
1

Paper 270-2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks

Darylene Hecht, SAS Institute Inc., Cary, NC

ABSTRACT

PROC PRINT is one of the oldest living procedures in SAS
®
 and is probably the most widely used procedure of all

time. In SAS
®
 9.3, the internals of PROC PRINT were completely rewritten to update it and make it fully compatible

with the Output Delivery System (ODS). This paper presents many of PROC PRINT’s new tricks to help you create
more complex reports for multiple destinations, including HTML, PDF, RTF, and (of course) LISTING. Topics include
styles, traffic lighting, PROC DOCUMENT to store and replay the output, the new SUMLABEL and BLANKLINE
options, #BYVAL and #BYVAR substitutions to customize titles, and the BYID layout.

You CAN teach an old PROC new tricks!

INTRODUCTION

From its humble beginnings as a way to provide a quick listing of your data, to today’s ability to produce complex
reports in a variety of output formats, PROC PRINT continues to be one of the most frequently used procedures by
SAS programmers. However, until SAS 9.3, there were still areas of the Output Delivery System (ODS) that PROC
PRINT was unable to take advantage of due to its older implementation. With SAS 9.3, PROC PRINT has been
rewritten and is now fully compatible with ODS, thus bringing even more functionality to users.

This paper will take PROC PRINT code from its simplest form and develop it into a program that produces complex
reports using styles in multiple output formats. Along the way, we’ll highlight some features that are new to SAS 9.3,
as well as features that have been available in previous releases, but might not be well known to users. We will also
examine how to use PROC DOCUMENT to store the procedure code, along with the data, in order to replay it later
using any chosen output format.

OUR EXAMPLE DATA SET

The first thing we need is data. To build our report, we will use data that represents energy expenditures in various
states and regions. The following code creates the data set energy, with variables for region, division, state,
expenditure type, and expenditure amount.

data energy;

length state $2;

input region division state $ type expenditures @@;

datalines;

1 1 ME 1 708 1 1 ME 2 379 1 1 NH 1 597 1 1 NH 2 301

1 1 VT 1 353 1 1 VT 2 188 1 1 MA 1 3264 1 1 MA 2 2498

1 1 RI 1 531 1 1 RI 2 358 1 1 CT 1 2024 1 1 CT 2 1405

1 2 NY 1 8786 1 2 NY 2 7825 1 2 NJ 1 4115 1 2 NJ 2 3558

1 2 PA 1 6478 1 2 PA 2 3695 4 3 MT 1 322 4 3 MT 2 232

4 3 ID 1 392 4 3 ID 2 298 4 3 WY 1 194 4 3 WY 2 184

4 3 CO 1 1215 4 3 CO 2 1173 4 3 NM 1 545 4 3 NM 2 578

4 3 AZ 1 1694 4 3 AZ 2 1448 4 3 UT 1 621 4 3 UT 2 438

4 3 NV 1 493 4 3 NV 2 378 4 4 WA 1 1680 4 4 WA 2 1122

4 4 OR 1 1014 4 4 OR 2 756 4 4 CA 1 10643 4 4 CA 2 10114

4 4 AK 1 349 4 4 AK 2 329 4 4 HI 1 273 4 4 HI 2 298

;

In order to display our report using BY groups, we need to sort the data by the variables that classify the data. In our
example, those variables are region, division, and type. The output data set (produced by PROC SORT) that we will
use for our examples is energy_report.

proc sort data=energy out=energy_report;

 by region division type;

run;

Last, let’s create some formats that transform the numeric values of region, division, and type to descriptive text that
will be used in the report.

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

2

proc format;

value regfmt 1='Northeast'

 2='South'

 3='Midwest'

 4='West';

value divfmt 1='New England'

 2='Middle Atlantic'

 3='Mountain'

 4='Pacific';

value usetype 1='Residential Customers'

 2='Business Customers';

run;

LISTING: AN OLDIE, BUT GOODIE

The SAS Introductory Guide, published in 1985, states:

“The natural first step after getting your data into a SAS data set is to print it” (Helwig 1985, p. 31).

That’s still true 25 years later. Even if you do not physically print the data, many times you still want to display it to
check accuracy, provide a reference to the data values, or look at the value ranges. In the beginning, there was the
Listing, sparkling with information printed on green and white striped paper. And mainframe users saw that it was
good. Even though many output formats have evolved since those early years, Listing is still considered a “quick and
dirty” way to produce, well, a listing of your output. The following code shows the simplest PROC PRINT step and a
partial view of the Listing output that is produced.

proc print data=energy_report;

run;

Output 1. Listing Output from Simple PROC PRINT

Listing does the job, but the output is certainly not what would typically be considered a final report format. But what
a quick and easy way to see what the data looks like!

With the addition of a couple of simple ODS statements, you can quickly make the report look more polished by
creating it in HTML. The following example and partial output shows the same report in HTML.

ods html file=’my_report’;

 proc print data=energy_report;

 run;

ods html close;

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

3

Output 2. HTML Output from Simple PROC PRINT

There are many output destinations currently supported by ODS, including HTML, RTF, PDF, PostScript, and XML.
Most of the output examples shown in this paper are HTML. However, any of these reports can be easily produced in
any of the other output formats simply by changing the destination in the ODS statement or by adding ODS
statements to create multiple output formats at the same time. For example, the following code produces the same
report as a Listing, an HTML file, a PDF file, and an RTF file.

ods listing;

ods html file=’my_report.html’;

ods pdf file=’my_report.pdf’;

ods rtf file=’my_report.rtf’;

 proc print data=energy_report;

 run;

ods _all_ close;

TABLE OF CONTENTS

When you run SAS interactively, you can use the Results window to keep track of the output you are creating. The
first difference you’ll see in SAS 9.3 is in the presentation of the Results window when using PROC PRINT. In the
Results window, each of the output objects is displayed by an icon indicating which output destination was used. For
each BY group, a separate output object is created and is separately accessible. In previous releases, the Listing
results were displayed as a single output object and you couldn’t navigate to each BY group separately. The following
view of the Results window in SAS 9.2 shows the Listing icon representing the entire document, while the HTML icon
shows each BY group as a separate section.

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

4

Display 1. SAS 9.2 Results Window

In SAS 9.3, the Listing is displayed in a consistent manner with the non-Listing destinations, and you can navigate
separately to each BY group in the Listing, just as you can with the non-Listing destinations. The following view of the
Results window is taken from SAS 9.3.

Display 2. SAS 9.3 Results Window

THE BLANKLINE OPTION

Now let’s start sprucing up the output, creating a report that conveys the information to the reader in a format that is
easier to interpret.

BLANKLINE is a new option added to PROC PRINT in SAS 9.2. It is a generalization of the DOUBLE option, which
writes a blank line between each observation to make the output double-spaced. However, DOUBLE is valid only for
Listing output and doesn’t allow any flexibility in how often to insert the blank line. The BLANKLINE option enables
you to specify how many observations you’d like to write before inserting a blank line and is valid for all destinations.
BLANKLINE is specified in the PROC statement and its syntax in the simplest form is as follows:

BLANKLINE = n

This code writes a blank line after every n observations. For example, perhaps our data would be easier to read when

displayed in groups of 5, as in the following example:

ods html file=’my_report’;

 proc print data=energy_report blankline=5;

 run;

ods html close;

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

5

Output 3. Using the BLANKLINE Option

In SAS 9.3, the BLANKLINE behavior was modified slightly. In SAS 9.2, the observation count to determine when to
insert a blank line was reset to 0 at the beginning of each page. With SAS 9.3, the observation count is reset at the
beginning of each BY group instead. This makes the output more consistent between Listing, which has physical
pages, and an output format like HTML, which does not.

TITLES, BY GROUPS, AND FORMATS

There are several standard SAS statements that add more clarity to our output. In the following example, a TITLE
statement has been added to identify our report. Instead of using the BLANKLINE option to group our observations,
let’s use the BY statement to create groupings for easier reading. And the FORMAT statement applies the formats
that we previously created, in addition to the standard SAS format DOLLAR, to specific variables.

ods html file=’my_report’;

 title "Expenditures Summary";

 proc print data=energy_report;

 by region division type;

 format region regfmt. division divfmt. type usetype.

 expenditures dollar12.2;

 run;

ods html close;

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

6

Output 4. Using Titles, BY Groups, and Formats

THE ID AND SUM STATEMENTS

Our report is looking better, but the headings between each BY group look awkward. We can add an ID statement to
help with that. Using the ID statement in conjunction with the BY statement causes PROC PRINT to use a special
layout that makes the output much more readable. With the BYID layout, the heading between each BY group, which
is called the BY line, is suppressed; and the value of the ID variable is listed as part of the table instead of in the BY
line.

We can add even more value to the information presented by adding a SUM statement. The SUM statement totals
the values of each specified numeric variable. When the SUM statement is used in conjunction with the BY
statement, a total is presented for each BY group as illustrated in the following example:

ods html file=’my_report’;

 title "Expenditures Summary";

 proc print data=energy_report;

 by region division type;

 id region division type;

 sum expenditures;

 format region regfmt. division divfmt. type usetype.

 expenditures dollar12.2;

 run;

ods html close;

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

7

Output 5. Using BYID Layout and SUM Statement

THE SUMLABEL OPTION

The SUMLABEL option, introduced in SAS 9.2, is used in the PROC statement to indicate that the label of the BY
variables should be used on the total lines instead of the BY variable names. The following code creates a report that
shows the expenditure totals by geographic region. By adding the SUMLABEL option and a LABEL statement, we
can customize the total line. In this example, we are not using the special BYID layout.

ods html file=’my_report’;

 title "Expenditures Summary";

 proc print data=energy_report sumlabel noobs;

 by region division;

 var state expenditures;

 sum expenditures;

 label region = 'Geographic Region';

 format region regfmt. division divfmt. type usetype.

 expenditures dollar12.2;

 run;

ods html close;

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

8

Output 6. Using the SUMLABEL Option

STYLES

We can customize the appearance of the report even further using styles. Styles enable you to specify attributes such
as colors, backgrounds, fonts, cell widths, cell heights, and justifications for various parts of the report. Styles affect
the appearance of all destinations except Listing.

STYLE DEFINITIONS

The simplest way to specify a new style is to use one of the predefined style definitions. A style definition is a
complete description of all the attributes to use when creating the report. Style attributes are the smallest building
blocks of a style definition. Attributes specify the report's colors, fonts, backgrounds, cell sizes, and so on. Attributes
are grouped into categories called style elements. A style element describes the attributes for a particular piece of the
report. Examples of style elements are Header, Data, and RowHeader. Finally, the style elements are grouped
together to form a complete style definition that determines the appearance of the overall report. Style attributes and
style elements are discussed more fully in the following sections. The general form of a style definition is as follows:

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

9

my-style-definition
 style-element-1
 attribute(s)
 style-element-2
 attribute(s)
 ……
 style-element-n
 attribute(s)
end-my-style-definition

Some of the predefined style definitions provided by ODS are Analysis, Gantt, BlockPrint, and (new for 9.3) HtmlBlue.
To see a complete list of the predefined style definitions, run the following code:

proc template;

 list styles;

run;

You can also create your own style definitions using PROC TEMPLATE. However, that topic is beyond the scope of
this paper. For more information about creating and using style elements and definitions, see Output Delivery
System: The Basics and Beyond (Haworth, Zender, and Burlew 2009).

There is always a default style definition for any report. To override that and use a different predefined style definition,
specify it in the ODS statement. For example, the following code changes the style definition for the report to
HtmlBlue:

ods html file=’my_report’ style=HtmlBlue;

 title "Expenditures Summary Using HtmlBlue Style";

 proc print data=energy_report;

 by region division type;

 id region division type;

 sum expenditures;

 format region regfmt. division divfmt. type usetype.

 expenditures dollar12.2;

 run;

ods html close;

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

10

Output 7: Changing the Default Style Definition

STYLE SPECIFICATIONS

Another way to specify a new style is by using a style specification in the PROC, VAR, ID, and/or SUM statements.
Using a style specification overrides style elements or attributes that were defined in the given style definition. There
are three parts to a style specification for PROC PRINT— the location, the style element, and the style attribute. The
general syntax of a style specification is as follows:

STYLE <(location(s))> = <style-element> <[style-attribute(s)]>;

Location

The location identifies the part of the report that the style affects. For PROC PRINT, there are nine defined locations.
The following table shows the defined location names and the part of the report that is affected by each location.

Location Name Area of Report Affected

TABLE The underlying table structure

OBS The values in the OBS and ID
columns

DATA The values in columns other
than OBS and ID

OBSHEADER The header of the OBS and ID
columns

HEADER The header of columns other
than OBS and ID

BYLABEL The BY variable name or label
in the SUM line

TOTAL The cells in the SUM line
containing totals for each BY
group

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

11

Location Name Area of Report Affected

GRANDTOTAL The cells in the SUM line
containing the grand total for
the whole report

N The N= line

Table 1. Defined Locations for PROC PRINT

Style Attributes

Style attributes describe what you want to change. Each style attribute specification has the following general form:

attribute-name = attribute-value

Some examples of attribute specifications are background=red, foreground=blue, and font_style=italic. A complete
list of possible attributes is documented in the Base SAS Procedures Guide.

If we wanted to change the background color of the data cells in our report to blue and the background of the OBS
cells to red, we could use the following style specification in the PROC statement:

proc print data=energy_report

 style (data) = [background=blue]

 style (obs) = [background=red foreground=white];

Output 8: Specifying Style Attributes

Style Elements

As stated previously, a style element consists of a grouping of style attributes. The PRINT procedure assigns a
default style element to each location, providing each location with a default set of attributes. For example, the style
element Header is a predefined style element that contains the set of attributes that seem appropriate for a header in
a report. As you see in the table below, that style element is then assigned to be the default style element for several

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

12

locations in the report. As you review the following table of locations and default style elements, do not be confused
by the same name being used as both a location and a style element. They refer to two different things, even though
they have the same name.

Location Name Default Style Element

TABLE Table

OBS RowHeader

DATA Data, for all but ID columns;

RowHeader, for ID columns

OBSHEADER Header

HEADER Header

BYLABEL Header

TOTAL Header

GRANDTOTAL Header

N NoteContent

Table 2. Default Style Elements for Each Location in PROC PRINT

For example, let’s say you’d like for the cells containing the totals in the SUM lines to have the same appearance as
the rest of the data cells. You could use the following style specification in the PROC statement to specify that the
Data style element should be used in place of the default element Header for those locations. Note that the labels in
the SUM lines are not affected. That style is controlled by the BYLABEL location.

proc print data=energy_report style (total) = Data

 style (grandtotal) = Data;

Output 9: Changing the Default Style Element

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

13

OVERRIDING AND INHERITING STYLE SPECIFICATIONS

As stated previously, style specifications can be specified in the PROC, VAR, ID, and SUM statements. So far, we
have explored the effect only when they are specified in the PROC statement. The difference when they are specified
in the other statements is how global the effect is. Styles that are specified in the PROC statement are global to the
entire procedure. Styles specified in the VAR, ID, and SUM statements are local to the statement they are specified
in. Styles specified in the ID statement affect the ID columns only. Styles specified in the SUM statement are applied
to the cells containing sums. Styles specified in the VAR statement are applied to all columns of variables specified in
the VAR statement.

The hierarchy in which style specifications are combined to form the final definition starts at the top level with the
default style definition. Style elements or attributes specified in the PROC statement are then used to override those
same elements or attributes defined in the default. Similarly, style elements or attributes specified in the VAR, ID, or
SUM statements override those same elements or attributes defined in the PROC statement. In general, anything
that is not overridden by a subsequent style specification is inherited from the parent’s specification.

Styles Specified in the PROC Statement

Overriding and inheriting styles can get very confusing because there are so many combinations available. Although
this variety gives you a great deal of flexibility in creating your report, it can also be a bit overwhelming. The best
approach is to experiment with various combinations until you get a feel for how it all works. Let’s start by looking at
overriding the default style elements and attributes in the PROC statement.

In the PROC statement, the default style element for a location can be completely overridden and replaced by a new
style element for the location. For example, you could use the Header style element for all of the data cells instead of
the default style element of Data. The following statement would override the style used for the data cells, but inherit
the styles of all the other locations from the default style definition.

proc print data=energy_report style(data)=header;

Or you might choose to change only certain attributes of the style element and inherit the rest. For example, you
could change the background of the data cells to blue, but leave the rest of the default attributes of the Data style
element unchanged.

proc print data=energy_report style (data) = [background=blue];

Or you could combine the two to override the default style element of the location, and then further override specific
attributes of that element while inheriting the rest. For example, the following statement uses the Header style
element for the data location, but also changes the foreground to be blue. The rest of the attributes are inherited from
the Header style element.

proc print data=energy_report style(data)=header [foreground=blue];

Styles Specified in the VAR, ID, and SUM Statements

In the same way, styles specified in the VAR, ID, and SUM statements override or inherit from the PROC statement.
When a new style element is specified for a location, it overrides the previously active one. If new attributes are
specified, those attributes are overridden and the rest are inherited from the active style element.

In the following example, new font_style and background attributes are specified for the Header location in the PROC
statement. This overrides those two attributes from the default style definition and inherits the rest. Then in the ID
statement, the foreground attribute is changed to red and the background is changed to white. The result is that the
ID columns inherit the italic font_style from the PROC statement, override the background to be white, and then
override the foreground attribute to be red. Notice that the foreground specification is actually overriding the default
style definition, since the attribute wasn’t changed in the PROC statement. The other columns use the italic font with
the yellow background as specified in the PROC statement.

ods html file=’my_report’;

title "Expenditures Summary";

 proc print data=energy_report

 style (header) = [font_style=italic background=yellow];

 by region division type;

 id region division type /style (header) = [foreground=red

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

14

 background=white];

 sum expenditures;

 format region regfmt. division divfmt. type usetype.

 expenditures dollar12.2;

 run;

ods html close;

Output 10: Overriding and Inheriting Styles

USING STYLES WITH FORMATS

Traffic lighting is a term used to describe a class of reports in which the appearance of a cell depends on the actual
data value in it. This technique can be used to visually highlight fields that have values of importance to the reader. A
good example of traffic lighting is a report that indicates when a value gets too high or too low. In PROC PRINT,
traffic lighting can be accomplished by creating a format that associates style attributes to the data values and then
using that format in your style specification.

Let’s first look at how to create the format. Using our example of energy expenditures, let’s say that expenditures
greater than $1000 need to be flagged for management to review. Expenditures less than $500 should be flagged for
commendation. And the rest of the values are in an expected range and therefore need no attention. We can create
the following format to associate different background and foreground colors with each of these conditions:

proc format;

value backcolor low - 499 = 'light blue'

 500 - 1000 = 'white'

 1001 - high = 'light red';

run;

proc format;

value forecolor low - 499 = 'white'

 500 - 1000 = 'black'

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

15

 1001 - high = 'yellow';

run;

Now we use these formats as part of our style specification in the VAR statement to associate the different colors with
the value of the expenditures variable.

ods html file=’my_report’;

title "Expenditures Summary Using Traffic Lighting";

 proc print data=energy_report;

 var state;

 var expenditures / style(data) = [background=backcolor.

 foreground=forecolor.

 font_weight=bold];

 by region division type;

 id region division type;

 sum expenditures;

 format region regfmt. division divfmt. type usetype.

 expenditures dollar12.2;

 run;

ods html close;

Output 11: Using Styles with Formats

As you can see, the usage of styles can be as simple or as complex as you like. The best way to create the final
report that you want is to explore and experiment with the various combinations of style definitions, elements, and
attributes that are available.

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

16

CUSTOMIZING TITLES

There are several SAS statements and options that interact with PROC PRINT to enable you to easily customize
titles on your report. The NOBYLINE system option used in conjunction with the #BYVAR and #BYVAL arguments in
the TITLE statement can greatly enhance the readability of your report.

Specifying the NOBYLINE option suppresses the automatic printing of BY lines in the output. In our previous
examples using the BYID layout for PROC PRINT, the NOBYLINE option was implicitly set for the user in order to
create the special layout without BY lines. However, when NOBYLINE is explicitly set by the user, PROC PRINT
inserts a page break between each BY group, along with suppressing the BY lines. This causes the text in the TITLE
statements to appear at the top of each BY group, since that is the top of each page.

Repeating the same title before every BY group doesn’t really add anything to the report. But adding the #BYVAR
and/or #BYVAL arguments to the TITLE statement can create a unique title at the top of each BY group, inserting the
BY variable name or the value of the BY variable as part of the title.

#BYVAR

The #BYVAR argument in the TITLE statement substitutes the BY variable name, or variable label if one was
specified, into the title text and displays the name or label in the title. You specify which BY variable to use for the
substitution by either using the syntax of #BYVARn, where n represents the variable’s order in the BY statement, or
#BYVAR(variable-name).

#BYVAL

The #BYVAL argument substitutes the current data value of the specified BY variable into the title text and displays
the value in the title. As with #BYVAR, you specify which BY variable to use for the substitution by either using the
syntax of #BYVALn, where n represents the variable’s order in the BY statement, or #BYVAL(variable-name).

The following example uses the #BYVAR and #BYVAL arguments, showing each form of syntax, to customize our
TITLE statements. Don’t forget to include the NOBYLINE option. Remember that it is a global option, so it remains in
effect until explicitly changed to BYLINE. To give the title a more formal look, I also added a LABEL statement to
create a label for the region variable that capitalizes the first letter.

ods html file=’my_report’;

options nobyline;

 proc print data=energy_report;

 title1 "Expenditures Summary by #byvar1";

 title2 'This table shows #byval3 expenditures';

 title3 'in the #byval(division) division.';

 label region ='Region';

 by region division type;

 id region division type;

 sum expenditures;

 format region regfmt. division divfmt. type usetype.

 expenditures dollar12.2;

 run;

ods html close;

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

17

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

18

Output 12: Customizing Titles

THE DOCUMENT DESTINATION AND PROCEDURE

The DOCUMENT output destination creates a special type of SAS file that contains the results of your analyses in a
generic form before it has been formatted for any specific output format. You can think of this file as the intermediate
output created by the executing SAS procedure, before reaching its final output destination (for example, a PDF
report). You can then use this intermediate file, called an ODS document, as input to the DOCUMENT procedure to
view and manage the various pieces of your output, make changes to titles and footnotes, replay the document to
create output in a specific format, and much more. New in SAS 9.3, PROC PRINT fully supports the DOCUMENT
destination. In this paper, we touch on only a few of the most basic topics related to the DOCUMENT destination. For
more detailed information, please see the SAS Output Delivery System: User’s Guide.

CREATING AN ODS DOCUMENT

Just like the other output destinations, the DOCUMENT destination is specified in the ODS statement. The difference
is that the file created is a member in a SAS library instead of being a final result file. The following example creates
an ODS document in the TEST library with the name my_document. Remember that the output produced is an ODS
document that contains all the information needed to create the final report, but not the final report itself.

ods document name=test.my_document(write);

title "Expenditures Summary";

 proc print data=energy_report;

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

19

 by region division type;

 id region division type;

 sum expenditures;

 format region regfmt. division divfmt. type usetype.

 expenditures dollar12.2;

 run;

ods document close;

MANAGING AN ODS DOCUMENT

Using the DOCUMENT procedure, you can now list the contents of the ODS document, as well as rearrange,
duplicate, or remove output from it. The following code creates a listing of the contents of the document. The report
lists each output object within the document and its internal name, which is used in other statements to identify each
output piece. Note the use of the QUIT statement to terminate the DOCUMENT procedure, since DOCUMENT allows
multiple RUN statements before terminating the procedure.

proc document name=test.my_document;

 list / levels = all;

run;

quit;

Output 13: Contents of ODS Document

Using other PROC DOCUMENT statements, you can now change various aspects of the output, such as titles,
footnotes, and page breaks, by referencing the internal name.

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

20

REPLAYING AN ODS DOCUMENT

One of the most important uses of PROC DOCUMENT is to replay a document. When the document was created, all
the information was stored in a generic way. Now, you can create a final report in any output format you choose. For
example, we might now wish to create the HTML version of this report using the following code. The HTML output
produced from PROC DOCUMENT replay looks exactly the same as if we had executed the PROC PRINT step
directly to HTML.

ods html file = 'my_report.html';

 proc document name=test.my_document;

 replay;

 run;

 quit;

ods html close;

Output 14: HTML Replay of ODS Document

MODIFYING AN ODS DOCUMENT

After the document is created, you can modify many parts of the report such as titles, footnotes, and labels, as well
as rearrange the order of the output. Using the internal names we listed previously, the following simple example
shows how to add a subtitle to the report using the OBSTITLE statement and then produce the report in PDF. The
DIR statement sets a current path so that it doesn’t have to be explicitly specified in subsequent statements.

ods pdf file = 'my_report.pdf';

 proc document name=test.my_document;

 dir \Print#1;

 obstitle1 ByGroup1#1\Print#1 'Expenditures for July, 2010';

 obstitle2 ByGroup1#1\Print#1 'Created for SAS Institute';

 /* obstitle statements for other BY groups would go here */

 replay;

 run;

 quit;

ods pdf close;

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

21

Output 15: Modifying an ODS Document

There are many other features available in PROC DOCUMENT that enable you to customize your output. There is
also a Documents window to interactively manipulate the document and customize the output, which is sometimes
easier than using PROC DOCUMENT in a batch environment. The best news is that with SAS 9.3, PROC PRINT
fully supports all of the features of the DOCUMENT destination and procedure.

CONCLUSION

We’ve explored PROC PRINT from its simplest form to more complex programs to create and customize reports.
Hopefully, you found some new tricks and techniques that will prove useful in your own environment. If your past use
of PROC PRINT has been only to create quick listings of your data, I hope you’ll consider broadening your view of
PROC PRINT to include using other output destinations, styles, and the many options available to create complex
reports easily.

REFERENCES

Haworth, Lauren E. 2001. Output Delivery System: The Basics. Cary, NC: SAS Institute Inc.

Haworth, Lauren E., Cynthia L. Zender, and Michele M. Burlew. 2009. Output Delivery System: The Basics and
Beyond. Cary, NC: SAS Institute Inc.

Helwig, Jane T. ed. 1985. SAS
®
 Introductory Guide. 3rd ed. Cary, NC: SAS Institute Inc.

SAS Institute Inc. 2009. Base SAS
®
 9.2 Procedures Guide. Cary, NC: SAS Institute Inc.

SAS Institute Inc. 2009. SAS
®
 9.2 Output Delivery System: User’s Guide. Cary, NC: SAS Institute Inc.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Programming: Foundations and FundamentalsSAS Global Forum 2011

PROC PRINT and ODS: Teaching an Old PROC New Tricks, continued

22

Darylene Hecht
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Work Phone: (919) 531-7736
Fax: (919) 677-4444
E-mail: darylene.hecht@sas.com
Web: www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Programming: Foundations and FundamentalsSAS Global Forum 2011

	2011 Table of Contents

