
1 
 

Paper 234-2011 
 

Subsetting Large Data Sets Created Via the Complex “WHERE” Clause 
Mikhail Gruzdev and Allen Blackburn 

United States Bureau of Census, Washington, D.C. 
 
ABSTRACT 
 
SAS® offers several methods to enable fast data extraction from large data sets.  The discussion, here, is of 
techniques offered within base SAS as extraction options for the minimization of overall processing times.  Our paper 
points rather positively to the efficient usage of the complex “WHERE” clause coupled with its complex “OR” logic 
options.   Our paper then goes through several iterations of advanced processing techniques including “SORT” and 
“INDEX” then favorably compounds total processing efficiency by use of the “POINT=” option with utilization of the 
SAS observation number.  By combining these techniques, access speed is increased, at minimum, a factor of five or 
six times.  A rudimentary table explains overall efficiency. 
 
INTRODUCTION 
 
The “WHERE” clause is a powerful and useful tool for rapid creation of data set subsets, but further usage of SORT 
options and INDEX and POINT options allow for even more increased efficiencies in the overall subset process.   
Vast terabyte amounts of data exist in repositories across many organizations which require storage, control, and 
virtually instantaneous access.  But what access techniques are best?  This paper arrives at usage of several 
techniques allowing increased speed and performance, roughly judged by actual access times.   
 
ILLUSTRATION 
 
A simple “WHERE” clause and complex “WHERE” clause illustration: 
 
Simple “WHERE” clause – WHERE  (ID = ‘AAA’ and TEMPER >= 110); 
 
Complex “WHERE” clause – WHERE (ID = ‘AAA’ and TEMPER >= 110) OR (ID = ‘BBB’ and TEMPER <= 85) 
 
Our test SAS data set is created with 10,000,000 records and 12 variables.   Two additional data sets will be 
outputted for use later. One data set is sorted without index and another data set is sorted with index. 
 
libname in ‘c:\test’; 
 
data m_nosort_noindex(drop=i j); 
length product $ 10 state $ 2 flame $ 3 ctry $4 x 4 y 4 z 4 w 4 f 4  g 4 date 8 ; 
do i=1 to 10000000; 
product='OIL_TYPE_'; state = 'C'; flame = 'YE'; ctry = 125; 
 do j=1 to 5; 
 product=trim(left(product))||byte(int(65+26*ranuni(0))); 
 ctry=trim(left(ctry))||byte(int(65+16*ranuni(0))); 
 state=trim(left(state))||byte(int(65+26*ranuni(0))); 
 flame=trim(left(flame))||byte(int(65+2*ranuni(0))); 
 end; 

x=2*ranuni(0); y=10*rannor(0); z=2*ranuni(0); w=10*rannor(0);f=2*ranuni(0);    
g=10*rannor(0); 

 date=today()+int(y); 
if flame = 'YEA' then flame = 'YES'; 
else flame = 'NO'; 
output; end; 
run; 
 
data in.m_nosort_noindex; 
set m_nosort_noindex; 
rec_num = _n_;  /* Observation Number can be used later with POINT option */ 
run; 

PostersSAS Global Forum 2011

 
 



2 
 

 
 
 
SOME TESTS 
 
Subsetting with no SORT, and no INDEX, and complex “WHERE” clause. 
 
data subset_nosort_noindex; 
set in.m_nosort_noindex; 
where product ='OIL_TYPE_L’ and flame = 'NO' and date = 18464 and state = 'CE' and 
ctry='125I' 
OR product ='OIL_TYPE_S’ and flame = 'YES' and date = 18464 and state = 'CE' and ctry 
='125I'; 
run; 
 
NOTE: There were 83 observations read from the data set IN.M_NOSORT_NOINDEX. 

WHERE ((product='OIL_TYPE_L') and (flame='NO') and (date=18464) and (state='CE') 
and(ctry='125I')) or ((product='OIL_TYPE_S') and (flame='YES') and (date=18464) 
and(state='CE') and (ctry='125I')); 

NOTE: The data set WORK.SUBSET_NOSORT_NOINDEX has 83 observations and 12 variables. 
NOTE: DATA statement used (Total process time): 
      real time           1:19.46 
      cpu time            7.17 seconds 
 
Subsetting with SORT, and no INDEX, and complex “WHERE” clause. 
 
 
data subset_sort_noindex; 
set in.m_sort_noindex; 
where product ='OIL_TYPE_L' and flame = 'NO' and date = 18464 and state = 'CE' and 
ctry='125I' 
OR product ='OIL_TYPE_S' and flame = 'YES' and date = 18464 and state = 'CE' and ctry 
='125I'; 
run; 
 
NOTE: There were 83 observations read from the data set IN.M_SORT_NOINDEX. 

WHERE ((product='OIL_TYPE_L') and (flame='NO') and (date=18464) and (state='CE') 
and(ctry='125I')) or ((product='OIL_TYPE_S') and (flame='YES') and (date=18464) 
and(state='CE') and (ctry='125I')); 

NOTE: The data set WORK.SUBSET_SORT_NOINDEX has 83 observations and 12 variables. 
NOTE: DATA statement used (Total process time): 
      real time           1:19.20 
      cpu time            9.04 seconds 
 
Subsetting with SORT, and INDEX, and complex “WHERE” clause. 
 
 
data subset_sort_index; 
set in.m_sort_index; 
where product ='OIL_TYPE_L' and flame = 'NO' and date = 18464 and state = 'CE' and 
ctry ='125I' 
OR product ='OIL_TYPE_S' and flame = 'YES' and date = 18464 and state = 'CE' and ctry 
= '125I'; 
run; 
 
NOTE: There were 83 observations read from the data set IN.M_SORT_INDEX. 

WHERE ((product='OIL_TYPE_L') and (flame='NO') and (date=18464) and (state='CE') 
and(ctry='125I')) OR ((product='OIL_TYPE_S') and (flame='YES') and (date=18464) 
and(state='CE') and (ctry='125I')); 

NOTE: The data set WORK.SUBSET_SORT_INDEX has 83 observations and 12 variables. 
NOTE: DATA statement used (Total process time): 

PostersSAS Global Forum 2011

 
 



3 
 

      real time           1:28.35 
      cpu time            6.61 seconds 
 
 
Subsetting in SAS using SORT, and INDEX and complex “WHERE” clause provides seemingly equal access times: 
 
SUBSET CONDITIONS Real Times Searched Records 
No SORT, and no INDEX, and complex WHERE 1:19.46 

 
10,000,000 
 

SORT, and no INDEX, and complex WHERE 1:19.20 
 

10,000,000 
 

SORT, and INDEX, and complex WHERE 1:28.35 
 

10,000,000 
 

 
 
PROBLEM 
 
And just why are the access times so seemingly close after sorting and indexing?  The answer is simply that the 
usage of the complex “OR” logic forces our program to evaluate “correctness” of selection with SAS Boolean logic, 
and still executes that logic for every observation. The Boolean “IF” logic test has the intrinsic quality that it is “True” if 
only one, or both of logic conditions is met  And the statement is “False” only if both logic tests are “False”.  When a 
check of a first condition is “False”, then a second logic check must still be made.  Also note with interest that 
“WHERE conditions are applied before the data enters the input buffer while IF conditions are applied after data 
enter the Program Data Vector, PDV”1

 
. 

SOLUTION 
 
Build a better mousetrap solution, and use a 3-step subset process whereby the observation number is retained in an 
intermediate data set and used with a POINT option to increase efficiency of large data set creation.  Judicious use of 
the “WHERE Clause” allows for faster intermediate file creation. 
 
Step #1 
Subset 10,000,000 record data set by both common variables using KEEP statements. By applying KEEP or DROP 
statements to all procedures that reference data sets/view “overall performance savings of 10-20% CPU time are not 
uncommon”2

 

.  Our intermediate output data set will have just two variables, product and  its record number or 
observation number.  Our input data set has been both sorted and indexed. 

data temp_subset1; 
set in.m_sort_index(keep=product rec_num); 
where product in ('OIL_TYPE_L', 'OIL_TYPE_S'); 
run; 
 
NOTE: There were 767717 observations read from the data set IN.M_SORT_INDEX. 
      WHERE product in ('OIL_TYPE_L', 'OIL_TYPE_S'); 
NOTE: The data set WORK.TEMP_SUBSET1 has 767717 observations and 2 variables. 
NOTE: DATA statement used (Total process time): 
      real time           9.57 seconds 
      cpu time            2.10 seconds 
 
Step #2 
Subset large data set again by reading from large 10,000,000-record SAS data set and output of complex “WHERE” 
generated data set from previous step #1 and use the POINT option. SAS will read only records from large SAS data 
set with equal record number (observation number) into data set temp_subset2 from our step #1.  Our output again 
now contains all twelve original data set variables.  Now the search is limited to only a portion of the original data set 
or 767,717 observations.   
 
 

                                                           
1 Gupta. 
2 Wilcox. 

PostersSAS Global Forum 2011

 
 



4 
 

data temp_subset2; 
set temp_subset1; 
set in.m_SORT_index point = rec_num; 
output; 
run; 
 
NOTE: The variable rec_num exists on an input data set, but was also specified in an 
I/O statement option.  The variable will not be included on any output data set. 
NOTE: There were 767717 observations read from the data set WORK.TEMP_SUBSET1. 
NOTE: The data set WORK.TEMP_SUBSET2 has 767717 observations and 11 variables. 
NOTE: DATA statement used (Total process time): 
      real time           7.81 seconds 
      cpu time            1.12 seconds 
 
 
Step #3 
Now, again create a subset data set from previous step #2 output using the complex “WHERE” clause. And the new 
double subset is accomplished by viewing only 767717 observations.  It is worth noting that data is not in the PDV 
yet, but still in the data buffer. 
 
data double_subset; 
set temp_subset2; 
where product ='OIL_TYPE_L' and flame = 'NO' and date = 18464 and state = 'CE' and 
ctry='125I' 
OR product ='OIL_TYPE_S' and flame = 'YES' and date = 18464 and state = 'CE' and ctry 
='125I'; 
run; 
 
NOTE: There were 83 observations read from the data set WORK.TEMP_SUBSET2. 

WHERE ((product='OIL_TYPE_L') and (flame='NO') and (date=18464) and (state='CE') 
and (ctry='125I')) or ((product='OIL_TYPE_S') and (flame='YES') and (date=18464) 
and(state='CE') and (ctry='125I')); 

NOTE: The data set WORK.DOUBLE_SUBSET has 83 observations and 11 variables. 
NOTE: DATA statement used (Total process time): 
      real time           0.25 seconds 
      cpu time            0.22 seconds 
 
Results of 3-Step Process: 
 
STEPS 
 

SUBSET CONDITIONS 
 

Real 
Times     

Searched 
Records O/P 

Step 1 SORT, INDEX, simple WHERE clause + KEEP product and 
record_number 

0:09.57 10,000,000 

Step 2 SORT, INDEX, + create POINT +KEEP all variables 0:07.81 767,717 
Step 3 SORT, INDEX, complex WHERE clause 0:00.25 83 
 Subset Total Time 0:17.63  
 

 
SUMMARY 
 
Our paper identifies that a combination of techniques rather than single usage of a complex WHERE clause might be 
the better method to access vast amounts of data.  SORT and INDEX are two proper techniques but can be 
enhanced by intermediate file creations and use of the observation number as pointer to vast data amounts giving us 
faster access to raw data sets.  By creation of small subsets from relatively massive amounts of data allows for faster 
analysis.  And that is a tool for making elusive data more valuable and available to all users. 
 
CONCLUSION 
 
There is a better mousetrap solution for creation of files from somewhat cumbersome and large data sets.  Through 
the usage of the above somewhat circuitous SORT, and INDEX techniques, and most interestingly usage the 
observation number coupled with the POINT option, tremendous efficiencies can be obtained. Critical placement of 

PostersSAS Global Forum 2011

 
 



5 
 

WHERE clause structures remain an extremely valuable SAS tool in the speedy access of vast terabyte files.  Raw 
data will increase in size in geometric proportion, not in arithmetic proportion, and this compounding of volumes of 
data sets requires users to utilize present tools to gain efficiencies in data handling techniques.   
 
 
REFERENCES 
 
 

1. Gupta, Sunil, “WHERE vs. IF Statements:  Knowing the Difference in How and When to Apply”, Paper 
213-2007, SUGI 2007 Proceedings, http://www2.sas.com/proceedings/forum2007/213-2007.pdf. 
 

2. Wilcox, Andrew, “Efficiency Techniques for Accessing Large Data Files”, Paper 115-25, SUGI 29 
Proceedings, http:www2.sas.com/proceedings/sugi25/25/dw/25p115.pdf. 

 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the authors at: 
 
Mikhail Gruzdev 
U.S. Census Bureau 
Foreign Trade Division 
Rm 6K502 
Washington, D.C. 20233 
Phone: 301-763-2206 
E-mail: mikhail.g.gruzdev@census.gov 
 
Allen Blackburn 
U.S. Census Bureau 
Foreign Trade Division 
Rm 6K106 
Washington, D.C. 20233 
Phone: 301-763-6921 
E-mail: allen.j.blackburn@census.gov 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or  
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. 
Other brand and product names are registered trademarks or trademarks of their respective 
companies. 

PostersSAS Global Forum 2011

 
 

mailto:mikhail.g.gruzdev@census.gov�

	2011 Table of Contents



