
1

Paper 275-2011

Why .1 + .1 Might Not Equal .2 and Other Pitfalls of Floating-Point Arithmetic

Clarke Thacher, SAS Institute Inc., Cary, NC

ABSTRACT

All numeric values in SAS® are represented as 64-bit floating point numbers. Floating-point representation can store
a wide range of values. It is very important for every programmer using SAS to understand how floating point
arithmetic works and to be aware of the limits of floating point arithmetic.

In this paper, we give a detailed explanation of floating point representation and demonstrate some of the common
mistakes that can be made by SAS programmers. We also offer suggestions for avoiding these traps.

We show:

 Why .1 + .1 may not equal .2

 How the rules of algebra may not apply to floating point numbers

 Why it isn't a good idea to store a twenty digit identifier in a floating point number.

 How sorting may affect numeric results

We demonstrate these principles through a series of easy-to-understand SAS programs. This paper requires no
previous knowledge, but it should be valuable to every SAS programmer.

The examples in this paper have been run on SAS 9.2 (TS2M3) running on Windows XP, unless otherwise noted.

INTRODUCTION

It is essential for any programmer working with SAS software to understand the strengths and weaknesses of
floating-point representation. This paper discusses, in detail, how floating point numbers are represented. Next,
this paper provides a description of how two numbers are added. Finally, this paper discusses some of the features
of the SAS language that can be used to deal with the limits of floating-point representation. This paper includes
several SAS programs that demonstrate the principles as they are discussed. Most of this paper deals with the
numeric representation used on Microsoft Windows, Linux, and UNIX operating systems.

NUMERIC REPRESENTATION

There are only two fundamental data types in the SAS programming environment, character and numeric. SAS
numbers are represented in the “native” double-precision floating point of the host computer. All mathematical
operations are performed as floating point operations.

Floating-point representation is a very powerful method to store an extended range of values with finite precision in a
relatively compact amount of memory. Floating-point representation is similar in concept to scientific or exponential
representation. Current computer architectures support efficient and accurate hardware implementations of floating
point that can provide high-speed computations to solve very large and complex numerical problems.

Floating-point systems represent values as the product of a base value raised to a power multiplied by a fractional
value: () (). The sign indicates whether the number is positive or negative. The base
defines the number system that is used for the calculations. The most common floating-point bases are powers of
two, which “fit” well into binary representation. The exponent is the power (positive, negative, or zero) that the base is
raised to. The mantissa is a value, usually expressed as the sum of a series of fractions of the base.

While binary representations fit efficiently into computer memory, they do not match the way most people do
arithmetic. Most people calculate with decimal numbers and may run into trouble when converting to and from
floating-point binary (or hex) representation. To address this, a decimal floating-point standard was defined as part of
IEEE 754-2008. While this standard can be implemented via software or hardware, only a few hardware
implementations are available.

The mainframe uses a floating-point format that was introduced in 1964 with the release of the IBM System/360.
Floating-point values are represented by a sign, exponent, and a 56 bit mantissa, which can be represented by the

Programming: Foundations and FundamentalsSAS Global Forum 2011

2

formula: () ((

). The exponent range is from which gives a range

of .

With the exception of the mainframe, all of the systems that SAS runs on use the IEEE 754 binary floating-point
representation. The IEEE 754 floating-point standard was first defined in 1985 by a cross-industry committee that
sought to improve the floating-point implementations that were available at the time. Before IEEE 754, there were
over 40 different floating-point formats, and each format defined widely differing behaviors. This inconsistency made
the writing of reliable, portable, efficient and accurate mathematical software extremely difficult and expensive.

The rest of this paper focuses on the IEEE 754 double-precision floating-point standard.

The IEEE 754 double-precision binary floating-point format used by SAS on Windows, Linux, and UNIX platforms can

be represented by the formula: () ((

))

This diagram shows how these values are stored in a double-precision number.

Figure 1 IEEE 754 Double-Precision Binary Floating-Point Format

The sign is stored as a single bit at the beginning of the number. Positive numbers have a zero sign bit and negative

numbers have the sign bit set to one.

The exponent is represented as an unsigned 11-bit binary value. The exponent representation is called biased

representation because, in order to evaluate it, you must subtract 1023. As a result, normal double-precision values
have a range of ≈ ±1.7976931348623157 × 10

308
. The values closest to zero are ±2

−1022
 ≈

±2.2250738585072020 × 10
−308

.

The mantissa is stored in the last fifty-two bits of the 64-bit floating point number. The mantissa may also be referred
to as the fraction or significand. The first bit of the mantissa is always set to one. This bit is not stored and is called
the hidden bit. Each successive bit in the mantissa represents a successively smaller fraction of two.

This format can be illustrated with few simple examples. The simplest number that we can show is one, which is

represented by the formula : () (). Because the number is positive, the sign bit is 0. The

exponent is the binary representation of 1023 (01111111111). The hidden bit is (as always) 1 and the remainder of

the mantissa is set to zeros. Here is the bit representation:

Figure 2 IEEE Double-Precision Representation of 1.0

Similarly, two is represented as () (). The sign bit is set to 0, and the exponent is 1024

(10000000000). Again, the significand is set to all zeros.

Figure 3 IEEE Double-Precision Representation of 2.0

Negative two is almost exactly the same as positive two with the only difference in the sign bit.

Figure 4 IEEE Double-Precision Representation of -2.0

These examples illustrate that all exact powers of two are stored with a mantissa ending with 52 zeros. The only
difference will be in the sign bit and exponent.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

S

i

g

n

Exponent Mantissa

0 0 1 1 1 1 1 1 1 1 1 1 0

0 1 0

1 1 0

Programming: Foundations and FundamentalsSAS Global Forum 2011

3

A slightly more complicated number is 3. Three is represented as () ((

)) or more simply:

 ().

Figure 5 IEEE Double-Precision Representation of 3.0

This floating-point format enables us to exactly represent every integer from 1 to 2
53

(9,007,199,254,740,992).

You may have noticed a problem with the formula that we have been using to represent floating-point numbers:

 () ((

)). Because the hidden bit always evaluates to 1, it is impossible to

exactly represent zero. Fortunately for everyone, the designers of the floating-point format realized this limitation
and added a way to represent zero.

An exponent value of „00000000000‟ (2
-1023

) with an all zero fraction represents zero. Zero may be represented as
either positive or negative.

Figure 6 IEEE Double-Precision Representation of 0.0

Figure 7 IEEE Double-Precision Representation of -0.0

At this point, we can write a program that demonstrates the structure of floating-point representation. This program
uses the BINARY64 format to produce the bit representation of a SAS numeric. It is a simple matter to extract the
sign, exponent, and mantissa bits.

data nums;

 keep n sign exponent mantissa;

 length bits $ 64 sign $ 1 mantissa $ 52;

 input n @@;

 bits = put(n,binary64.);

 sign = substr(bits,1,1);

 exponent=input(substr(bits,2,11),binary12.)-1023;

 mantissa = substr(bits,13,52);

 format n best19.;

cards;

0 1 -1 2 3 .5 .75

9007199254740991 9007199254740992

;

ods rtf;

proc print noobs ;

 var n sign exponent mantissa;

 run;

ods rtf close;

This program produces this table:

0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0

1 0

Programming: Foundations and FundamentalsSAS Global Forum 2011

4

Table 1 Floating-Point Numbers Expressed as Exponents and Bit Fields

n sign exponent Mantissa

0 0 -1023 00

1 0 0 00

-1 1 0 00

2 0 1 00

3 0 1 1000

0.5 0 -1 00

0.75 0 -1 1000

1.5 0 0 1000

0.1 0 -4 1001100110011001100110011001100110011001100110011010

9007199254740991 0 52 11

9007199254740992 0 53 00

We can take the previous program and modify it to display our input values as polynomial expressions.

/*

 Parse a double precision number and express it as a polynomial.

*/

ods rtf;

data nums;

 keep n sign exponent mantissa;

 length bits $ 64 sign $ 1 mantissa $ 52;

 input n @@;

 bits = put(n,binary64.);

 sign = substr(bits,1,1);

 exponent=input(substr(bits,2,11),binary12.)-1023;

 mantissa = substr(bits,13,52);

 file print;

 put n '= ' @;

 e = -exponent;

 put '1/2^' e @;

 do i=1 to 52;

 e = -exponent + i;

 if (substr(mantissa,i,1)='1') then put '+ 1/2^' e @;

 end;

put;

 format n best19.;

cards;

1 2 3 .5 .75 1.5 .1

;

ods rtf close;

This program produces this output:

Table 2 Numeric Values Expressed as Polynomial Fractions

1 = 1/2^0

2 = 1/2^-1

3 = 1/2^-1 + 1/2^0

0.5 = 1/2^1

0.75 = 1/2^1 + 1/2^2

1.5 = 1/2^0 + 1/2^1

Programming: Foundations and FundamentalsSAS Global Forum 2011

5

0.1 = 1/2^4 + 1/2^5 + 1/2^8 + 1/2^9 + 1/2^12 + 1/2^13 + 1/2^16 + 1/2^17 +

1/2^20 + 1/2^21 + 1/2^24 + 1/2^25 + 1/2^28 + 1/2^29 + 1/2^32 + 1/2^33 +

1/2^36 + 1/2^37 + 1/2^40 + 1/2^41 + 1/2^44 + 1/2^45 + 1/2^48 + 1/2^49 +

1/2^52 + 1/2^53 + 1/2^55

Looking at the results, it is interesting to note that the simple decimal value of 0.1 produces a complicated bit pattern

in the mantissa. This complicated bit pattern points out one of the fundamental limitations of any floating-point
representation. Most decimal fractional values cannot be exactly represented as a sum of a series of base 2

fractions. This limitation is the same problem that you encounter when you try to express the fraction

 as a decimal

value. The decimal result repeats forever (0.33333…).

 In the case of the binary representation of .1, we find that the mantissa bit pattern “0011” repeats. The last bit in the

mantissa breaks the pattern because of floating-point rounding rules. In fact, we can never exactly store

 as a

binary floating-point number. The polynomial approximation of the decimal value 0.1 can be expressed as:

This simplifies to:

Or (in decimal): 0.1000000000000000055511151231257827021181583404541015625

A SAS programmer was asked to read a data file that included a unique twenty-digit ID field. When she validated the
data, she discovered that many records had incorrect ID fields. How did this happen?

This program demonstrates the problem:

/*

 This program demonstrates what happens when you read very large

 integral values into SAS numeric variables.

*/

DATA big_ids;

 KEEP ID ID_STRING DIGITS NDIFF;

 LENGTH ID_STRING id2 $ 21 ;

 INPUT ID 20. @1 ID_STRING $;

 DIGITS = length(ID_STRING);

 ndiff = 0;

 id2 = compress(put(id,21.));

 do i = 1 to length(id_string);

 if (substr(id_string,i,1) ^= substr(id2,i,1)) then ndiff = ndiff + 1;

 end;

CARDS;

11111111111111111111

22222222222222222222

33333333333333333333

44444444444444444444

55555555555555555555

66666666666666666666

77777777777777777777

88888888888888888888

99999999999999999999

;

ODS rtf;

PROC PRINT;

Programming: Foundations and FundamentalsSAS Global Forum 2011

6

 var ID_STRING ID DIGITS NDIFF;

 format ID 21. ID_STRING $21.;

 run;

ods rtf close;

The program reads our ID as a number using the 20. informat, and reads the same input field as a character field
(ID_STRING). DIGITS is the number of digits in the ID number. Then the program counts the number of places
where our ID string differs from our numeric representation.

Table 3 Twenty Character Numeric Identifiers Expressed as Decimal Numbers

Obs ID_STRING ID DIGITS ndiff

1 11111111111111111111 11111111111111110656 20 4

2 22222222222222222222 22222222222222221312 20 3

3 33333333333333333333 33333333333333331968 20 4

4 44444444444444444444 44444444444444442624 20 3

5 55555555555555555555 55555555555555557376 20 4

6 66666666666666666666 66666666666666663936 20 3

7 77777777777777777777 77777777777777770496 20 4

8 88888888888888888888 88888888888888885248 20 3

9 99999999999999999999 100000000000000000000 20 20

These results show that we have lost several identifying digits from our ID number. The differences may not be
considered numerically significant, but the difference could be disastrous for the project. Our programmer would do
much better if the ID was kept as an ID string.

The LENGTH statement allows you to save space on disk by storing a smaller portion of SAS numeric variables. By
default, SAS numeric variables are eight bytes in length. The LENGTH statement enables you to set lengths from 3
to 7 bytes. When short numeric variables are read from disk, they are lengthened to eight bytes by padding the
mantissa with zeros. All mathematical operations on numeric variables are conducted on 64-bit representations.
When short numeric variables are stored on disk, the lower bits of the mantissa are lost.

Because the length of the exponent is the same for all lengths of SAS numbers, the range that can be represented is
essentially the same. The shortened mantissa does reduce the range of values that can be exactly represented.
For eight-byte floating point numbers, it is possible to exactly represent every integer from 0 to 2

53
. As the storage

length of the number is reduced, this range is reduced. The following table summarizes the range provided by each
numeric length.

Programming: Foundations and FundamentalsSAS Global Forum 2011

7

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

S Exponent Mantissa

Table 4 Short Numeric Representation

Length
Bits in

Mantissa EXACTINT

Bit Layout

3 12 8,192

4 20 2,097,152

5 28 536,870,912

6 36 137,438,953,472

7 44 35,184,372,088,832

8 52 9,007,199,254,740,992

The column labeled EXACTINT shows the maximum value that can be represented as an integral value in a
continuous range from 0. It is possible to exactly represent integral values greater than EXACTINT, but there will be

“gaps” that cannot be exactly represented.

If you don‟t want to remember the value of EXACTINT, you can use the DATA step function CONSTANT.

CONSTANT(“EXACTINT”) will return this value. The CONSTANT function will take an optional second argument,
which specifies the length in bytes used to store the variable. The following SAS program demonstrates the use of
the CONSTANT function.

/* This program demonstrates the use of CONSTANT("EXACTINT").

 In addition to calculating EXACTINT, this program also calculates the

 maximum number of decimal digits that can be reliably stored

 in a variable of that length. */

data EXACTINT;

 format exactint comma21. length 2.;

 do length=3 to 8;

 exactint = constant("EXACTINT",length);

 digits = floor(log10(exactint));

 output;

 end;

run;

ods rtf;

proc print noobs;

 var length exactint digits;

 run;

ods rtf close;

This program produces this table:

Table 5 Values of CONSTANT("EXACTINT") for Different Numeric Lengths

length exactint digits

3 8,192 3

4 2,097,152 6

5 536,870,912 8

6 137,438,953,472 11

7 35,184,372,088,832 13

8 9,007,199,254,740,992 15

S Exponent Mantissa

S Exponent Mantissa

S Exponent Mantissa

S Exponent Mantissa

S MantissaExponent

Programming: Foundations and FundamentalsSAS Global Forum 2011

8

The next program demonstrates the effect of using shorter lengths for storing numeric variables. The program is
similar to the previous program that demonstrated the limits of the default storage length. The new program adds five
variables of length ranging from 3 to 7.

/* This program demonstrates the effect of using shorter lengths on decimal

 precision. */

data shorts;

 keep d n n3 n4 n5 n6 n7 ;

 length N_STRING $ 16;

 length n3 3 n4 4 n5 5 n6 6 n7 7;

 do d=4 to 15;

 n = input(repeat('9',d-1),16.);

 n3 = n; n4 = n; n5 = n; n6 = n; n7 = n;

 output;

 end;

run;

ods rtf;

Title 'LENGTHs of 3, 4, 5';

proc print noobs data=shorts ;

 where d <= 11;

 format n n3 n4 n5 11.;

 var D n n3 n4 n5;

 run;

 Title 'LENGTHs of 6 and 7';

 proc print noobs data=shorts ;

 where d > 11;

 format n n3 n4 n5 n6 n7 17.;

 var D n n6 n7;

 run;

 ods rtf close;

This program that specifies shorter lengths for storing numeric variables produces the following tables. Highlighted
are the digits that lost precision.

Table 6 Precision Loss for Short LENGTH Numerics (3-5)

d n n3 n4 n5

4 9999 9998 9999 9999

5 99999 99984 99999 99999

6 999999 999936 999999 999999

7 9999999 9998336 9999992 9999999

8 99999999 99991552 99999936 99999999

9 999999999 999948288 999999488 999999998

10 9999999999 9999220736 9999998976 9999999968

11 99999999999 99992207360 99999940608 99999999744

Table 7 Precision Loss for Short LENGTH numerics (6-7)

d n n6 n7

12 999999999999 999999999992 999999999999

13 9999999999999 9999999999872 9999999999999

14 99999999999999 99999999998976 99999999999996

15 999999999999999 999999999991808 999999999999968

Programming: Foundations and FundamentalsSAS Global Forum 2011

9

We have described 64-bit precision floating-point numbers as composed of 1 bit for the sign, 11 bits for the exponent,
and 52 bits for the mantissa. These bit fields may differ in the way that they are stored in memory and on disk.
Operating systems that use the Intel architecture (Windows and Linux) store numbers in “little endian” order. IBM
AIX, HP-UX andSolaris on SPARC use “big endian” order. A big endian system stores the most significant bits at the
lower memory locations. Little endian systems store in the reverse order. The following figures show how big and
little endian systems store 64-bit floating point numbers.

Table 8 Little and Big Endian Byte Layout

This program demonstrates the SAS numerical representation on endian machines.

ods rtf body="endian.rtf";

Title "SAS Numerical Representation on &SYSENDIAN endian machines";

/* demonstrate the way that numeric variables are encoded in memory

 The RB8. format writes the numeric variable in the “native”

 binary format */

data byteswap;

file print;

input n @@;

endian = "&sysendian";

string = put(n,rb8.);

put n 5.1 @10 n binary64./

 Endian @10 string $binary64. ;

cards;

 1 -1 3

;

ods rtf close;

We have been using the BINARY64 format to examine the bit patterns of our numbers. The BINARY64 format
returns a representation that is consistent across all IEEE platforms and hides the effects of the “endianness”. The
PUT function allows us to access the number as a character variable. We use the SAS RB8 format to output the
number in “native” format. The SYSENDIAN macro variable indicates whether the SAS program is running on a big
or little endian system.

We ran this program on Windows (32bit) and AIX and got these results. The first three lines are from Windows and
the last three are from AIX.

 1.0 LITTLE 001111000000111111

 -1.0 LITTLE 001111000010111111

 3.0 LITTLE 00100001000000

 1.0 BIG 00111111111100

 -1.0 BIG 10111111111100

 3.0 BIG 0100000000001000

Little endian representation can be made to match big endian representation by swapping the bytes around. The
next SAS program demonstrates this technique.

S Exponent Mantissa

Little Endian

Big Endian

Byte 2 Byte 1

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

Byte 8 Byte 7 Byte 6 Byte 5 Byte 4 Byte 3

Programming: Foundations and FundamentalsSAS Global Forum 2011

10

/* Demonstrates the conversion of little endian format to big endian format */

data swap;

file print;

 length s $ 8 bits $ 64 endian $ 1;

 endian = "&SYSENDIAN";

 input n @@;

 s = put(n,rb8.);

 put n @5 'Native' @15 s $binary64.;

 if endian = 'L' then do; /* swap bytes */

 s =reverse(s);

 put @5 'Swapped' @15 s $binary64.;

 end;

 bits = put(s,$binary64.);

cards;

1 2 3 .5 .1

;

This program produces the following output.

1 Native 001111000000111111

 Swapped 00111111111100

2 Native 0001000000

 Swapped 0100

3 Native 00100001000000

 Swapped 0100000000001000

0.5 Native 001110000000111111

 Swapped 00111111111000

0.1 Native 1001101010011001100110011001100110011001100110011011100100111111

 Swapped 0011111110111001100110011001100110011001100110011001100110011010

The IEEE 754 defines a set of numbers that are not treated as normal numbers. In fact, they are called “Not A
Number”s, or NaNs. SAS uses NaNs to represent missing values.

An exponent value of „11111111111‟ is used to represent two special classes of values. If the fraction is zeros, then
the value is infinity. Non-zero fractions result in “Not a Number”s (NaNs). NaNs are similar to SAS missing values.
Operations on NaNs result in NaNs. SAS missing values are represented as NaNs.

Because most SAS numeric formats detect missing values, we can‟t use the BINARY64 format to peek at the way
that missing values are represented. Instead, we can use the same technique that we used in the last program.

Running this program with missing values as input produces the following output on Windows.

. Native 00110100011111111111111111

 Swapped 11111111111111111101000100

A Native 00101111101111111111111111

 Swapped 11111111111111111011111000

Z Native 00101001011111111111111111

 Swapped 11111111111111111010010100

_ Native 00110100101111111111111111

 Swapped 11111111111111111101001000

By now, you should understand how floating point numbers are represented. Now we need to do something with
those numbers. We will show how to add two floating point numbers. This is a little more complicated than the
way that you first learned to add.

If we want to calculate A + B where A and B both positive, we start with A and B in normalized floating point form:

() (

) + (

)

Programming: Foundations and FundamentalsSAS Global Forum 2011

11

The first thing to do is to make the exponents of A and B agree. We restate the exponent of B as 2
expA-Xb

 where Xb
is the difference in the exponents of A and B. We then transform the second term by dividing by 2

xB
, where xB is

the difference between the exponent values A and B.

() (

) +

(

)

This gives us:

() (

)

We then simplify our mantissa expression by adding the individual terms and, if necessary, normalizing our results.

Here‟s how we add 2 + 1. 2 + 1 is equivalent to () (). When we adjust the exponent in the second

term to match the first, we get () (

) which reduces to a floating-point normalized form of (

).

The result of our calculation matches the normalized floating-point representation of 3.

Interestingly, adding 1 + 1 might be considered to be more complicated because we need to adjust the exponent to

return to normalized form: () () () . The exponents are the same, so we can simply add the

mantissas. () () . The first term of the mantissa exceeds one, so we need to increase the

exponent by one and divide the mantissa by two. The final floating-point normalized representation is 2: ().

Our next SAS program demonstrates how we might add two numbers represented in floating-point normalized form.
We start with some macros.

The first macro, crack_num, takes a numeric value and returns the sign, exponent, and mantissa. The sign is a

character variable that is either „0‟ (positive) or „1‟ (negative). The exponent is returned as a numeric value in the
range. The mantissa is returned as a 53-byte character string composed of zeros and ones.

%macro crack_num(n,sign,exponent,mantissa);

 &sign = substr(put(&n,binary64.),1,1);

 &exponent = input(substr(put(&n,binary64.),2,11),binary12.)-1023;

 &mantissa = '1'||substr(put(&n,binary64.),13,52);

%mend;

The next macro, make_num, is the inverse of crack_num. It takes a sign, exponent,and mantissa and returns a

SAS numeric value.

%macro make_num(sign,exponent,mantissa);

 input(catt("&sign",substr(put(&exponent+1023,binary12.),2,11),

 substr(&mantissa,2,52)),binary64.)

%mend;

In this program, we will treat the mantissa as a bit string. Division by powers of two can be accomplished by adding
zeros to the beginning of the string. The bits at the end are shifted. We will put these bits into the bit_bucket
variable. The shifter macro will handle the shifting, along with catching the bits that are shifted off the end in the bit

bucket.
%macro shifter(shift,fract,bit_bucket);

 &bit_bucket = substr(&fract,53-&shift,&shift);

 &fract = repeat('0',&shift-1)||substr(&fract,1,53-&shift);

%mend;

The last macro will add the mantissa bits from right to left. In addition to the input bit strings, we have an additional
variable for when when the sum of the individual bits is greater than two. Addition is very simple. For each bit, our
inputs are either 1 or 0, and we get either a 0 or 1 with carry set to either 0 or 1.

%macro add_fractions(m_a,m_b,m_sum,carry);

/* add the bits right to left */

&carry = 0;

do n = 53 to 1 by -1;

 sum = &carry + input(substr(&m_a,n,1),1.)+input(substr(&M_b,n,1),1.);

 substr(&M_sum,n,1) = put(mod(sum,2),1.);

Programming: Foundations and FundamentalsSAS Global Forum 2011

12

 carry = (sum > 1);

 end;

%mend;

For the sake of brevity, we will not handle inputs of zero, missing values, or negative values. Adding those checks
into the program should be fairly easy.

data addition;

 keep a b sum expected diff bit_bucket;

 length A_fract B_fract S_fract bit_bucket $ 53 ;

 format a b sum best20.;

 input a b @@;

 expected = a + b;

 %crack_num(a,a_sign,a_exp,a_fract);

 %crack_num(b,b_sign,b_exp,b_fract);

 shift = a_exp - b_exp;

 if (shift < 0) then do;

 %shifter(-shift,a_fract,bit_bucket);

 r_exp = b_exp;

 end;

 else if (shift > 0) then do;

 %shifter(shift,b_fract,bit_bucket);

 r_exp = a_exp;

 end;

 else /* no shifting needed */

 r_exp = a_exp;

%add_fractions(a_fract,b_fract,s_fract,carry);

/* Do we need to shift one more time? */

if (carry = 1) then do;

 r_exp = r_exp + 1;

 bit_bucket = catt(substr(s_fract,53,1),bit_bucket);

 s_fract = '1'||substr(s_fract,1,52);

 end;

exp_bits = put(r_exp+1023,binary11.);

sum = %make_num(0,r_exp,s_fract);

diff = expected - (a + b) ;

cards;

1 1 1 2 .5 .5 .25 .75 1.01 .99 .001 .999

;

ods rtf;

proc print noobs;

 var a b sum expected diff bit_bucket;

 run;

ods rtf close;

The program results in the following table.

Table 9 Results of Addition

a b sum expected diff bit_bucket

1 1 2 2 0 0

1 2 3 3 0 0

0.5 0.5 1 1 0 0

0.25 0.75 1 1 0 00

1.01 0.99 2 2 0 01

0.001 0.999 1 1 8.6736E-19 011111110

Programming: Foundations and FundamentalsSAS Global Forum 2011

13

We see that our program does a pretty good job of simulating the way our machine‟s floating point arithmetic unit
operates. The only place where we see a difference is in the last row. The IEEE 754 standard has a number of
rules that deal with rounding when significant bits are shifted away. For more details on these rounding rules, consult
the standard. We have included links to information about the standard at the end of this paper.

Next, we will present a series of SAS programs that demonstrate some commonly encountered floating-point pitfalls.
The next program shows that what we learned in algebra may not apply when we are working with floating-point
arithmetic.

One of the first lessons that we learned in algebra was about the associative property. That property states that the
addition or multiplication of a set of numbers is the same regardless of how the numbers are grouped in algebraic
representation: (A+B)+C=A+(B+C)

At the same time, we learned about the distributive property which states that the sum of two numbers multiplied by
a third number is equal to the first number multiplied by the third number added to the second number multiplied by
the third. This property is represented by the equation (A+B)*C=(A*C)+(B*C)

If you are working with floating point numbers, you can‟t rely on these properties to be true. Consider the following
program. We input three values, A B C. Next, we compute five variables that are the sums and products of our input
values. Finally, we test for equality with our algebraic identities (A_PLUS_B + c) = (A + B_PLUS_C),

(((A_TIMES_B * c) = (A * B_TIMES_C) and (A_PLUS_B * C) = (A_TIMES_C + B_TIMES_C). The

IFC function will return “ =” if our test is true and “^=” if our test is false. In the following program, our input values are
0.1, 0.2, and 0.3.

data A;

 input A B C;

 A_PLUS_B = A + B;

 B_PLUS_C = B + C;

 A_TIMES_C = A * C;

 A_TIMES_B = A * B;

 B_TIMES_C = B * C;

 equals = ifc(((A_PLUS_B + c) = (A + B_PLUS_C)),' =','^=');

 put 'Associative ' '(' a '+ ' b ') + ' c equals a '+ (' b '+ ' c ')';

 equals = ifc(((A_TIMES_B * c) = (A * B_TIMES_C)),' =','^=');

 put 'Associative ' '(' a '* ' b ') * ' c equals a '* (' b '* ' c ')';

 equals = ifc(((A_PLUS_B * C) = (A_TIMES_C + B_TIMES_C)),' =','^=');

 put 'Distributive ' '(' a '+ ' b ') * ' c equals

 '(' a '* ' c ') + (' b '* ' c ')';

 cards;

 .1 .2 .3

;

This program products the following output:

Associative (0.1 + 0.2) + 0.3 ^= 0.1 + (0.2 + 0.3)

Associative (0.1 * 0.2) * 0.3 ^= 0.1 * (0.2 * 0.3)

Distributive (0.1 + 0.2) * 0.3 ^= (0.1 * 0.3) + (0.2 * 0.3)

The output illustrates how simple operations can lose some bits of precision. When we calculated A_PLUS_B, we
had some bits shifted beyond the range of our floating-point representation, and they were lost when we stored into
our 64-bit floating point number.

Another algebraic identity that we learned was the commutative property: A + B + C = C + B + A. In other words,

the sum of a series of numbers should be the same, no matter what order that you sort them. The commutative
property is not necessarily true when you are dealing with floating point values.

First, we‟ll create a data set. The data set has 200 observations. For every positive value, we have a corresponding
negative value, so we know that the sum of all of the values is zero.

data Pow2;

pow2 = 1;

Programming: Foundations and FundamentalsSAS Global Forum 2011

14

do i = 1 to 100;

 pow2 = pow2 * 2;

 val = pow2; rand = uniform(0);output;

 val = -pow2; rand = uniform(0);output;

 end;

Put 'Range: ' val e16. ' to ' pow2 e16.;

run;

Next, we define a macro that will sort this data set by a variable and then run a DATA _NULL_ step to compute the
sum of the variable val and print the value.

%macro sum_set(Set,val,key);

proc sort data=&set;by &key;run;

data _null_;

 set &set end=done;

 format sum best16.;

 retain sum;

 if (_n_ = 1) then sum =0;

 sum = sum + &val;

 if (done) then put "Sorted by &key" @30 sum e16. ;

 run;

%mend;

Then we run this macro against our data set, sorting our data in different ways.

%sum_set(pow2,val,rand); /* Random order */

%sum_set(pow2,val,val); /* order by val */

%sum_set(pow2,val,descending val); /* order by reverse val */

%sum_set(pow2,val,pow2); /* order by absolute value */

This program produces these results:

Range: -1.267650600E+30 to 1.267650600E+30

Sorted by rand -7.036874418E+13

Sorted by val -2.814749767E+14

Sorted by descending val 2.814749767E+14

Sorted by pow2 0.000000000E+00

As you can see, the results are vastly different, ranging from -2.8E14 to +2.8E14. We got the expected answer only
when we sorted by the absolute value of the value that we were summing.

What happened?

 In all but the last example, we lost precision through addition. In many additions , the difference in the exponents
was greater the number of bits in our mantissa, and significant bits were shifted away. We got the expected answer
only when the observations were ordered in a way that every positive observation was followed by a negative

observation, resulting in an intermediate value of 0: () () …

Strange as it might seem, all of the results that we got should be considered within the range of acceptable answers.
Because we had 200 observations in the range of ±2

100
, any variation whose absolute value is less than 200*2

100-52

(5.6E16) should not be considered significant.

If you are developing applications that perform financial calculations and these calculations depend on getting exact
results to the last penny, you should be very careful if you use floating-point arithmetic. Remember that it is
impossible to precisely represent .01 as a binary floating point value. The value is very close, but precision loss could
lead to problems.

The next program illustrates the “gaps” in precisely representing decimals. We will create a data set that contains
dollars and cents values from $0.00 to $100.00. We will have one variable, DOLLARS, that represents our value as a
dollars and cents represented as fractions of a dollar. A second variable, CENTS, is integer value that that
represents the number of cents (one dollar is 100 cents). We then calculate the precision loss by taking the
difference between CENTS and DOLLAR*100.

Programming: Foundations and FundamentalsSAS Global Forum 2011

15

data pennies;

keep dollars cents diff;

format diff e15. dollars dollar5.2;

do d = 0 to 99;

 do c = 1 to 100;

 dollars = d+c/100;

 cents = d*100+c;

 diff = cents - dollars*100;

 output;

 end;

 end;

run;

ods graphics / noANTIALIAS;

ods rtf;

Title 'Distribution of decimal conversion error';

Title2 'Range $0.01 to $100.00';

proc sgplot data=pennies;

 scatter y=diff x=dollars /MARKERATTRS=(size=1pt symbol=circlefilled);

 run;

 ods rtf close;

Here is the graph that shows the distribution of the precision loss when we use fractional values to represent cents.

Figure 8 Distribution of Decimal Conversion Error

This graph shows that our rounding errors are not randomly distributed. They follow a definite and predictable
pattern. The first thing that we can observe is that there are jumps in the range of DIFF when DOLLARS is equal to
a power of two (2, 4, 8, 16, 32, 64). These jumps are because the exponent in our floating number represents a
power of two. The round-off errors represent the portion of the mantissa that was shifted away.

MACEPS is a machine constant that is defined as the smallest positive value that can be added to one and results in

a value greater than one. This constant is represented by the least significant bit in our mantissa,

. You can

Programming: Foundations and FundamentalsSAS Global Forum 2011

16

access this value by using the CONSTANT(“MACEPS”) function. We can use this value when we examine loss of
precision. Our next program takes the data set that we produced in the previous example, scales the data by
MACEPS, and raises the exponent value of DOLLARS to 2

data pennies2;set Pennies;

 twoexp = 2**floor(log2(dollars));

 diff_eps = (diff/CONSTANT("MACEPS"))/twoexp;

run;

Title3 'Scaled by MACEPS and the exponent';

proc sgplot data=pennies2;

 scatter y=diff_eps x=dollars /MARKERATTRS=(size=1pt symbol=circlefilled);

 run;

This program produces this scatter plot.

Figure 9 Distribution of Conversion Error After Scaling

We can see from this graph that the round-off errors from our calculations are regular and follow a predictable
pattern. The round-off errors occurred when we evaluated “d+c/100”. When d was 1 and c was 1, we got the 1 +
1/100. The exponent of the first term is 0, and the exponent of the second term is 7, which results in seven bits of the

mantissa being shifted away. IEEE rounding rules kept the result close to our expected result.

SAS provides a number of tools that enable you to deal with the limitations of floating-point representation.

SAS formats and informats handle the heavy lifting of converting numeric values to and from binary floating point
representation. Almost every SAS format does a binary to decimal conversion operation. The challenge for the
developers at SAS Institute who support this code has been to make these conversions as accurate as possible.

Programming: Foundations and FundamentalsSAS Global Forum 2011

17

The downside of numeric formats is that they can give the illusion of precision or equality for values that are actually
numerically distinct. If you print out a value with a format of 1.0, the value may be exactly 1, or it may be anywhere

between .5 and 1.499999999. This very simple program illustrates this issue.

data _null_;

 format n 1.;

 input n @@;

 put n= +1 @;

 cards;

 1 .75 1.25 1.499999999999999 .5

 ;

This program produces the following output:

n=1 n=1 n=1 n=1 n=1

In our last program, we found that we can see small differences when dealing with decimal values, such as dollars
and cents. One way to get more predictable results is to round or truncate calculated values. You might want to
round a calculated price to two decimal places.

The following table lists the functions that are available in SAS 9.2 that can be used to truncate or round numbers to
integer values. Most of the functions listed will truncate or round numerical results to integer boundaries. SAS
programmers can use these functions to take the results of calculations that may have suffered from precision loss
and convert the results to integer values using a variety of calculation options.

Table 10 Rounding and Truncation Functions

Function Description

CEIL Returns the smallest integer that is greater than or equal to the argument, fuzzed to avoid
unexpected floating-point results.

CEILZ Returns the smallest integer that is greater than or equal to the argument, using zero fuzzing.

FLOOR Returns the largest integer that is less than or equal to the argument, fuzzed to avoid
unexpected floating-point results.

FLOORZ Returns the largest integer that is less than or equal to the argument, using zero fuzzing.

FUZZ Returns the nearest integer if the argument is within 1E-12 of that integer.

INT Returns the integer value, fuzzed to avoid unexpected floating-point results.

INTZ Returns the integer portion of the argument, using zero fuzzing.

ROUND Rounds the first argument to the nearest multiple of the second argument or to the nearest
integer when the second argument is omitted.

ROUNDE Rounds the first argument to the nearest multiple of the second argument and returns an even
multiple when the first argument is halfway between the two nearest multiples.

ROUNDZ Rounds the first argument to the nearest multiple of the second argument, using zero fuzzing.

TRUNC Truncates a numeric value to a specified number of bytes.

We have already used the CONSTANT function to return MAXINT and MACEPS. CONSTANT can be used to
return a number of useful numeric values, as shown in the table below.

Programming: Foundations and FundamentalsSAS Global Forum 2011

http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a000207949.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a002135870.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a000207955.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a002135872.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a000245897.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a000245902.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a002135868.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a000245942.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a002212436.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a002209745.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/a000245963.htm

18

Table 11 Arguments for the CONSTANT Function with Descriptions of the Return Values

Constant Description

'EXACTINT' <,nbytes> Exact integer

'BIG' The largest double-precision number

'LOGBIG' <,base> The log with respect to base of BIG

'SQRTBIG' The square root of BIG

'SMALL' The smallest double-precision number

'LOGSMALL' <,base> The log with respect to base of SMALL

'SQRTSMALL' The square root of SMALL

'MACEPS' Machine precision constant

'LOGMACEPS' <,base> The log with respect to base of MACEPS

'SQRTMACEPS' The square root of MACEPS

'E' The natural base

'EULER' Euler constant

'PI' Pi

BIG, SMALL, LOGBIG, LOGSMALL and SQRTSMALL can be used to guard against range errors (overflow,
underflow) in calculations. E, EULER and PI return the best machine representation of those mathematical
constants. Using these constants is a better programming practice than coding these special values by “hand.”

The COMPFUZZ function can be used to do “fuzzy” comparisons. Fuzzy comparisons will compare two values and
return equality if the first two arguments are within a defined range. The function allows the careful programmer to
account for precision issues. The following table gives a synopsis of COMPFUZZ. COMPFUZZ is not documented in
the SAS 9.2 documentation, but it is discussed in SAS note 15553.

Table 12 COMPFUZZ Function

COMPFUZZ This function is used for numerical error analysis and performs a fuzzy comparison of two

numeric values.

Syntax COMPFUZZ(value1, value2 <, fuzz <, scale>>)

Arguments

value1 specifies the first of two numeric values to be compared.

value2 specifies the second numeric value to be compared.

fuzz is a nonnegative numeric value that specifies the relative threshold for comparisons.
Values greater than or equal to one are treated as multiples of the machine precision. To
determine machine precision, see the CONSTANT('MACEPS') function.
Default: 1024

scale specifies the scale factor used in computing the threshold.
Default: MAX (ABS (value1), ABS (value2))

Returns

-1 if value1 < value2 – threshold

0 if ABS(value1 - value2) <= threshold

1 if value1 > value2 + threshold

 where
 threshold = fuzz * ABS(scale) /* if 0 <= fuzz < 1 */
 threshold = fuzz * ABS(scale) * CONSTANT('MACEPS')
 /* if 1 <= fuzz < 1 / CONSTANT('MACEPS') */

Our next program uses COMPFUZZ to compare two sums and determine whether they are relatively equal. We
start with the data set POW2 that we created in a previous example. POW2 has a variable val, which ranges in

value from -1.267650600E+30 to 1.267650600E+30. We then create two new data sets that sort POW2 in two
different ways. The last DATA step computes the sum of val when it is sorted in two different orders. When we

have added all of our observations, we use COMPFUZZ to compare our sums. SCALE is the sum of the absolute

Programming: Foundations and FundamentalsSAS Global Forum 2011

http://support.sas.com/kb/15/553.html

19

values of val. We set fuzz to the 2 times the number of observations, because that is the total number of terms in

our sums.

proc sort data=pow2 out=pow2_s1 (rename=(val=val1));by descending val;run;

proc sort data=pow2 out=pow2_s2 (rename=(val=val2));by val; run;

data powsum; merge pow2_s1(keep=val1) pow2_s2(keep=val2) end=done;

retain sum1 0 sum2 0 nobs 0 scale 0 ;

scale = scale + abs(val1) + abs(val2);

nobs = nobs + 1;

sum1 = sum1 + val1;

sum2 = sum2 + val2;

if done then do;

 compare = compfuzz(sum1, sum2,nobs*2,scale);

 put sum1= sum2= nobs= scale= compare=;

 end;

run;

The program produces this output:

sum1=2.8147498E14 sum2=-2.81475E14 nobs=200 scale=1.0141204E31 compare=0

Even though there is a wide range between 2.8147498E14 and -2.81475E14, they should be considered to be equal,

within the context of our input values.

CONCLUSION

This paper has shown several important aspects of IEEE floating-point numbers. Some of the important things to
remember are:

 They can represent a wide range of values, ±1.7976931348623157 × 10
308

.

 They are represented as binary fractions, so many decimal values cannot be exactly represented.

 Integer values can be exactly represented in the range ±9,007,199,254,740,992.

 Double-precision floating-point numbers have approximately 15 decimal digits precision.

 Simple mathematical operations may result in loss of significance.

RESOURCES

The IEEE 754 standard for binary floating-point arithmetic can be found at http://grouper.ieee.org/groups/754/.

Wikipedia has a fairly readable discussion of IEEE 754 at http://en.wikipedia.org/wiki/IEEE_754-1985.

Goldberg, David. "What Every Computer Scientist Should Know About Floating-Point Arithmetic", ACM Computing
Surveys, March 1991: Available at http://www.validlab.com/goldberg/paper.pdf

SAS Note 230 has an excellent discussion of dealing with representation error in SAS programs:
http://support.sas.com/techsup/technote/ts230.html

SAS Note 15553 describes the COMPFUZZ function. http://support.sas.com/kb/15/553.html

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Clarke Thacher
SAS Campus Drive
SAS Institute Inc.
Clarke.Thacher@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Programming: Foundations and FundamentalsSAS Global Forum 2011

http://grouper.ieee.org/groups/754/
http://en.wikipedia.org/wiki/IEEE_754-1985
http://www.validlab.com/goldberg/paper.pdf
http://en.wikipedia.org/wiki/ACM_Computing_Surveys
http://en.wikipedia.org/wiki/ACM_Computing_Surveys
http://support.sas.com/techsup/technote/ts230.html
http://support.sas.com/kb/15/553.html
mailto:Clarke.Thacher@sas.com

	2011 Table of Contents

