squares, 1ˆ ( ' ) 'X X X Yβ −= , but even then, the covariance matrix will require computation of V .  This 

brings us to the (usually) most difficult step in using the MIXED procedure; specifying the form of V .  This is what 
you do with the RANDOM and REPEATED statements.  The RANDOM statement defines G and the REPEATED 
statement defines R.  The two statements may be used singly or together. 

For example, consider the mixed model you saw previously, 

  ijkijji ebby ++++= )(ααμ , 

 
where  ),0(~ 2

bj NIDb σ and ),0(~)( 2
bij NIDb ασα . 

 
You would use the statements 
 
 PROC MIXED; CLASS A B; 
 MODEL  Y=A; 
 RANDOM B A*B; 
 RUN; 
 
The RANDOM statement looks like the one you saw for GLM, but has greatly different function.   
 
You can think of this code as corresponding to the model description (1). 
 
Fixed effect parameter estimates, standard errors, tests of hypotheses are all computed by inserting the estimate 

V̂ in place of V into the GLS formulas.  Sometimes the estimates are called “estimated” or “empirical” GLS, (EGLS).  

Generally speaking, the EGLS estimates are unbiased, but their variances are inflated due to the variation inV̂ . 

Relatively little was known about the consequence of the substitution of V̂ forV when MIXED first appeared.  Later 
versions of MIXED invoked methods due to Prasad and Rao (1990), Kackar and Harville (1984), and Kenward and 
Rogers (1997).   
 
In addition to adjustments to the standard errors, degrees of freedom require adjustments.  Methods due to 
Giesbrecht and Burns (1986) and Kenward and Roger (1997) are used in MIXED. 
 
There is good news and bad news regarding the non-estimability problem in GLM when one moves to MIXED.  The 
bad news is that it’s still there.  The good news is that the problem is diminished due to estimability being judged only 
in relation to the fixed effects.  Likewise, the difficulty with deciding among the four times of sums of squares in GLM 
persists, but only in relation to the fixed effects. 
 
New problems in MIXED include effects of different types of variance estimates on EGLS estimates.  Is it better to 
use ML or REML?  Should estimates of “non-significant” variances be retained in estimation of fixed effects?   
ones have emerged, and others are still along for the ride. 
 

EXAMPLE TO COMPARE MIXED AND GLM IN A MULTI-CENTER CLINICAL TRIAL 
 
Side effects of two drugs were investigated in a multi-center clinical trial.  Patients at fifty-three clinics were 
randomized to the drugs. Following administration of the drugs, patients returned to the clinics at five tri-weekly visits.  
At each visit, several clinical signs were recorded, including sitting heart rate, (si_hr).  The numbers of patients on 
each drug at each clinic ranged generally from one to ten, although there were no patients on one or the other drug at 
a small number of clinics.  Also, there were more than ten patients on each drug at two clinics.  Clinics (which are 
designated “inv,” abbreviating “investigator”) are considered random because it is desired to make inference 
applicable to a broader population of clinics.  Also, patients are considered random to represent samples of patients 
from the populations of patients at each clinic.  In addition, there is residual variation at each visit for each patient. 
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Let ijkly be the measure of sitting heart rate (si_hr) at time l on patient k on drug i at clinic j.  When developing a 

statistical model for the data, it is helpful to imagine the sources of sampling variation as if drugs had not been 
assigned.  These include random effects of clinic )( jb , patient )( ijkc  and residual )( ijkle at measurement times.  We 

assume these are distributed ),0( 2
centerNID σ , ),0( 2

patientNID σ , and ),0( 2
errorNID σ , respectively.  Assume the 

population mean is μ=)( ijklyE .  Then the observation may be represented 

 
 ijkl j ijk ijkly b c eμ= + + + . 

 
The variance in an observation due to sampling error is 
 
 222)( errorpatientcenterijklyV σσσ ++= . 

 
Now consider the effects of administering the drugs.  First, consider the effects on the mean.  Let the 

illiil )(ατταμμ +++= denote the population mean at visit k for patients administered drug i, where iα , lτ , 

and il)(ατ are the fixed effects due to drug, visit, and drug*visit interaction.  Next, there is a possible random 

interaction effect ijb)(α between clinic and drug. Assume ijb)(α is distributed ),0( 2
*drugcenterNID σ .  Then an 

observation is represented 
 

 ijklillijkijjiijkl ecbby +++++++= )()( αττααμ . 

 
The mean and variance are 
 

 illiijklyE )()( ατταμ +++=  

 and   

 
222

*
2)( errorpatientdrugcentercenterijklyV σσσσ +++= . 

 
Here are statements for MIXED and GLM appropriate for this model: 
 
proc mixed data=multcent; 
class drug patient inv visit; 
model si_hr=drug visit drug*visit / ddfm=kr htype=1,2,3; 
random inv drug*inv patient(drug*inv); 
lsmeans drug / pdiff cl; 
run; 
 
proc glm data=multcent; 
class drug patient inv visit; 
model si_hr=inv drug drug*inv patient(drug*inv) visit drug*visit / ss1 ss2 
ss3; 
random inv drug*inv patient(drug*inv)/test; 
lsmeans drug / pdiff; 
run; 
 
 
Notice the similarities and differences of code between MIXED and GLM: 
 

1. CLASS statements are the same. 
2. MODEL statement contains only fixed effects in MIXED, but all effects in GLM.  Options are different. 
3. RANDOM statements are basically the same, but GLM has the test option. 
4. LSMEANS statements are basically the same, but MIXED has cl option.  

 
The purpose of this paper is to chronicle the evolution of linear models in SAS® from the perspective of an outsider 
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COMPARISON OF MIXED AND GLM OUTPUT  
 
Results from the MODEL and RANDOM statements. 
 
REML estimates of variance components from MIXED: 
  

Covariance Parameter 
Estimates 

Cov Parm Estimate

inv 0.4369

drug*inv 4.7748

patient(drug*inv) 30.7752

Residual 62.7038
 
Tests of fixed effects from MIXED: 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF
Den 
DF F Value Pr > F

drug 1 29.6 4.24 0.0485

visit 4 946 0.36 0.8399

drug*visit 4 946 1.46 0.2135

 
 
Analysis of variance from GLM, which uses residual error mean squares for the F-tests: 
 
 

Source DF Type III SS Mean Square F Value Pr > F 

inv 52 12852.39795 247.16150 3.95 <.0001 

drug 1 980.64667 980.64667 15.68 <.0001 

drug*inv 43 8382.44479 194.94058 3.12 <.0001 

patient(drug*inv) 214 37518.67326 175.32090 2.80 <.0001 

visit 4 65.37280 16.34320 0.26 0.9028 

drug*visit 4 409.79437 102.44859 1.64 0.1626 
 
Next is the table of expected mean squares from GLM: 
 

Source Type III Expected Mean Square 

inv Var(Error) + 3.6493 Var(patient(drug*inv)) + 9.7134 Var(drug*inv) + 18.739 Var(inv) 

drug Var(Error) + 3.1135 Var(patient(drug*inv)) + 7.1417 Var(drug*inv) + Q(drug,drug*visit) 

drug*inv Var(Error) + 3.6142 Var(patient(drug*inv)) + 10.844 Var(drug*inv) 

patient(drug*inv) Var(Error) + 3.8199 Var(patient(drug*inv)) 

visit Var(Error) + Q(visit,drug*visit) 

drug*visit Var(Error) + Q(drug*visit) 
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Test of fixed effects of drug from the GLM expected mean squares (note error DF): 
 

 Source DF Type III SS Mean Square F Value Pr > F
* drug 1 980.646667 980.646667 5.72 0.0192

 Error 75.568 12951 171.387334  

Error: 0.6586*MS(drug*inv) + 0.1919*MS(patient(drug*inv)) + 0.1495*MS(Error) 

* This test assumes one or more other fixed effects are zero. 
 
Tests of other effects from GLM based on expected mean squares: 
 
 

 Source DF Type III SS Mean Square F Value Pr > F
 patient(drug*inv) 214 37519 175.320903 2.80 <.0001

* visit 4 65.372799 16.343200 0.26 0.9028

 drug*visit 4 409.794373 102.448593 1.64 0.1626

 Error: MS(Error) 903 56490 62.557606  

* This test assumes one or more other fixed effects are zero. 
 
 
Non-significant effects of visit and drug*visit interaction from both MIXED and GLM indicate that comparisons of 
overall drug means are justified.   
 
Look at the least squares means from MIXED: 
 

Least Squares Means 

Effect drug Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper

drug 1 77.1892 0.7481 57.3 103.19 <.0001 0.05 75.6914 78.6869

drug 4 75.0811 0.7184 57.8 104.51 <.0001 0.05 73.6429 76.5192
 
 
 
Now the table of difference between the drugs from MIXED: 
 

Differences of Least Squares Means 

Effect drug _drug Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper

drug 1 4 2.1081 1.0243 29.6 2.06 0.0485 0.05 0.01490 4.2013
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Here’s what we get from GLM: 
 

drug si_hr LSMEAN

1 Non-est

4 Non-est
 
 
This illustrates the dreaded non-est message.  If comes about in this example because there are no patients on drug 
1 in four of the clinics, and likewise no patients on drug 4 in four different clinics.  GLM tries to average LSMEANS 
across all combinations of drug and clinic, but cannot do so because of the empty cells. 
 
This does not happen in MIXED because clinic is a random factor.  Do not get too comfortable and think the non-est 
problem will never occur in MIXED.  Remember that non-estimability is an issure relative to two of more fixed factors.  
For example, drug and visit fixed factors.  If there were no patients on drug 1 with measurements at time 5, then the 
LSMEANS for drug 1 and time 5 would be non-estimable; as well, of course, the LSMEAN for the combination of drug 
1 and time 5. 
 

CONCLUSION 
SAS contains more than 50 statistical procedures.  Of these, there are about a dozen mainstream procedures based 
more or less on linear models that probably account for 90% (just a guess) of the GNDA (gross national data 
analyses).  One line of these contains GLM, MIXED and GLIMMIX, each representing a quantum increase in 
capability above the previous.  My belief is that it will continue as computing power increases.  Perhaps a linear 
models procedure of the future will handle “object” data.  The “observation” will not be a number or character, but 
rather an assembly information such as a geographical image or an assembly of genetic material.  Hopefully, SAS 
Institute will stay in the business of producing high-quality procedures. 
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