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ABSTRACT 

In examining the adequacy of a statistical model, an analysis of the residuals is often performed. This includes 
anything from performing a residual analysis in a simple linear regression to utilizing one of the portmanteau tests in 
time-series analysis. When modeling an autoregressive-moving average time series we typically use the Ljung-Box 
statistic on the residuals to see if our fitted model is adequate. In this paper we introduce two new statistics that are 
weighted variations of the common Ljung-Box and, the less-common, Monti statistics. A brief simulation study 
demonstrates that the new statistics are more powerful than the commonly used Ljung-Box statistic. The new 
statistics are easy to implement in SAS® and source code is provided. 

INTRODUCTION 

A plethora of situations are known to occur in which the errors in a regression model are not independent. This 
violates the underlying assumptions of regression and can lead to a multitude of problems. Modeling the errors via a 
time series analysis does not address all of the issues but allows us to have better predictive models. However, much 
like checking the adequacy of the regression through an F-test, checking the adequacy of the fitted time-series model 
is of the utmost importance. Let      be a time series for         where   is the number of observations. Suppose 
     is generated by a stationary and invertible ARMA( ,  ) process of the form 

          

 

   

         

 

   

    

where           are white-noise residuals. A model of this form is typically fitted with the autoregressive and moving 

average parameters,    and     respectively, estimated by their maximum likelihood or conditional least squares 

counterparts,     and    . After we have fit the model for a given   and  , testing for the adequacy of the fitted model 

follows. Most diagnostic goodness-of-fit tests are based on the residual autocorrelation coefficients provided by 

    
         

 
     

    
  

   

 

where     is the observed residual at time  . If we correctly identified (the null hypothesis), or possibly overestimated, 

the ARMA process, the value of each autocorrelation should be approximately zero. However, if we underestimate 
the ARMA model (the alternative hypothesis) the values of the autocorrelations will deviate from zero towards ±1. 
Thus, developing a test statistic based on the autocorrelations has theoretical justification.   

PORTMANTEAU TEST 

The first widely used testing method based on the autocorrelation coefficients is the Box-Pierce (1970) statistic, 
provided by 

       
 

 

   

  

In most modern applications, it has been replaced by the Ljung-Box (1978) statistic 

          
   
 

   

 

   

 

that includes the standardizing term 
   

   
 on each squared autocorrelation coefficient. These statistics are used to test 

for significant correlation up to lag  . It is well known that for independent and identically distributed data, as     

the autocorrelations behave as independent normally distributed random variables, and therefore under the null 

hypothesis (correctly fitted model) both   and    are shown to be asymptotically distributed chi-squared random 

variables with           degrees of freedom, where   and   are the order of autoregressive and moving average 

terms estimated in the fitted model, respectively. If   or    are large, compared to the chi-squared critical value at 
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significance level  , we have evidence to suggest the fitted ARMA process does not adequately model the correlation 

in the data.  

The Ljung-Box statistic is provided in the SAS procedure ARIMA for an assortment of lags  . For large  , the Box-

Pierce and Ljung-Box statistics are essentially equivalent. The Ljung-Box (1978) statistic is typically used since it 
better approximates a chi-squared random variable for smaller  .  

A similar statistic to the Ljung-Box statistic was introduced by Monti (1994) and uses the standardized partial 
autocorrelation function up to lag  : 

          
   

 

   

 

   

 

where     is the residual partial autocorrelation at lag  . Recently, Peña and Rodríguez (2002) proposed a statistic 

based on the determinant of the residual autocorrelation matrix: 

     

        
          

    
        

   

Under the null hypothesis that we have fitted an adequate model for the ARMA process, each      . Hence the 

matrix     should be approximately the identity matrix. Testing for model adequacy is equivalent to testing if     is 

approximately the identity matrix. They show 

           
 

    

is asymptotically distributed as a linear combination of chi-squared random variables and is approximately a Gamma 

distributed random variable for large values of  . In practice, they recommend the matrix      be constructed using 
the standardized residuals as this improves the Gamma distribution approximation. In Peña and Rodríguez (2006) 
they show that the log of the determinant follows the same asymptotic distribution as   and can be better in small 

sample time series. The statistic   determines whether the matrix     is an identity matrix, or equivalent, if the fitted 
model is adequate. 

It has been demonstrated that both    and   improve over the Ljung-Box and Box-Pierce statistics; see Monti (1994) 
or Peña and Rodríguez (2002, 2006). However, neither appears to be frequently implemented in applications of time 
series. Particularly, the Peña and Rodríguez statistic may be difficult to implement since it involves calculating the 
determinant of a matrix. As pointed out in Lin and McLeod (2006), the statistic   constructed using the standardized 

residuals may be degenerate in practice since the matrix      could be ill-conditioned or singular.   

WEIGHTED PORTMANTEAU TEST 

In this article we propose two new statistics that are easy to implement and improve over the frequently used Ljung-
Box and Box-Pierce statistics. Define 

           
       

 

   
 

   

 

   

 

and 

           
       

 

   
 

   
 

 

   

 

The two statistics look similar to the Ljung-Box and Monti statistics with the exception a weight, 
     

 
  on each 

autocorrelation or partial autocorrelation. The weights are derived using multivariate analysis techniques on the 
matrix of autocorrelations or matrix of partial autocorrelations (similar to that in Peña and Rodríguez). Note that the 

sample autocorrelation at lag 1,    , is given weight 
 

 
  . The sample autocorrelation at lag 2,    , is given 

weight 
   

 
  . We can interpret the weights as putting more emphasis on the first autocorrelation, and the least 

emphasis on the autocorrelation at lag   (corresponding weight 
 

 
). This matches our intuition about statistical 

estimators. The first autocorrelation      is calculated using information from all   observations. The second 

autocorrelation is based on     observations, and the     autocorrelation is based on     observations. 

Intuitively, it makes sense to put more emphasis on the first autocorrelation as it should be the most accurate. This 
idea also holds true for the partial autocorrelations. 
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The two statistics are asymptotically distributed as a linear combination of chi-squared random variables. This is the 

same asymptotic distribution as the statistics in Peña and Rodríguez (2002, 2006). The weighted Ljung-Box     and 

weighted Monti     statistics are asymptotically equivalent to   but have the added benefit of easy calculation and 

computational stability. When a small number of parameters have been fit under the null hypothesis of an adequate 

model, the statistics     and     are approximately distributed as Gamma random variables with shape parameter 

  
 

 

                  
 

                         
 

and scale parameter 

  
 

 

                         

                   
  

The Gamma approximation is constructed to have the same theoretical mean and variance as the true asymptotic 
distribution. 

IMPLEMENTATION IN SAS 

The two statistics,     and      require no difficult matrix calculations and are easy to implement in SAS. Although 
their asymptotic distribution is difficult to express, an easy approximation is possible with the gamma distribution. The 
shape and scale parameters may look complicated, but when testing at lag   with   autoregressive and   moving 
average fitted parameters, the shape and scale parameters are just constants. The following code will calculate 

both,     and      for a given   after     parameters were fit. This example fits an ARMA(2,1) model on the 

variable x in the dataset myseries; we then test the models adequacy at lag     , where       parameters 

were estimated in the model: 

 

PROC ARIMA DATA=myseries; 

IDENTIFY VAR=x NLAG=30 NOPRINT; 

ESTIMATE p=2 q=1 METHOD=ML; 

FORECAST OUT=getresiduals; 

RUN; 

 

PROC ARIMA DATA=getresiduals; 

IDENTIFY VAR=RESIDUAL NLAG=30 OUTCOV=acfs; 

RUN; 

 

DATA acfs; 

SET acfs; 

IF lag = 0 THEN r = 0; 

ELSE r = corr*corr; 

IF lag = 0 THEN pr = 0; 

ELSE pr = partcorr*partcorr; 

rLB = r/N; 

prM = pr/N; 

sampSize = N+lag; 

m = 30; pq = 3; 

shape = (3/4)*(m^2 + m -2*(m-1)*(pq))^2/(2*m^3 + 3*m^2 + m -6*(m^2-2*m-1)*pq); 

scale = (2/3)*(2*m^3 + 3*m^2 + m - 6*(m^2-2*m-1)*pq)/(m*(m^2+m-2*(m-1)*pq)); 

weights = (m - lag + 1)/m; 

WLBtmp + (weights*rLb); 

WLB = WLBtmp*sampSize*(sampSize+2); 

WMtmp + (weights*prM); 

WM = WMtmp*sampSize*(sampSize+2); 

pValWLB = SDF('gamma', WLB, shape, scale); 

pValWM = SDF('gamma', WM, shape, scale); 

RUN; 

 

PROC PRINT DATA=acfs(where=(lag=30)); 

VAR m WLB pValWLB WM pValWM; 

RUN;  
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SIMULATION STUDY 

To demonstrate an improvement over the existing methods consider the following simulation study. A sample of size 
      is generated from one of the ARMA(2,2) models provided in Table 1 or Table 2. An AR(1) or MA(1) is fitted 

for each model. Four statistics are calculated and compared to their theoretical critical value at lag     . The 

process is repeated 10,000 times and the simulated power is reported as the proportion of times the calculated 
statistic exceeds the critical value. This study is similar to those in Monti (1994) and Peña and Rodríguez (2002, 
2006). The test statistic with the highest power for any particular model is in bold. 

 

Fitted by AR(1) Model 

                          

--- --- -0.50 --- 0.2261 0.2057 0.3202 0.3516 

--- --- -0.80 --- 0.6170 0.8753 0.8494 0.9804 

--- --- -0.60 0.30 0.6377 0.9482 0.8618 0.9945 

0.10 0.30 --- --- 0.3681 0.2930 0.5113 0.4928 

1.30 -0.35 --- --- 0.6204 0.5363 0.7927 0.7792 

0.70 --- -0.40 --- 0.4574 0.4634 0.6524 0.7140 

0.70 --- -0.90 --- 0.9366 0.9998 0.9982 1.0000 

0.40 --- -0.60 0.30 0.6951 0.9853 0.9186 0.9994 

0.70 --- 0.70 -0.15 0.1677 0.1272 0.2163 0.1898 

0.70 0.20 0.50 --- 0.6329 0.5970 0.7831 0.7862 

0.70 0.20 -0.50 --- 0.3193 0.3112 0.4768 0.5594 

0.90 -0.40 1.20 -0.30 0.5682 0.8962 0.8012 0.9815 

Table 1: Power of   ,   ,     and     when data are fitted by an AR(1) under various ARMA(2,2) models 

 

 
Fitted by MA(1) Model 

                          

0.50 --- --- --- 0.2404 0.1769 0.3321 0.3011 

0.80 --- --- --- 0.9609 0.9323 0.9888 0.9849 

1.10 -0.35 --- --- 0.9834 0.9822 0.9987 0.9987 

--- --- 0.80 -0.50 0.6974 0.8097 0.8951 0.9537 

--- --- -0.60 0.30 0.3137 0.3151 0.4672 0.5325 

0.50 --- -0.70 --- 0.7772 0.7093 0.9049 0.8931 

-0.50 --- 0.70 --- 0.8053 0.7299 0.9253 0.9109 

0.30 --- 0.80 -0.50 0.4975 0.5663 0.7116 0.8044 

0.80 --- -0.50 0.30 0.9521 0.9002 0.9811 0.9701 

1.20 -0.50 0.90 --- 0.3787 0.5694 0.5099 0.7249 

0.30 -0.20 -0.70 --- 0.2093 0.1713 0.2979 0.3036 

0.90 -0.40 1.20 -0.30 0.6278 0.8227 0.8493 0.9515 

Table 2: Power of   ,   ,     and     when data are fitted by an MA(1) under various ARMA(2,2) models 
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In Monti (1994) it is shown that the statistic    dominates    when the fitted model underestimates the order of the 
moving average component. This can be seen in many of the examples in Tables 1 & 2. When the fitted model 

underestimates the order of the autoregressive component,    tends to perform better than   . Moreover, the results in 

the table demonstrate that the newly proposed statistics appear to outperform both, the Ljung-Box and Monti 
statistics, in every case. This result happens due to the weight associated with each autocorrelation or partial 
autocorrelation. Consider the simple case of an AR(2) process where we underestimate the order of the process and 
fit an AR(1) model (the fourth and fifth model in Table 1 are examples). The residuals will be determined by an AR(1) 
process with an unknown autoregressive parameter   and the autocorrelations of the residuals should follow the form 

     . Since        as   grows the autocorrelations will get small, approaching the value zero. Under the null 

hypothesis that we’ve fit the correct model, we expect the autocorrelations to take on the value zero. The statistic    
weighs everything equally and is more susceptible to not detecting an inadequate model that underestimates the 
autoregressive order. The new test statistic puts more emphasis (weight) on the first few autocorrelations (those most 
likely to deviate from zero) and hence is more likely to detect that the fitted model has underestimated the 

autoregressive order. A similar argument can be made to explain why     appears to outperform    when we 
underestimate the order of the moving-average. 

CONCLUSIONS 

This article introduced two new statistics for checking the adequacy of a fitted stationary ARMA process. A brief 
simulation study demonstrates the new statistics improve over those typically used in the application of times series. 
Source code is provided to implement these test statistics in the SAS statistical language.   
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RECOMMENDED READING 

The theoretical results of this work will appear in a journal article currently in preparation by the author and 
collaborator Dr. Colin M. Gallagher of Clemson University.  Please contact either for more information on its 
publication and where to obtain a copy. 
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Your comments and questions are valued and encouraged. Contact the author at: 

Dr. Thomas J. Fisher     
Department of Mathematics & Statistics   
University of Missouri-Kansas City   
5100 Rockhill Road     
Kansas City, MO 64110    
(816) 235-2853     
fishertho@umkc.edu  
http://f.web.umkc.edu/fishertho/   
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