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ABSTRACT  

In the 1980s, before PROC MIXED or PROC GENMOD, “linear models” meant the “general” linear model as 
implemented by PROC GLM. Three decades later, the meaning of “linear models” has fundamentally changed. The 
introduction of PROC GLIMMIX in 2005 was a watershed moment. Now “linear model” means “generalized linear 
mixed model.” The notion that the “general” linear model was once considered “general” seems quaint. In living with 
PROC GLIMMIX over the past five-plus years, several issues have become apparent that were not issues during 
PROC GLM’s heyday. One set of issues concerns inference space and conditional versus marginal modeling. When 
you learn about the GLMMs, you often find that you must first “unlearn” the old ways of thinking about models. The 
second set of issues concerns power, sample size, and planning. These areas have not caught up with GLMMs. 
Finally, applied statistics curriculum seems caught in a time warp, leaving students and especially consumers of 
statistical methods unprepared for contemporary statistical practice. 

INTRODUCTION  
Once upon a time “linear model” meant = +y Xβ e . In certain technocratic circles, TLA means “three letter acronym.” 
You know a procedure rates if it has a TLA. In the 1970s, the TLA for = +y Xβ e was GLM – “General” Linear Model. 
PROC GLM took its name from this TLA.  

Once upon a time is no more. 

Fast forward to 2011. In literate linear model circles, “GLM” is now the TLA for generalized linear models. What used 
the be the “General” Linear Model is now just the LM – by modern standards  = +y Xβ e is not at all “general.” It has 
been demoted and does not even warrant a TLA. Confusingly for SAS® users, PROC GLM cannot compute GLMs. 
For this, you need PROC GENMOD or PROC GLIMMIX. In 2011, the term “linear model” connotes Generalized 
Linear Mixed Model (GLMM – sufficiently important to rate a four letter acronym!). All linear models, linear mixed 
models (PROC MIXED), modern GLMs (PROC GENMOD) and modern LMs (formerly GLMs) are special cases of 
the GLMM. To fully specify a GLMM we need 

• a linear predictor: = +η Xβ Zb  

• two distributions: ( )| | ,y b μ b R∼  and ( ),b 0 G∼ N  

• a link function: ( )|g μ b ; or alternatively, an inverse link function: ( ) |h + =Xβ Zb μ b  

For SAS users, the watershed moment came in 2005. On March 17, Oliver Schabenberger sent me an e-mail. 
Subject: “Rushing this message to you on my way out of town.” Message begins, “The production release for PROC 
GLIMMIX is now available for download...” The GLMM had been an active area of research for over two decades. 
Macros had been available. Now, however, we had a full-fledged PROC with performance and features that clearly 
made it the undisputed flagship of linear model software.  

Five years on, it has become clear that the GLMM represents more than just a set of advanced techniques for high-
end practitioners only. What we have here is something far more fundamental. For the first time in several decades – 
probably since the convergence of matrix algebra, third generation computers and linear models made modern 
statistical computing possible – we have a full-blown challenge to established paradigms regarding what defines 
“standard statistical practice” and what constitutes “the basics” in the core curriculum of statistics.  

When PROC MIXED came out, we could essentially do the same old thing, only better, especially with split-plots and 
repeated measures. We just added Zb to = +y Xβ e , added flexibility in specifying ( )=R eVar , and carried on, our 
mindset intact. The GLMM requires a more comprehensive change. In this paper, we consider three aspects of this 
challenge.  

The first concerns the way we approach bread-and-butter design and analysis, e.g. paired comparisons and 
randomized complete block designs, especially with non-Gaussian data. Nothing exotic: proportions and counts. 
Along the way we gain a new appreciation for what may have triggered R.A. Fisher’s generally hostile reaction to 
early work in statistical modeling.  
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The second concerns the way we assess power and sample size when planning future studies. Existing methods 
generally reflect, for want of a better term “pre-GLMM thinking.” Applied to commonplace situations that clearly call 
for GLMM thinking, conventional power and sample size methods can produce inappropriate – in some cases 
catastrophically inappropriate – assessment of design requirements.  

Finally, the third challenge concerns our approach to core service classes in statistical methods course and our 
concept of core curriculum in graduate programs in statistics. As we go though the design-and-analysis and planning 
examples, we shall see that there are GLMM-driven ideas that never occurred to us to include in traditional courses 
but must now be considered “basic.” The question is not whether we need to teach them in introductory courses but 
how are we going to teach them in digestible form in our introductory classes. “GLIMMIX is too hard” won’t do.  

THE FIRST CHALLENGE: BASIC ANALYSIS – OLD DOGS AND NEW TRICKS 
Example 1: a paired comparison. We have 8 sites and 2 treatments. For each treatment at each site, we observe 
100 subjects. Each subject either has a favorable or an unfavorable response. Let ijY  denote the number of favorably 
responding subjects on treatment i at site j . Figure 1 shows box plots of the data for each treatment at the 8 sites.   

Figure 1. Box Plot of Binomial Paired Comparison Data 

 
Inspecting Figure 1, it seems obvious that the two treatments differ. How is analysis of these data taught in an 
introductory methods class? First, with 100 subjects per site-treatment combination, it seems that we could invoke the 
Central Limit Theorem: the sample proportion = 100ij ijp Y should be approximately distributed ( )( ),π π π−1 100ij ij ijN . 

Therefore, we should be able to use the linear model μ τ ρ= + + +ij i j ijp e  where iτ  denotes the ith treatment effect 

and jρ denotes the jth pair(site) effect. If the observed sites represent a sample of a target population, we could 

assume the site effects are i.i.d. ( )20,σPN and use PROC MIXED or PROC GLIMMIX. Because this paper concerns 

GLIMMIX, the statements are 

proc glimmix data=intro_binomial; 
 class Site Treatment; 
 Pct=Y/N; 
 model Pct =Treatment; 
 random intercept / subject=Site; 
 lsmeans Treatment / diff; 

 
Output 1. Binomial: Normal Approximation 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F

Treatment 1 7 3.28 0.1132
 

Treatment Least Squares Means 

Treatment Estimate Standard Error

0 0.8950 0.06379

1 0.7375 0.06379
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Output 1 shows the relevant GLIMMIX listing. We know that analysis of variance yields the same results. We see two 
disturbing features. First, the p-value for :τ τ=0 1oH  is 0.1132, which precludes concluding a statistically significant 
treatment effect on the likelihood of a favorable response. Second, the standard errors are equal despite the binomial 
distribution’s well-known mean-variance relationship ( )π π−1 .  

In pre-GLMM world, we would address the variance issue by transforming the data using the arc-sine-square-root. 
The GLIMMIX statements and output are not shown here; the estimates of the treatment 0 and treatment 1 means, 
back-transformed to the data scale, are 0.916 ± 0.040 and 0.760 ± 0.067 respectively and p=0.0605.  

Now let’s enter the modern world and use a GLMM. First, we specify the model: 

• Linear predictor: ( )η η τ ρ ρτ= + + +ij i j ij  

• Distributions: ( ) ( )| , ,ρ ρτ π⎡ ⎤
⎣ ⎦ ∼ 100ij j ijijy Binomial ; ( ),ρ σ 2 i.i.d. 0j SN  ;  ( ) ( ),ρτ σ 2 i.i.d. 0 STj

N  

• Link function: logit = ( )( )π π−log 1ij ij  

Notice that a site× treatment interaction effect, ( )ρτ
ij , appears in the linear predictor here, whereas it did not 

previously. More about that later. Also, notice what we do not do: we do not form the model from = +y Xβ e . The 
required GLIMMIX statements are 

proc glimmix data=intro_binomial; 
 class Site Treatment; 
 model Y/N =Treatment; 
 random intercept Treatment / subject=Site; 
 lsmeans Treatment / diff ilink; 

Output 2. Binomial: GLMM 
Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F

Treatment 1 7 6.75 0.0355
 

Treatment Least Squares Means 

Treatment Estimate Standard Error Mean Standard Error Mean 

0 2.5502 0.4405 0.9276 0.02958 

1 1.2698 0.4232 0.7807 0.07245 

The p-value for the GLMM test of :τ τ=0 1oH  is 0.0355. In the table of Least Squares Means ESTIMATE shows the 
estimated logit; MEAN shows the estimated probability ( π̂ i ) for each treatment. They are 0.928 and 0.781 
respectively, compared to 0.895 and 0.738 obtained with the normal approximation. This is no accident. For reasons 
explained immediately below, the GLMM estimates will always be closer to 1 when ˆ .π > 0 5i and closer to 0 when 
ˆ .π < 0 5i . Moreover, the GLMM test is more powerful, without compromising type I error control, so the greater F-

value and lower p-value are not merely happenstance. 

MARGINAL AND CONDITIONAL MODELS: WHAT YOU SEE ISN’T WHAT YOU GET 
Example 1 highlights an underappreciated, often unrecognized aspect of working with data from non-Gaussian 
distributions. The normal-approximation ANOVA and the GLMM are not merely different approaches to the same 
problem. They target different parameters and only the GLMM actually targets a binomial probability. Consider the 
conceptual premise of this example. We have observations for a given site-treatment assumed to vary according to a 
binomial distribution. We also have variability among sites. What does “variability among sites” mean? Not an idle 
question: many statistics graduate students – even good ones – struggle to give a coherent answer. For modeling 
purposes, we are saying that the binomial probability is randomly perturbed from site-to site. Since we model the 
logit, a.k.a. the log-odds, variance among sites means site-to-site variation in log-odds.  
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We never observe any of the distributions given in the GLMM model statement directly. The only direct observation 
we can make is on the response variable Y, whose distribution is given by the marginal p.d.f. 

( ) ( ) ( )|= ∫y y b b bf f f d , where ( )|y bf is the binomial p.d.f. and ( )bf is the joint p.d.f. of the random site and site-

by-treatment effects, ρ j and ( )ρτ
ij .  

The marginal p.d.f. does not simplify much beyond what we have written here, but we can use simulation to visualize 
it. Figure 2 shows the empirical marginal ( )f y (left) and conditional ( )|f y b (right) distributions from 10,000 simulated 

data sets assuming  ( )|y bf  is ( ), .binomial 100 0 9 , .σ =S
2 0 5 and σ =ST

2 1. The probability and variance components 
approximate our estimates from the GLMM analysis.  

Figure 2. Distributions for Logit-Normal Model 

a. Marginal    b. Conditional 

    
For the marginal distribution, the horizontal axis denotes the sample proportion. Notice that the blue bar corresponds 
to 0.90, the binomial probability .π = 0 9 , The red bar, at roughly 0.86, is the marginal expectation of the sample 
proportion. Compare Figure 2a with Figure 2b, the empirical p.d.f. of a true ( ), .binomial 100 0 9 . We see that the 
normal approximation applies to the (unobserved) conditional distribution, not the (actually observed) marginal 
distribution. With ANOVA, we use ,p the sample mean of the observed proportions, to obtain an unbiased estimate of 

( ) μ= PE Y N . With the GLMM, we estimate ( )π η ρ= + ilogit  then use the inverse link to obtain ( )ˆˆ exp1 1π η= ⎡ + − ⎤⎣ ⎦ . In 

the context of Figure 2, the normal approximation targets .0 86Pμ ≅ ; the GLMM targets .π = 0 9 . Only the GLMM 
estimates a binomial probability.  

Figure 2a shows that for any .π > 0 5 the marginal mean is always less than the binomial probability because the 
marginal distribution is always left-skewed. For .π < 0 5 the skewness reverses; the marginal mean will always be 
greater than the binomial probability. If we have a study comparing two probabilities, Figure 3 shows the nightmare 
scenario and its impact on our ability to accurately estimate odds-ratio and on power. 

 

Figure 3. Conditional vs. Marginal Model Estimation of Treatment Difference 

Treatment 0    Treatment 1 
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In Figure 3 the red vertical bars show marginal means and the blue vertical bars show the actual binomial 
probabilities for the two treatments. ANOVA targets the red bars; the GLMM targets the blue. These plots make it 
easy to see that the normal approximation, which seemed so reasonable when we introduced the example, actually 
lures us into an analysis that very likely is not what we intended.  

UNLEARNING AND RELEARNING MODEL CONSTRUCTION 
Speed (2010) published an IMS Bulletin commentary on the uneasy co-existence of ANOVA and linear modeling ever 
since Fisher’s seminal work on ANOVA (Fisher and Mackenzie,1923). Noting Fisher’s negative reaction to early work 
in statistical modeling (“confused” and “enraged” to quote Speed directly) Speed recommends a presentation by 
Yates (1935) to the Royal Statistical Society and in particular points to Fisher’s comments following Yates’ talk. 
Speed characterizes the split-plot as the “litmus test that separates those who understand ANOVA from those who 
don’t get it.” In a talk at the Joint Statistical Meetings, Oliver Schabenberger (2008), paraphrasing Vince Lombardi, 
said, “The split-plot isn’t everything; it’s the only thing.”  

Reading Fisher’s comments produced an “ah ha!” moment: it occurred to me that following Fisher’s analysis of 
variance thought process led to a coherent way to construct a GLMM and at the same time shed light on why the 
mindset implicit in = +y Xβ e so often paints us into an undesirable corner, as in Example 1. For my modeling and 
design classes, I’ve come up with a process I call “What would Fisher do?” or WWFD. More on that later. 

In his comments, Fisher said every design has a “topographical” aspect and a “treatment” aspect. Fisher was 
discussing agricultural experiments; we can understand “topographical” broadly as the non-treatment components of 
a design structure – what design of experiments textbooks often refer to as the “experiment design” although the 
concept extends more generally to surveys and observational studies as well. Consider the design shown in Figure 4. 
I call it “the litmus test.” It is a tweaked version of a design presented in Milliken and Johnson (2008).  

Figure 4. The Litmus Test Design 

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 
0 0 0 0 0 3 3 3 3 3 
1 1 1 1 1 4 4 4 4 4 
2 2 2 2 2 5 5 5 5 5 

 Figure 4 shows an incomplete block design with 10 blocks, 3 units per block and 6 treatments denoted 0, 1, ..., 5. 
Introductory linear models classes, at least at the University of Nebraska, still focus heavily on the “general” linear 
model. In old-GLM world, BLOCK is the “topographical” aspect and TREATMENT is exactly what it says. The linear 
model my colleagues invariably assign is ij i j ijy eμ τ ρ= + + + , essentially the same model used in Example 1 for the 
normal approximation. My colleagues also ask who let this design see the light of day? It is a disconnected design rife 
with estimability problems, confounding, etc. Here we have a teachable moment. This hints at what may have driven 
Fisher to his contempt for much of the modeling work of his day.  

WHAT WOULD FISHER DO? 
 First, the “treatment aspect” consists of more that TREATMENT. Clearly, we have two SETS, one containing 
treatments 0, 1 and 2, the other containing treatments 3, 4, and 5. Fisher suggested writing two skeleton ANOVAs 
(sources of variation and degrees of freedom), one for the topographical design and one for the treatment design, 
then integrating them. At that point, he contended, it should be clear how to proceed. Further, if one followed this 
process with requisite attention to detail, the process should work for designs of arbitrary complexity. Table 1 shows 
how it works in this example.  

Table 1 . Skeleton ANOVA for Litmus Test Design 

Topographical Treatment Combined 
Source d.f. Source d.f. Source d.f. 

  set 1 set 1 
block 9  block|set 9-1=8 

  treatment(set) 4 treatment(set) 4 

unit(block) 20 
“parallels” 

(Fisher’s term) 24

unit(block) 
a.k.a. trt× blk(set) 

a.k.a. residual 20-4=16 

Total 29 Total 29 Total 29 
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The topographical aspect consists of the 10 blocks and 3 units within each block. The placement of the treatment and 
topographic entries is important. In setting up the design, sets are randomly assigned to blocks, hence block is the 
unit of replication with respect to set. Treatments within sets are randomly assigned to units, thus unit(block) is the 
unit of replication with respect to treatment. Notice that set and treatment(set) each take degrees of freedom away 
from their respective units of replication in the final, combined ANOVA. We must work through this process to see 
clearly which effects must be random and which effects are fixed when we write the model.  

At this point, we know that the unit of observation is the unit(block). In general, the unit of observation is last term in 
the combined skeleton ANOVA. We also know that the linear predictor needs to account for all of the other sources of 
variation in the combined ANOVA. How does this work? 

The observations on the unit(block) have some probability distribution, generically denoted as ( )|f y b . In GLMM 

theory, ( )|f y b  may be any member of the exponential family or any quasi-likelihood. If we have Gaussian data and 

the observations are independent and homoscedastic, then ( ) ( )| ~ , 2
ijk ijkik

y b NIα μ σ , where NI denotes “normal and 

independent” and ( )ik
b α denotes the thik block within set effect. On the other hand, we could have binomial 

proportions or counts, or any other non-Gaussian distribution in the GLMM stable. If we have counts, they could be 
Poisson, that is ( ) ( )| ~ Poissonijk ijkiky b α λ , they could be negative binomial ( ) ( )| ~ ,NegBinijk ijkiky b α λ φ etc.  

The conditional distribution affects how we understand the last term in the skeleton ANOVA. With Gaussian data, 
ijkμ and 2σ are completely separate entities. The mixed model estimates ijkμ but provides nothing regarding 2σ . The 

last entry in the ANOVA must be treated as “residual” because we need that information to estimate 2σ .  For 
Gaussian data, the last term in the combined ANOVA corresponds to e in = +y Xβ e . This, however, is the only case 
for which e in a linear model has this – or any – meaning. If we have Poisson observations, the variance equals the 
mean – once we estimate the mixed model, we have the mean and the variance among the units of observation. We 
don’t need the residual to estimate variance. This also leaves it free for other purposes. On the other hand, if we have 
Negative Binomial observations, the variance among units depends partly on the mean and partly on a scale 
parameter. To estimate the latter, we need the information provided by the unit(block) source of variation. But it is not 
“residual” or “error” in the sense that we understand it with Gaussian data.  

The take home message is this. If we understand the ANOVA thought process Fisher articulated and don’t tie it to a 
specific set of arithmetic that is an artifact of the Gaussian distribution and computing technology limitations of a 
bygone time, we have a process that bypasses the “general” linear model and leads directly to the GLMM. The model 
resulting from this process for the Litmus Test design is 

• linear predictor: ( ) ( )ijk i ij ik
bη η α τ α α= + + + , where α and τ  denote set and treatment effects, respectively. In 

some cases, this linear predictor may be incomplete, depending on the distribution of the observations and how 
we understand the last term in the skeleton ANOVA. More about that below. 

• distributions:  

o Observations: ( )|ijk ik
y b α  as shown above.  

o Random model effect, i.e. blocks: ( ) ( ), 2 i.i.d. 0 Bik
b Nα σ  

• link: ( )ijk ijkg μ η= . The specific link depends on the conditional distribution of the observations and possibly other 
considerations relevant to a given problem.  

We now consider our second example to see how we implement these ideas with GLIMMIX.  

EXAMPLE WITH COUNT DATA 
Example 2: Suppose we have count data from a study that used the Litmus Test design. By count data, we mean 
that the observed response is the number of occurrences – e.g. number of weeds, number of microorganisms, 
number of defects, etc. – a non-negative integer. Historically, the Poisson distribution has typically been the default 
distribution for counts. In many areas – ecology, for example – alternative distributions, notably the negative binomial, 
often provide better models.  The main issue with the Poisson distribution and count data is overdispersion. The 
Poisson entails a rigid and restrictive mean-variance relationship. Overdispersion occurs when the observed variance 
exceeds what the variance should be under the assumed distribution. In many disciplines overdispersion in count 
data is the rule, not the exception, and the magnitude of overdispersion can be substantial.   

Statistics and Data AnalysisSAS Global Forum 2011

 
 



<Living with Generalized Linear Mixed Models>, continued 

 

7 

In our example, let us start by assuming a Poisson distribution and using the linear predictor given immediately 
above. We use the following GLIMMIX statements 

proc glimmix data=a method=laplace; 
 class block set trt; 
 model y=set trt(set) / d=poisson; 
 random intercept / subject=block; 
 lsmeans trt(set) / ilink;   

We must use METHOD=LAPLACE or METHOD=QUAD in order to get the conditional fit statistics, the appropriate 
diagnostic statistics for overdispersion. Output 3 shows relevant output. 

Output 3. Selected GLIMMIX Results – Poisson Model without Block x Trt Effect  

Fit Statistics for Conditional Distribution 

Pearson Chi-Square / DF 2.37 
 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

set 1 16 0.06 0.8151 

trt(set) 4 16 7.79 0.0011 
 

trt(set) Least Squares Means 

set trt Estimate Standard Error Mean Standard Error Mean

0 0 1.6350 0.5071 5.1296 2.6015

0 1 2.2522 0.4959 9.5086 4.7157

0 2 1.4768 0.5112 4.3790 2.2387

1 3 1.6242 0.5054 5.0746 2.5645

1 4 2.2448 0.4961 9.4387 4.6828

1 5 1.9889 0.4993 7.3074 3.6485
 
Under Fit Statistics for Conditional Distribution, Pearson .χ =2 2 37df . In theory, 2 1dfχ =  indicates complete 
absence of overdispersion, i.e. the data fit the Poisson assumption that the among-unit variance equals the mean. 
Pearson  2 1dfχ >>  constitutes evidence of overdispersion.  

In GLM literature, the suggested fix for overdispersion is to add an overdispersion scale parameter. You do this in 
GLIMMIX by adding a random _residual_ statement. There are several problems with this. First, doing so 
creates a quasi-likelihood – you have a likelihood with the same form as the Poisson likelihood, except it has an 
additional parameter so that ( )( )|ijk ijkik

Var y b α φλ= instead of ijkλ . This corresponds to no actual probability 

distribution and this approach implicitly targets the marginal distribution, creating the problems similar to those we 
saw in the first example. The second problem is that several studies, e.g. Young, et al (1998), have documented the 
ineffectiveness of the scale parameter approach in controlling type I error rate.  

This takes us back to “what would Fisher do?” Unlike the normal distribution, the Poisson is a one-parameter 
distribution. This, combined with the linear predictor we’ve used, means we are implicitly assuming that all units within 
blocks are identical. That is, we assume that ijkλ may be affected by block main effects and treatment, but individual 
units are otherwise identical. In reality, units probably do have unique characteristics and, rather than staying 
absolutely constant, it is more likely that   ijkλ  is randomly perturbed from unit to unit within a block. We saw this with 

the site× treatment effect in Example 1. In a Gaussian model, we account for this random perturbation via 2σ . A 
Poisson has no analog of  2σ  - our GLMM model essentially leaves variability coming from the last line in the 
skeleton ANOVA unrepresented. The quasi-likelihood scale parameter is inadequate partly because it is on a linear 
scale (φ vs. the Gaussian 2σ ) but mostly because it ignores design architecture the skeleton ANOVA makes explicit.  
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What happens when we follow the skeleton ANOVA? We amend the linear predictor by adding a term to represent 
unit(block) , yielding ( ) ( ) ( )ijk i ij ik ijk

b bη η α τ α α τ α= + + + +  where ( ) ( ), 2 i.i.d. 0 BTijk
b Nτ α σ . The GLIMMIX statements 

for this model are identical to the previous program, except for the revised RANDOM statement   
 

 random intercept trt(set) / subject=block; 

Output 4 shows selected results. 

Output 4. Selected GLIMMIX results – Poisson model with BLOCK x TREATMENT(SET) 

Fit Statistics for Conditional Distribution 

Pearson Chi-Square / DF 0.22 
 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

set 1 16 0.08 0.7808 

trt(set) 4 16 0.89 0.4950 
 

trt(set) Least Squares Means 

set trt Estimate Standard Error Mean Standard Error Mean

0 0 1.2650 0.5873 3.5430 2.0809

0 1 1.9914 0.5576 7.3256 4.0844

0 2 1.7521 0.5558 5.7669 3.2054

1 3 1.5270 0.5743 4.6042 2.6443

1 4 1.9823 0.5589 7.2597 4.0578

1 5 2.0838 0.5529 8.0352 4.4424
 
Notice the impact on the test statistics – in particular, for TREATMENT(SET).  The F-value was 7.79; now it is 0.89. 
This is the characteristic impact of overdispersion. If not accounted for, it can severely inflate type I error rates. In this 
case, the estimates of the Poisson rate, given under MEAN in the Least Squares Means listing, do not vary 
appreciably among treatments, but the model not accounting for BLOCK x TREATMENT (SET) yields a wildly inflated 
F-value. Here, BLOCK x TREATMENT (SET) acts as the overdispersion parameter, and it does so via a legitimate 
probability distribution and in context of the design that produced the data.  

We can formally evaluate overdispersion using a COVTEST statement to test : 2
0 0BTH σ = . The GLIMMIX statement 

covtest 'blk x trt(set)' . 0; 

produces Output 5. 

Output 5. COVTEST Listing for Test of Overdispersion Variance Component 

Tests of Covariance Parameters 
Based on the Likelihood 

Label DF -2 Log Like ChiSq Pr > ChiSq Note

blk x trt(set) 1 227.64 33.54 <.0001 MI 
 
The likelihood ratio .2 33 54χ = with a p-value <0.0001, strong evidence supporting our decision to include BLOCK x 
TREATMENT(SET).  

An alternative way to model the contribution of unit(block) is to change the assumed distribution ( )f y | b  from 
Poisson to a counting distribution with a scale parameter, such as the negative binomial or the generalized Poisson. 
The generalized Poisson requires adding user supplied statements to define the log-likelihood. Example 38.14 in the 
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GLIMMIX online documentation for SAS®/STAT shows the required statements. The negative binomial only requires 
you to change the DISTRIBUTION= (D = ) option in the MODEL statement. The revised statements are 

proc glimmix data=a method=laplace; 
 class block set trt; 
 model y=set trt(set) / d=negbin; 
 random intercept / subject=block; 
 lsmeans trt(set) / ilink; 

Notice that we leave the BLOCK x TREATMENT(SET) effect out of the RANDOM statement, returning instead to the 
original linear predictor. It would be redundant to estimate the negative binomial scale parameter and .2

BTσ  

This concludes the first part of this paper. The take-home message here is that as the GLMM becomes the 
mainstream linear model, we need a paradigm shift in the way we conceptualize models. The = +y Xβ e mindset 
paints us into corners with no easy escape. Instead, we need to return to ANOVA’s roots – the thought process not 
the ossified arithmetic part – and follow that process in view of contemporary theory and computing capability. This is 
the first challenge living with GLIMMIX has made obvious.  

THE SECOND CHALLENGE: POWER, SAMPLE SIZE AND PLANNING IN A GLMM WORLD 
 Littell, et al (2006) devote a chapter to the use of PROC MIXED to compute power for linear mixed models. The 
method has its roots in work by Littell (1980), O’Brien & Lohr (1984) with PROC GLM. We can easily extend these 
methods to GLMMs using PROC GLIMMIX. The basic outline of the process: 

1. Create an “exemplary data set” (Ralph O’Brien’s term). This is a data set with the same structure we will 
eventually use to analyze the data once they are collected. In the exemplary data set, expected responses 
appear in place of observed data. These expected responses should reflect the minimum difference between 
treatments considered important. For example, in pharmaceutical testing, the minimum “clinically relevant” 
difference defines the expected response. Our objective is to identify a design capable of showing a “clinically 
relevant” difference to be statistically significant at a specified -levelα  with acceptably high power.   

2. Run the intended analysis with GLIMMIX on the exemplary data using the model we intend to use for the 
observed data. In this step we must hold the covariance components constant. This requires knowledge of 
plausible values of these covariance components. 

3. GLIMMIX computes approximate F-values. Multiplying them by the numerator degrees of freedom, 
NumDF*FValue in the SAS data set we create during the GLIMMIX run, yields the non-centrality parameter of 
the non-central F-distribution given the expected responses in the exemplary data set, the assumed covariance 
components and the design we are evaluating.  

4. Use probability functions FINV and PROBF to determine the power associated with the design being evaluated. 
We use FINV to determine the critical value of the F-test given α and the numerator and denominator degrees of 
freedom. We then use PROBF to compute the probability that the test-statistic exceeds the critical value under 
the non-central F determined in (3). 

Examples of all of the needed statements are given below as we work through a scenario with binomial response.  

THE GLMM CHALLENGE TO POWER AND SAMPLE SIZE METHODLOLOGY 
Simply put, current power and sample size software and methodology – i.e. the approach that’s taught in statistical 
method courses for research workers – is woefully inadequate, even for mundane jobs like a 2-sample paired 
comparison with binomial (or count) data. In many cases, what we get with standard power and sample size methods 
is just plain wrong – sometimes catastrophically so. The problem is that conventional power and sample size 
methodology does not take into account the impact of random model effects and, for non-Gaussian mixed models, 
the combined impact of random model effects and non-normality. These impacts can be enormous. 

If we are going to use power analysis effectively to plan research designs, we need to align the power we compute to 
the probability environment where the design actually lives. In an era of pervasive budget stress on research and 
development – in the private sector, in academia, you name it – this issue has never been more important. 

Example 3. To see how this works, suppose we have a “standard” treatment, we’ll call it treatment 0, known to yield 
a favorable response approximately 15% of the time. We have three experimental treatments, call them treatments 
1, 2 and 3, that are claimed to increase the favorable response rate to at least 25%, perhaps even as high as 35%. 
We want to test this claim.  

We have a binomial response. Our design problem amounts to determining how many subjects we need to 
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show .π π− ≥0 0 10i , or the equivalent odds-ratio or relative-risk, for a given -level.α  We know that the variance of a 
binomial random variable increases as π approaches 0.5. We also know that our primary focus is on the difference 
between 0.15, π0 for the standard treatment, and 0.25, the minimum π i  considered to be clinically relevant for any of 
the experimental treatments. We could either base our power analysis on the difference between .0 15π =  and 

.0 25π = or we could hedge our bets and use the difference between .0 25π =  and .0 35π = (because the higher 
variance will force a somewhat larger sample size).  

We can determine the required sample size using PROC POWER. The needed statements are 
proc power; 
 twosamplefreq 
   test=pchi  
   proportiondiff=0.10 
   /*relativerisk=1.4*/ 
   /*oddsratio=1.615385*/    
   npergroup=. 
   power=.8 
   refproportion=.25; 
 

Notice that we can express the “minimum clinically relevant” difference using either PROPORTIONDIFF, 
RELATIVERISK or ODDSRATIO. We get the same results. Here, we use PROPORTIONDIFF and comment out the 
alternatives. Output 6 shows the result.  

Output 6. PROC POWER result for Binomial Treatment Comparison 

Computed N Per Group 

Actual Power N Per Group 

0.801 329 
 
According to Output 6 we need at least 329 subjects per treatment if .0 05α =  and we want power to be at least 0.80. 
Now the research team throws us a curve. The researchers do not want to risk having their findings dismissed as 
location-specific, so they need this to be a multi-site trial. Also, they simply cannot handle more than 2 treatments or 
approximately 250 subjects at any given location. Some brainstorming produces three possible designs.  

Figure 5. Three Possible Designs for 4-Treatment Binomial Comparison 

a. Balanced Incomplete Block b. Control vs. Experimental c. Randomized Complete Block 

 

        
Figure 5.a shows a balanced incomplete block design, hereafter called BIB. The 6 possible pairs of treatments are 
randomly assigned so that each pair appears at one location. Each treatment appears at 3 locations. If the 250 
subjects are divided equally between the treatments at each location, we will observe a total of 375 subjects per 
treatment – safely more that the 329 PROC POWER tells us to use. Figure 5.b. allows a direct comparison between 
the control treatment (0) and each experimental treatment in 2 locations instead of just one. If we allocate, say, 70 
subjects to treatment 0 at each location and the other 180 to the experimental treatment, we will have 420 total 
subjects assigned to treatment 0 and 360 subjects assigned to each of the experimental treatments. Figure 5.c. 
shows a complete block design. This design requires us to disregard location distinctions in order to construct 
complete blocks. If we pair locations carefully, we might be able to form entities that we can defensibly call “blocks.” 
We know, however, that researchers often do convenience blocking because it’s easier or because their design 

Block Location Treatments 

1 1 0   1   
2 2   3   

2 3 0   1   
4 2   3   

3 5 0   1   
6 2   3   

Location Treatments 
1   0 1 
2   0 1 
3   0 2 
4   0 2 
5   0 3 
6   0 3 

  

Location  Treatments   
1   0  1   
2   0  2   
3   0  3   
4   1  2   
5   1  3   
6   2  3   
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education ended with the randomized complete block design. No matter how carefully we form blocks, the complete 
block design will suffer increased within-block heterogeneity and we need our eyes wide open regarding the 
consequences.  

We can use GLIMMIX to compute a power analysis for each design. This allows us 1) to determine if allocating the 
required number of subjects across the locations still yields acceptable power and 2) allows us to compare the 
designs. The latter is extremely important. In many planning exercises, the same sample size can yield strikingly 
different power characteristics when the subjects are allocated using different designs. This is why “power and 
sample size” is something of a misnomer – if done without regard to possibly more efficient design alternatives, 
power and sample size analysis completely misses the point of using statistics to inform research design. 

The GLIMMIX-based power analysis occurs in 3 steps: 

1. DATA step to create the exemplary data set 

2. GLIMMIX step to compute the information needed to evaluate the non-central F 

3. PROBABILITY EVALUATION step uses SAS® probability functions to determine power. 

We now examine each step, starting with the BIB plan shown in Figure 5.a.  

Step 1: create the exemplary data set: 
data bib; 
input loc @@; 
n_subj=125; 
 do g=1 to 2; 
  input trt @@; 
   do r=1 to 1; /* R = # multiples of locations used to increase power */ 
   location=(r-1)*6+loc; 
   pi=0.15*(trt=0)+0.25*(trt=1)+0.30*(trt=2)+0.35*(trt=3); 
   mu=n_subj*pi; 
   output; 
  end; 
end; 
datalines; 
1  0 1 
2  0 2 
3  0 3 
4  1 2 
5  1 3 
6  2 3 
; 

N_SUBJ assigns the number of subjects to be observed at each location for each treatment. DO R=1 to 1 seems 
superfluous, but it allows us to increase the number of locations in our power analysis if 6 locations proves 
inadequate (it does in this example – see below). Changing the statement to DO R=1 TO 2 would allow us to see if 
12 locations is enough, DO R=1 TO 3 allows us to assess 18 locations, etc. Notice that increasing the design in 
multiples is the only way we can increase sample size and keep the design balanced. LOCATION gives each 
replicate of a given pair of treatments a unique identification. This will be important for the GLIMMIX step. PI defines 
the probabilities, iπ  for each treatment. We set PI for treatment 0 equal to 0.15 based on the information given 
above. We set PI for one of the experimental treatments – it doesn’t matter which one – to 0.25 so we can assess 
power for the clinically relevant difference we said is of primary importance. We set PI for another experimental 
treatment – again it doesn’t matter which one – to 0.35 to give us the worse-case power assessment we used above 
with PROC POWER. For the other experimental treatment, in the absence of another stated objective, it doesn’t 
matter what we use for PI. Here we split the difference – this allows us to determine power for 0.15 vs 0.30 – we 
might want to know this in case it turns out to be prohibitively expensive to obtain adequate power for a 0.15 vs 0.25 
difference. MU is the binomial expected value that we use in the GLIMMIX step. Notice that it is often a non-integer 
value. That’s okay. 

Step 2: obtain need statistics using GLIMMIX 
proc glimmix data=bib initglm; 
 class location trt; 
 model mu/n_subj=trt; 
 random intercept trt / subject=location; 
 parms (0.10)(0.20)/hold=1,2; 
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/*random _residual_; 
 parms (0.5)(1)(0.99)/hold=1,2,3;*/ 
 contrast 'c vs e1' trt 1 -1 0 0; 
 contrast 'c vs e2' trt 1 0 -1 0; 
 contrast 'c vs e3' trt 1 0 0 -1; 
 contrast 'e1 v e3' trt 0 1 0 -1; 
 ods output contrasts=f_tests_b; 

The CLASS, MODEL and RANDOM statements are almost identical to what we eventually use to analyze the data 
once we complete the study. The only difference: here we use MU; later, we will use Y. Notice that the linear 
predictor here is identical to the linear predictor we used in Example 1; all of these designs are 4-treatment versions 
of the same structure: binomial data with a blocked design.  

PARMS gives our best anticipation of the variance components for LOCATION and TRT by LOCATION. In this case, 
we set .2 0 10Lσ =  and .2 0 20TLσ = . The HOLD option prevents GLIMMIX from executing its variance estimation 
routines, instead directing it to use the values we supply for all computations that involve the variance components. 
Occasionally, GLIMMIX will abort, and the following message appears in the SASLOG: 

ERROR: Values given in PARMS statement are not feasible. 

The error is spurious, but results from the GLIMMIX procedure’s internal architecture. The INITGLM option in the 
PROC statement overrides GLIMMIX’s default starting values, making the error less likely. If it happens anyway, you 
can include a random _residual_ statement and vary the overdispersion parameter incrementally down from 1. 
In a true binomial GLMM the scale parameter (φ ) equals 1, but sometimes when you HOLD all the covariance 
components, GLIMMIX’s internal architecture needs φ  to be slightly less in order to run. A little trial-and-error with φ  
will solve the problem with negligible impact of the power computations. GLIMMIX with SAS® V9.2 is much less 
prone to this error than the earlier SAS® V9.1 edition, but it does occasionally happen. 

The CONTRAST statements shown here target proportion differences of 0.10, 0.15 and 0.20 relative to the control’s 
.0 0 15π =  and the proportion difference 0.25 vs 0.35. These capture the differences whose power we want to assess. 

CONTRAST statements should be tailored to the objectives of the study you are planning. The ODS OUTPUT 
statement creates a SAS data set to be used in step 3. 

Step 3. Use functions FINV and PROBF to determine power for the various tests. 
data power_bib; 
 set f_tests_b; 
 alpha=0.05; 
 ncp=numdf*fvalue; 
 f_crit=finv(1-alpha,numdf,dendf,0); 
 power=1-probF(f_crit,numdf,dendf,ncp); 
proc print data=power_bib;    

F_CRIT defines the critical value. This is the “table value” we look up; if the observed F-value exceeds this number, 
we reject :0 i iH τ τ ′= .  POWER uses the PROBF function to determine the probability under the non-central F defined 
by our set of treatment difference, variance component, design structure and sample size. PROC PRINT lists the 
resulting power calculations. 

Now for the results. Output 7 shows power for the comparisons defined by the CONTRAST statements for the 6-
location BIB.  

Output 7. Power for 6-location Balanced Incomplete Block, Binomial data,125 subjects per Loc x Trt  

Obs Label NumDF DenDF FValue ProbF alpha ncp f_crit power

1 c vs e1 1 3 2.05 0.2474 0.05 2.05259 10.1280 0.17526

2 c vs e2 1 3 4.03 0.1385 0.05 4.02540 10.1280 0.29018

3 c vs e3 1 3 6.39 0.0855 0.05 6.39373 10.1280 0.41494

4 e1 v e3 1 3 1.22 0.3496 0.05 1.22242 10.1280 0.12488
 

The last column, POWER, gives the power for each test. These numbers should make us sit up and take notice. 
PROC POWER – indeed any power/sample-size calculation based on pre-GLMM theory – gave 329 as the required 
number of subjects per treatment to achieve 80% power for our worst case comparison – here defined by the contrast 
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E1 V E3. The GLIMMIX-based power assessment gives our best-case comparison, .0 15π = vs. .0 35π =  a power of 
only slightly greater than 41%. What is going on? 

The GLIMMIX-based analysis is not wrong. You can easily show via simulation that, given the differences we’ve 
defined and the variance assumptions we’ve made, the results we see here are spot-on accurate. What we see here 
is the result of conventional power and sample size methodology’s failure to account for random variation among 
locations. The variance assumptions used in this example, by the way, are not unusual for multi-location binomial 
data. In this model, we interpret 2

Lσ  as the variance in the log-odds among locations and 2
TLσ  as the variance in log-

odds-ratios among locations. While iπ  expresses a treatment’s probability at a typical, average location, we know 
that all locations are not created equal: favorable outcomes are more likely at certain locations that others and certain 
treatments do better a certain locations. Power analysis needs to account for this. As you can see, failure to account 
for it has dramatic consequences.  

How do the other designs compare? The power analyses for the other two designs require some changes in the SAS 
statements. For the control vs. experimental treatment design (hereafter called CVT), Figure 5.b, the revised 
statements to create the exemplary data set are 

data cvt; 
input loc @@; 
 do g=1 to 2; 
  input trt @@; 
 do r=1 to 1; 
   location=(r-1)*6+loc; 
   n_subj=70*(trt=0)+180*(trt>0); 
   pi=(0.15*(trt=0)+0.25*(trt=1)+0.30*(trt=2)+0.35*(trt=3)); 
   mu=n_subj*pi; 
   output; 
  end; 
end; 
datalines; 
1  0 1 
2  0 2 
3  0 3 
4  0 1 
5  0 2 
6  0 3 
; 

Notice that we now write N_SUBJ so that treatment 0 receives 70 subjects per locations whereas the other 
treatments receive 180. The only other change entails replacing the BIB data set with the CVT data set after 
DATALINES. 

For the complete block design, Figure 5.c, the exemplary data set and GLIMMIX statements are 

data rcb; 
 do i=1 to 4;  
   input trt @@;   n_subj=125; 
 do block=1 to 3; 
   mu=n_subj*(0.15*(trt=0)+0.25*(trt=1)+0.30*(trt=2)+0.35*(trt=3)); 
   output; 
  end; 
end; 
datalines; 
0 1 2 3 
;  
proc glimmix data=rcb initglm; 
 class block trt; 
 model mu/n_subj=trt; 
 random intercept trt / subject=block; 
 parms (0.0534)(0.2524)/hold=1,2; 
/*random _residual_; 
 parms (0.5)(1)(0.99)/hold=1,2,3;*/ 
 contrast 'c vs e1' trt 1 -1 0 0; 
 contrast 'c vs e2' trt 1 0 -1 0; 
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 contrast 'c vs e3' trt 1 0 0 -1; 
 contrast 'e1 v e3' trt 0 1 0 -1; 
 ods output contrasts=f_tests_r; 

Because we have equal allocation of subjects, N_SUBJ reverts to 125, the same as for the BIB. Note the variance 
components. Because the blocks disregard the natural block size, they will be more internally heterogeneous and 
correspondingly less different from one another. We must take this into account when we compare complete and 
incomplete block designs. Also, the variance components for the complete block design are among blocks, not 
locations. So we re-label them and adjust their magnitude accordingly. 

Conventional power and sample size allows you to account for the change in the residual variance – which would 
correspond to 2

TLσ  (or σ 2
BT for the complete block design) in this example – for Gaussian data only. However, 

conventional software does not account for efficiency gains from recovery of inter-block information – here, the BIB 
and CVT benefit; the complete block design does not. Furthermore, as we’ve seen, conventional software does not 
account for either variance when the data are non-Gaussian.  

Output 8 shows the power results for the control-vs.-experimental and the complete block designs. 

Output 8.  Power for 6-location control-vs.-experimental and 3-block complete block designs 

a. Control vs. experimental 

Obs Label NumDF DenDF FValue ProbF alpha ncp f_crit power

1 c vs e1 1 3 2.11 0.2426 0.05 2.10595 10.1280 0.17847

2 c vs e2 1 3 4.13 0.1349 0.05 4.13331 10.1280 0.29620

3 c vs e3 1 3 6.57 0.0830 0.05 6.56852 10.1280 0.42350

4 e1 v e3 1 3 0.76 0.4476 0.05 0.75966 10.1280 0.09655

b. Complete Block  

Obs Label NumDF DenDF FValue ProbF alpha ncp f_crit power

1 c vs e1 1 6 1.99 0.2082 0.05 1.98856 5.98738 0.22219

2 c vs e2 1 6 3.90 0.0957 0.05 3.89987 5.98738 0.38309

3 c vs e3 1 6 6.19 0.0472 0.05 6.19441 5.98738 0.55015

4 e1 v e3 1 6 1.18 0.3183 0.05 1.18423 5.98738 0.15172
 

Here, there appears to be more to be gained than lost by combining locations into complete blocks. In this case the 
LOCATION variance .2 0 10Lσ =  is relatively small, so the variance that most affects power, 2

TLσ   increases from 0.2 

to .2 0 25BTσ = , where 2
BTσ denotes the complete block x treatment variance, as opposed to the location x treatment 

variance for the incomplete block designs. In this case, the increase is offset by the complete block design’s greater 
inherent efficiency, all other things being equal.  

If we have a larger variance among locations, say .2 0 40Lσ = , and 2
TLσ  remains 0.2, then the variance components for 

the complete block design would be .2 0 161Bσ =  and .2 0 449BLσ = . If the variance among locations is even larger, 2
BLσ  

is further increased for the complete block design, whereas 2
TLσ  remains constant for the two incomplete block 

designs. For .2 0 8Lσ = , .2 0 307Bσ = and .2 0 709BLσ =  .  

Output 9 shows how increased variability among the locations affects power for these designs. 
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Output 9. Impact of increased 2
Lσ  on power for BIB, Ctl vs Exp (CVT) and Complete Block (RCB) designs 

a. .0 40=2
Lσ     b. .0 80=2

Lσ  

  
We see that as location variance increases, the penalty for disregarding natural block size (locations) in favor of 
arbitrary complete blocks increases. When .2 0 80Lσ = ,  power with the complete block design suffers noticeably.  

Regardless of design and location variance, so far in this example none of these designs has power remotely 
approaching acceptable. For the best-case design we have seen so far, the complete block design with .2 0 10Lσ = , 
power for the design’s primary objective, the C VS E1 contrast, is 0.22. Using the GLIMMIX power programs we can 
change N_SUBJ to examine the impact of increasing the number of subjects per location-treatment combination. 
Although space does not permit showing the results here, you can easily verify that increasing the number of subjects 
has almost no impact on power. The only way to address the power problem for these designs is to increase the 
number of locations.  

For the best-case, complete block, .2 0 10Lσ = , 13 blocks (obtained using DO BLOCK=1 TO 13 when defining the 
exemplary data set) yields power=0.81 for the C VS E1 contrast. This means that under the most optimistic scenario, 
we need at least 13 blocks and hence 26 locations. Instead of the 329 subjects per treatment requirement we 
obtained using conventional power software, we actually need 13 x 125 = 1625 subjects per treatment. Actually, if we 
use 26 locations, we can reduce the number of subjects per treatment x block to 100, or 1300 subjects per treatment 
total, and still maintain 80% power.  

The take home message here is that we cannot accurately assess power for studies like this without using GLMM-
based power assessment methods. If we say a source of variation exists at data analysis time, we have to account 
for it at power analysis time. Otherwise, we risk results that can be misleading in the extreme. The price an unwary 
researcher would pay here would be to conduct a study that probably takes considerable effort and expense even for 
6 locations, believing that power is 80% when in reality power is at best little more than 20%. This is what I call a 
catastrophically inaccurate assessment of power.  

At the risk of belaboring a point, keep in mind that this is not an exotic, advanced scenario. Example 3 is only a little 
more complicated than a basic, introductory level, first-semester-stat-methods design. People who do studies that 
demand advanced, exotic statistical methods probably already use state-of-the-art statistical theory. Those who stand 
to benefit most from the methodology we are discussing are students and mid-level consumers of statistical methods, 
the ones we currently “protect” from these ideas. Colleagues tell me “students have enough trouble just learning ‘the 
basics.’ If you tried to teach them these ‘advanced ideas,’ it would just exacerbate the problem.” Which brings us to 
the third “living with GLIMMIX” challenge. Are the examples we’ve been considering “advanced ideas”? What, in 
2011, is “standard statistical practice?” What constitutes “the basics”? 

 THE THIRD CHALLENGE: WHAT DO WE TEACH THE STUDENTS? 
This section came perilously close to being entitled, “What do we tell the children?” A colleague of mine once said 
during a teaching workshop, “Never consciously teach anything you know you will have to unteach later.” I believe 
these words to be true – and relevant to this presentation.  

Consider Example 1. If we poll those who teach introductory graduate level courses in statistical methods, and ask 
them for a list of topics they consider basic and essential and those they consider optional or “advanced,” it is safe to 
say that the paired t-test, the analysis of variance and the normal approximation to the binomial would all rank high on 
the list of “basics.” It is also safe to say that the GLMM would rank much lower on this list. Given what Example 1 tells 
us, if we follow through on these rankings, we will have created a perfect opportunity to teach something that will 
need to be untaught. If our approach to intro classes is “ANOVA learnable, other stuff too hard” and we teach “if 
N=100, it’s safe to treat a binomial as if it’s normal,” then what do we think users are going to do when they encounter 
data like Example 1? Later, if they are lucky they will realize that they spent a great deal of time and effort learning an 
antiquated method; if they’re unlucky they’ll go blithely on, unaware of the disconnect between the analysis they are 
doing and the interpretation they are attaching to it. 

Obs Label  power_bib  power_cvt  power_rcb  
1 c vs e1 0.15575 0.15237 0.11789 
2 c vs e2 0.25378 0.24773 0.18424 
3 c vs e3 0.36292 0.35439 0.26334 
4 e1 v e3 0.11231 0.08119 0.08896 

 

Obs  Label  power_bib  power_cvt   power_rcb  
1 c vs e1 0.16051  0.15976   0.15392  
2 c vs e2 0.26273  0.26156   0.25487  
3 c vs e3 0.37586  0.37440   0.37096  
4 e1 v e3 0.11537  0.08501   0.11013  
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Several years ago, at a now half-remembered ENAR talk, the speaker expressed the opinion that academic 
statisticians spend an inordinate amount of their effort on the last 5%. Arguably, Example 1 is guilty of this – in most 
cases the discrepancy between the marginal and conditional analyses of binomial may indeed be too small to make 
much difference. This case is harder to make for Example 2. A misspecified error term causing a grossly inflated type 
I error rate is not merely “the last 5%.” It is a serious thing. Working through some version of an exercise like the 
“what would Fisher do?” process is the only way to avoid mistakes of this magnitude. Design courses do this to some 
extent with Gaussian data, but students and practitioners also need to understand implications unique to non-
Gaussian data. Most will encounter both types of data in real life.  

What about Example 3? No doubt our poll of stat methods instructors would identify a basic sample size formula high 
on the essentials list. Perhaps methodology underlying our initial PROC POWER assessment of required sample size 
might make the “basics” list, especially if students inhabit a culture where power analyses are mandatory for grant 
applications and dissertation proposals. The discrepancy between power determined via “the basics” and power 
determined as we did it in the previous section should give us pause.  

The problems are related. How do we talk about design and analysis in 2011?  

Shortly after I became department chair in 2001, our former chair, who had about as much love for faculty meetings 
as I did (none) told me about team building activities that the university’s recreation center had started offering. An 
acquaintance had taken part in one and spoke very highly of it. We decided to give it a try. It sounded better than 
sitting in a stuffy room drinking too much coffee and putting too much heat and too little light into issues far too 
inconsequential.  

The activities consisted of elaborate obstacle courses that an individual could not negotiate alone. A team had to 
work together. If they didn’t, nobody got across. If they did, everyone made it. You didn’t have to be athletic, but you 
did have to be a team participant. As we went through these exercises, we began to learn, among other things, about 
our own approach to solving novel problems. I discovered that I don’t have much patience for pre-planning. Being 
analytic people, we would try to break down the problem, think through how are we going to do this, how are we 
going to do that? At some point I would lose it and say “Let’s just go! Some bridges we’re not going to figure out how 
to cross till we actually get to them.” Then I’d get halfway out on a limb (or up the creek without a paddle might be 
more like it) and have a “Help, I’m stuck – what now?” moment as I gave my colleagues that deer-in-the-headlights 
look. But at least the ice was broken and once they were on board we would figure out how to get the rest of way 
through. My style seems to be leap before you look, then improvise – and trust your colleagues to have good ideas 
once they see the problem. 

Why the digression? I don’t pretend to know exactly how a contemporary statistical methods, design or introductory 
linear models course should look, but I do have an idea of some basic principles. Let’s consider the data analysis 
world we inhabit. Table 2 is an elaboration of one Lock and DeVeaux (2007) presented at the USCOTS meetings. 
Their talk concerned undergraduate statistics, but their main idea applies. In graduate level courses, we say the 
building block of statistical analysis is < response variable  = explanatory variable + error > . Table 2 portrays a sense 
of what this expression must cover. It is not intended to be exhaustive. 

Table 2. Response and Explanatory Variables in the Contemporary World 

 Explanatory Variable a.k.a. Model 
Response Variable Fixed Effects Random Effects 

multi-site, split-plot 
Correlated Errors

example distribution Categorical Continuous time / space 
Proportion 

discrete 2-cateegory: binomial 
discrete >2 category: multinomial 
continuous: beta 

contingency tables 

   

Count 
Poisson 
negative binomial 

    

Continuous 
Gaussian (normal) 

= +y Xβ e    
ANOVA regression 

Time to Event 
exponential 

    

 
The gray-shaded cells represent most of the subject matter of introductory statistical methods sequences. If the 
sequence includes a design component, it may tiptoe lightly in the blue cell. Historically, the introductory linear 
models course has a narrower focus – just the cells containing = +y Xβ e . Table 2 reveals one obvious problem: 
those who go on to use what they learn in their stat methods or linear model sequence (usually two courses) will 
encounter problems elsewhere on the matrix – not just in the highlighted cells. The other problem connects this table 
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with our examples: in learning the highlighted cells, students learn habits of mind that will prove counterproductive – 
even maladaptive – when applied to the other 12 or 13 cells on Table 2, much as they were in Examples 1, 2 and 3. 
This is the part where we have to unteach what we taught – and it’s the real problem. 

One non-answer to the problem is to ask students to take more statistics classes. Disciplines that are “consumers of 
statistical methods” are also becoming more complex. They need statistics, but our classes can’t be allowed to crowd 
out essential courses in their major. As for our students, there comes a point where the quality of a graduate program 
is inversely proportional to the number of rules and requirements it has. Adding more classes is not the answer. 
Using the time we have with students more wisely is.  

There are many excellent textbooks on methods, linear models and design of experiments. This is not intended to be 
a knock on them, but if you look through them, you get a sense of what might change. We see a heavy focus on 
analysis of variance and regression methods. Discussion of probability, what little of it there is, focuses on the normal 
distribution, use of t and F tables and, in linear models texts, sums of squares-driven quadratic forms. Occasionally 
we see passing mention of PROC MIXED, maybe a paragraph on generalized linear models, but no hint of any 
recognition of what we’ve talked about in this paper. 

With analysis of variance, we spend a great deal of time teaching students to do the arithmetic of one-way and 
perhaps two-way ANOVA tables. At some point we say, “in real life, you won’t actually do these calculations; you will 
use the computer” and they are taught 

proc glm; 
 class trt; 
 model y=trt; 

and how to read the output. How much more difficult is  

proc glimmix; 
 class trt; 
 model y=trt; 

How hard would it be if from day one we also tell student that we have different kinds of data? Some has a bell-
shaped curve, but we also have Y/N proportions, counts, etc.  If you have data whose histogram looks like a bell-
shaped curve, you can do the above. But if it’s Y successes out of N, you do this  

proc glimmix; 
 class trt; 
 model y/n=trt; 

If it’s counts, you do this  

proc glimmix; 
 class trt; 
 model y=trt/d=poisson; 

and you keep your eye on the residual plots and the Pearson χ 2 df . And so forth.  

It is entirely possible that learning the GLIMMIX-based approach to power analysis would actually help students 
grasp what is supposed to go on in statistical planning. It is entirely possible that by reducing it to a formula, instead 
of protecting students from something that is too hard, we actually wind up communicating to students that planning 
is trivial and unimportant, just something you get  a black box to do.  

Not surprisingly, some of my colleagues are very skeptical of this. They worry that this will make things worse, not 
better. If we merely substitute GLIMMIX recipes for GLM recipes without changing how we approach the background 
leading up to the software, my skeptical colleagues are absolutely right. There is a clear line from ANOVA table 
arithmetic to PROC GLM. To truly embrace the paradigm shift, we have to change the conversation from sums of 
squares to maximum likelihood and figure out an accessible language for doing this. 

Quadratic forms are essential, but they do not have to be tied exclusively to sums of squares. Sums of squares have 
no meaning in GLMMs, but the test statistics for GLMM estimable functions are quadratic forms, too – and much 
more widely applicable. Much of the energy we currently spend (and ask students to spend) on ordinary least 
squares would be energy better spent on likelihood-based theory and methods.  
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CONCLUSION 
The ideas in Examples 1, 2 and 3 are not new. They have been well-known in modeling circles for at least two 
decades. Although I am constantly surprised: either statisticians are very good at compartmentalizing – what they 
know perfectly well when they wear their theory hat ceases to exist when they have their practitioner hat on – or 
these ideas truly have not penetrated the world of stat methods instructors and consulting statisticians.  

Either way, the knowledge has been out there. The difference now is that the software is also available. Anyone who 
can use PROC GLM can use PROC GLIMMIX. Now it’s time for courses – and practice – to catch up. Neither PROC 
GLM nor PROC MIXED forced us to reconsider how we present the run up from fundamentals to software 
implementation. We could go on teaching stat methods, linear models – and design of experiments, for that matter – 
using the same old same old. With PROC GLIMMIX business-as-usual won’t fly. I hope the examples presented 
earlier help make the case that we need to reconsider our approach. Not a tweak – a complete overhaul. 

In thinking about the transition, another expression of my “don’t teach what you’ll have to unteach” colleague came to 
mind: “We’re building an airplane and trying to fly it at the same time.” A better metaphor might be the bicycle trail. 
Sums of squares are like training wheels. Given the computing technology available to Fisher and Yates – pencil and 
paper and not much more – training wheels made a lot of sense. But if you want to ride on the bicycle trail, it’s better 
to learn to ride without the training wheels. We need to spend more time teaching researchers in allied disciplines and 
statisticians in training how to ride bicycles instead of continuing to emphasize the tricycle and training wheels.    
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