
1

Paper 271-2011

Using SAS® Formats: So Much More than “M” = “Male”

Pete Lund, Looking Glass Analytics, Olympia, WA

Abstract

Formats in SAS
®
 can be used to change the way that a value is displayed. There are numerous formats

supplied by SAS for controlling the way dates, times, numbers, currencies and other types of values

appear. You can also use PROC FORMAT to build your own formats and create labels for your data

values.

This paper will look at a number of features of PROC FORMAT: using value ranges, having open-ended

ranges (with the LOW and HIGH range values), capturing left-overs (with OTHER), nesting one format

inside another, controlling the sort order of the formatted values (with the NOTSORTED option), and

allowing a value to fall into more than one range (with the MULTILABEL option).

Formats allow much more than just changing the labels that are displayed for your data. SAS procedures

analyze data at the formatted value level, which means that you can do different levels of analysis just by

changing the format, without having to create new variables. We‟ll look at different ways to use formats in

the DATA step and procedures.

What is a Format?

A format is, most simply put, a method of assigning a label to a value. SAS supplies over 130 formats (in

v9.2) for labeling dates, currencies, binary/octal/hexadecimal values and others. For example, if you

have a SAS date value of 18309 you could use formats to display it as 02/16/2010 or as February 16,

2010 or as 2010Q1.

You can also create your own formats with PROC FORMAT to label your data as needed. Displaying “M”

as “Male” or “CA” as “California” or a value between 1 and 100 as “Low” is easy to do with a format. In

either case, using SAS-supplied or user-written formats, all of this is done without changing the

underlying data value, just the way that it is displayed.

Why Use a Format?

The obvious answer is that you can give more meaningful labels to data, like “Male” rather than “M” – but

there‟s so much more. You can have more than one format that could be assigned to a variable at

different times. A state variable could be formatted to display the state name, the capital city, the SAS

region, etc. There‟s no need for storing multiple variables, just have different formats to display the label

needed for the particular need.

Formats can often add some “intelligence” to the data. This can readily be noted in formatting dates and

times, which are simply stored as the number of days since January 1, 1960 and the number of seconds

since midnight, respectively. As noted earlier, 2/16/2010 is much more meaningful than 18309.

Programming: Foundations and FundamentalsSAS Global Forum 2011

2

Perhaps the most powerful use of formats is that SAS procedures will do analysis at the formatted value

level. So, that means I can do a PROC FREQ on a SAS date variable at the yearly, quarterly, monthly or

daily level just by changing the format. Again, there is no need for multiple variables, just multiple

formats.

Format Names

Before we look at how formats are used, let‟s quickly go over format names. The name of a format

consists of three parts; the “name”, width and decimal portion. For example, the components of three of

the SAS-supplied formats are:

Example usage
Format name

(required)
Width

(required)
Decimal portion

(optional) Original value Formatted Value

DOLLAR9.2 DOLLAR 9 2 1234.56 $1,234.56
MMDDYY10. MMDDYY 10 18309 2/16/1996
$UPCASE. $UPCASE (default is 8) a test A TEST

There are a few things to notice about the format names.

- There is a leading $ for formats that act on character variables.

- There is always a ., even if no decimal portion is required. Obviously, dates and character strings

will not have a decimal portion to the display, but the period is always part of the format

specification.

- There‟s always a width, even if you don‟t specify it. This determines the width of the displayed

output and every format has a default width. There is also a specified minimum and maximum

width.

In the examples above, both the $DOLLAR and the MMDDYY formats place delimiters and other

characters in the displayed label. When using SAS-supplied formats, it‟s important to keep in mind that

any “special” characters that the format places in the value are part of the width. You can look at the SAS

documentation to see what the effect of different width specifications will be. For example, here‟s what

the output of the MMDDYY format is with different widths specified (all formatting 18309):

MMDDYY10. 02/16/1996 10-character output
MMDDYY9. 02/16/96 No room for 4-digit year (same result with mmddyy8.)
MMDDYY7. 021696 No room for slashes (same result for mmddyy6.)
MMDDYY5. 02/96 Just the month and year
MMDDYY4. 0296 Just the month and year, but no room for the slash

,,,and so on. You can see that it pays to look at the documentation. Also, note that using MMDDYY1.

would have resulted in an error, as the minimum width defined for the MMDDYY format is 2.

For the most part, changing the width of formats that are created with PROC FORMAT will simply result in

truncation of the label.

Using a Format – the FORMAT Statement

The FORMAT statement, in either a procedure or a DATA step, associates a format with a variable. If it‟s

used in a datastep, the format is permanently associated with the variable and will be used whenever

values for the variable are displayed.

Programming: Foundations and FundamentalsSAS Global Forum 2011

3

data TestFormat;

 format dob MMDDYY10.;

 dob = 18309;

 put dob=;

run;

dob=02/16/2010

data _null_;

 set TestFormat;

 put dob=;

run;

dob=02/16/2010

In the simple datastep seen here, the format

MMDDYY10. is associated with the variable DOB.

Notice that the result PUT statement in the log is the

formatted result. The real value of the variable is still

18309.

When the dataset is used in the second datastep,

note that the log note still shows the formatted value,

even though there is no format specification – the

format has been permanently assigned to the

variable.

It‟s important to remember that the format only

affects how a variable is displayed. The underlying

value remains the same and any arithmetic calculations, statistical analysis, comparisons or assignments

will use the “real” value

There is a FORMAT statement in most procedures as well. It too assigns a format to a variable, but that

association is for the duration of the procedure only. Suppose that we had a dataset containing a date-of-

birth variable, called DOB, for which no format had been assigned when the dataset was created. If we

run a PROC FREQ on the variable, we will see the raw SAS date values. We can add a FORMAT

statement to the PROC FREQ which will not only change the way the values are displayed, but will

determine the level of analysis as well. Notice the difference in the three examples below.

No format MMDDYY format YEAR format

proc freq data=DOBrecords;

 table dob;

run;

proc freq data=DOBrecords;

 table dob;

 format dob mmddyy10.;

run;

proc freq data=DOBrecords;

 table dob;

 format dob year.;

run;

 DOB Frequency Percent

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

 8156 1 0.02

 8161 1 0.02

 8168 2 0.03

 8181 7 0.11

 8185 2 0.03

 8189 1 0.02

 8194 1 0.02

...plus more

 DOB Frequency Percent

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

 05/01/1982 1 0.02

 05/06/1982 1 0.02

 05/13/1982 2 0.03

 05/26/1982 7 0.11

 05/30/1982 2 0.03

 06/03/1982 1 0.02

 06/08/1982 1 0.02

...plus more

 DOB Frequency Percent

 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

 1970 235 3.83

 1971 227 3.70

 1972 167 2.72

 1973 227 3.70

 1974 170 2.77

 1975 191 3.11

 1976 239 3.90

...plus more

The output from the first two procedures have the same number of rows, all we‟ve done is changed the

way that the date of birth is displayed. But, the third result is different. Simply by changing the format

we‟ve changed the level of the analysis. We now have counts by year, without having to create a variable

with the year of birth.

Also, remember that a FORMAT statement used in a datastep permanently assigns the format to the

variable. If we had assigned MMDDYY10. to the variable in a datastep, the code from column 1 above

(no FORMAT) would have produced the output in column 2 (with the formatted results). A FORMAT

statement used in a procedure will override a permanently assigned format, for that procedure only.

Programming: Foundations and FundamentalsSAS Global Forum 2011

4

Multiple variables and formats can be referenced in a single FORMAT statement. A format will be

assigned to all the variables that precede it on the statement. The following are equivalent in assigning

formats to the three variables:

Multiple FORMAT statements Single FORMAT statement

 format DOB year.;

 format BookingDate year.;

 format Bail dollar9.2;

 format DOB BookingDate year. Bail dollar9.2;

In both cases the YEAR. format is assigned to the DOB and BookingDate variables and DOLLAR9.2 to

the Bail variable.

Using a Format – the PUT Statement

It‟s already been shown that the formatted value of a variable will be displayed to the log with a PUT

statement (see PUT DOB= above). In addition, a format can be specified directly on the PUT statement.

If more than one variable is listed on the PUT statement, each must have an explicit format reference.

Using a PUT statement with formatted values is very handing for debugging programs. Also, keep in

mind that the same variable can be referenced more than once on a PUT and each reference can have

its own format assignment. This too can be handy for some debugging and logging purposes. The

example here shows this.

data _null_;

 DOB = 18309;

 put DOB= @12 DOB mmddyy10. @24 DOB year. @30 DOB yyq.;

run;

DOB=18309 02/16/2010 2010 2010Q1

The DOB variable is display four times, all with different formatting. It‟s important to remember that unlike

the FORMAT statement, each variable must have an explicit format reference on the PUT statement.

The following log note is probably not what was wanted:

data _null_;

 DOB = 18309; FirstAppt = 18334;

 put DOB= FirstAppt= mmddyy10.;

run;

DOB=18309 FirstAppt=03/13/2010

Notice that only the second variable is formatted. Another reference to MMDDYY10. should probably

have been placed after DOB as well.

Programming: Foundations and FundamentalsSAS Global Forum 2011

5

data DOBtest;

 format DOB mmddyy10.;

 DOB = 18309;

 CopyDOB = DOB;

 FmtDOB = put(DOB,mmddyy10.);

 put DOB= CopyDOB= FmtDOB=;

run;

DOB=02/16/2010 CopyDOB=18309 FmtDOB=02/16/2010

proc format;

 value $Gender

 'M' = 'Male'

 'F' = 'Female';

run;

Using a Format – the PUT Function

It‟s been noted numerous times already that assigning a format to a variable, either permanently in a

datastep or temporarily in a procedure, does not change the underlying value of the data. However, what

if we wanted to create a variable that had the formatted value as its “real” value? We can do this in an

assignment statement with a PUT function.

The syntax of the PUT function is simple:

 PUT(variable name,format name)

The resulting value is always a character

variable and it contains the formatted value of

the variable named in the function.

The example here shows this, plus reiterates

what has been discussed so far. First, notice

that were assigning the MMDDYY10. format to

the variable DOB, which has a real value of

18309. Then, we create a new variable,

CopyDOB, that has the same value as DOB.

Finally, we use the PUT function to create a new variable, FmtDOB, that contains the formatted value of

DOB. When we display the values with the PUT statement at the bottom it may seem that the DOB and

FmtDOB values are the same. But, they are

not. DOB is a numeric variable with a value of

18309 that is formatted to display as

02/16/1996. The variable FmtDOB is a

character variable whose value is the text

string “02/16/1996”. The variable attributes,

shown to the right, confirm this.

Creating Your Own Formats – PROC FORMAT

PROC FORMAT is used to create formats. The VALUE statement names the format and defines the

value-label pairs. It can be as simple as this. Notice that the there is only one semicolon, at the end of

the list of values. In this example, the $ at the beginning of the format

name indicates that it is character format and is expecting character

values as input (“M”,‟F”).

This format can be used in any of the ways already demonstrated using

SAS-supplied formats. A discussion of how to make user-defined formats

available across SAS sessions will come later.

If more than one value is assigned to the same label, there can be either separate entries or a single

entry with the values separated by commas. In the following examples, charges that are felonies (F) or

probable cause (P) are assigned the label “Felony” and charges that are misdemeanors (M) are assigned

the label “Misdemeanor.‟ The two formats produce the same results. The coding style used is usually a

Programming: Foundations and FundamentalsSAS Global Forum 2011

6

Single value per entry Multiple values per entry

proc format;

 value $FelMisd

 'F' = 'Felony'

 'P' = 'Felony'

 'M' = 'Misdemeanor';

run;

proc format;

 value $FelMisd

 'F','P' = 'Felony'

 'M' = 'Misdemeanor';

run;

 value Grade

 0 = 'F'

 1 = 'D'

 2 = 'C'

 3 = 'B'

 4 = 'A';

matter of personal style. Aligning the label portion of the format can make it easier to scan for accuracy,

but is not required.

It is often the case that

multiple values will be

assigned the same label.

In this case “F” and “P” are

assigned the label

“Felony.” It makes sense,

however, that a single

value can only appear

once on the left side of the

assignment. For example, you could not have “F” = “Felony” and “F” = “Other”. This would generate an

error and the format would not be created. (There is a way to have multiple labels for the same value –

that special case will be discussed later in the paper.)

Formats can also be created to assign labels to numeric values. The only

differences in the syntax are that there is no dollar sign on the format name and

there are no quotes on the values (but the labels are quoted). The rules for

multiple values in a single label assignment are the same as they are for

character formats – simple separate multiple values with commas. The Grade.

format shown here is a simple example of assigning character labels to

numeric values.

What’s a Hit?

What constitutes a match to a format depends on the type. For character formats it‟s pretty simple: the

data value must match on case, length and justification. For numeric formats it‟s almost as easy, maybe

even easier. The data values must match exactly to the format values, within a given “fuzz factor.” The

default fuzz is 1E-12, which is satisfactory in most cases.

If a value does not match to any value in the format, the original value is returned, truncated to the length

of the longest label. So, if your data had a value of “X” in the ChargeType variable and the $FelMisd.

format defined above was used, the result would be “X”. For numeric formats, what‟s displayed on a non-

hit is a little trickier to describe.

Again, if there is not a match on the value, the original value is returned. If there are more digits in the

original value than there are in the longest label, asterisks are returned. Here are the results of different

values and the labels assigned by the Grade. format shown above:

Value Displayed Label Note
1 D Shows the formatted label for this value
5 5 There is no label defined for this value, so the original value is retained
10 * These is no label, but the original value is longer than the longest label

defined, so an asterisk is displayed
1.5 2 There is no label and the rounded integer portion of the original value is

returned

Programming: Foundations and FundamentalsSAS Global Forum 2011

7

proc format;

 value BailGroup

 1 -< 500 = 'Low'

 500 - 1000 = 'High';

run;

proc format;

 value BailGroup

 1 - 500 = 'Low'

 501 - 1000 = 'High';

run;

 value Grade

 0 = 'F'

 1 = 'D'

 2 = 'C'

 3 = 'B'

 4 = 'A'

 other = 'X';

There is a way to capture those data values that do not match to any defined values in the format. The

special value OTHER (no quotes) defines a catch-all value for all data values that are not in the format.

The table above would be quite different if Grade. format looked like this (see

left). The values 5, 10 and 1.5 listed in the table above would all be assigned the

value „X‟ rather than some representation of the original value.

It should be noted that missing values are not captured by OTHER. An explicit

reference to missing values („ „ or .) must be made in the format definition to

assign a label to a missing value.

Ranges of Values

In addition to uniquely specified values, ranges of values can be used in the value statement. Both

character and numeric formats can have ranges of values, though it is much more common with numeric

formats. To specify a range, simply separate the upper and lower values with a dash. Ranges cannot

overlap, just as a single value cannot be assigned to more than one

label.

For example, suppose all items with bail between $1 and $500 are to be

labeled “Low” and those between $501 and $1000 are to be labeled

“High.” This format would accomplish that.

By default, the range end values are included in the range. With non-integer values, it is often necessary

to specify whether the range end(s) should be included. A problem with the format above is with values

between 500 and 501, like 500.50. This isn‟t defined by any of the ranges and will not be formatted – the

original value would be returned. (In this case, the value 500.50 would return 501, since only four

characters of the original value are returned. See note above.)

There are a few ways to deal with this. We could change the ranges to be more precise, like 1-500 and

500.01-1000. As noted above, ranges cannot overlap. However, range ends can touch – we could have

1-500 and 500-1000. When ranges to touch, the label associated with the first range is assigned to the

touching value. So, 500 would get the label associated with 1-500.

Both of these methods have their drawbacks. We can resolve this

issue more cleanly by using a special range-end exclusion

character (<). A < on either side of the dash means to exclude the

value on that side of the dash from the range. The above format

can be changed, as shown here, now puts everything from 1 up to,

but not including, 500 into the “Low” group and everything between

500 and 1000 into the “High” group.

The range-end exclusions can be placed on either, or both, sides of the dash to exclude either, or both, of

the range-end values.

One final note here – a single format definition can contain any combination of single values, multiple

values or ranges of values. Use whatever is easiest to code and maintain.

Special Format Values

Programming: Foundations and FundamentalsSAS Global Forum 2011

8

proc format;

 value $ChargeType

 '23' = 'Property Crimes'

 '35' = 'Drugs'

 '94' = 'DWLS'

 other = 'Other';

run;

There‟s another issue with the BailGroup. format example above – what if we don‟t really know what the

lowest or highest values might be? We could use ridiculously low and high values to ensure we capture

everything, or use the special LOW and HIGH range values.

Replace this… …with this
proc format;

 value BailGroup

 -999999-< 500 = 'Low bail'

 500 - 9999999 = 'High bail';

run;

proc format;

 value BailGroup

 low -< 500 = 'Low bail'

 500 - high = 'High bail';

run;

LOW means the lowest value possible (excluding missing) and HIGH means the highest value possible.

It‟s a much more elegant solution to the problem of data ranges.

Formats Within Formats

Often times it‟s desirable to just tweak an existing format. The label of a format entry can be a reference

to another format. Simply enclose the name of another format, including any necessary width and

decimal specification, in square brackets.

For example, in this example, notice that the values between 50,000 and 200,000 use the SAS-supplied

DOLLAR12.2 format and values below and above that have a note. The results of this format used in a

PROC REPORT (see DEFINE statement) is also seen.

proc format;

 value ValidAmt

 low -< 50000 = 'Under $50,000, Watch'

 50000 - 200000 = [dollar12.2]

 200000 <- high = 'Over $200,000, OK';

run;

 define sales / mean '' format=ValidAmt.;

Asia Under $50,000, Watch

Canada $115,019.24

Middle East Over $200,000, OK

South America Under $50,000, Watch

United States $137,599.65

It‟s very important to remember the square brackets around the embedded format name. If you don‟t, the

name of the format becomes the label – in this case the text “dollar12.2” would the label for all values

between 50000 and 200000.

Ordering of Procedure Output

When formatted variables are used in procedures, values can be displayed in either formatted or

unformatted order. By default most procedures display values in sorted, unformatted order. The

ORDER= procedure option controls the order in which values will be displayed. For most procedures the

default is ORDER=INTERNAL – the unformatted order of the raw data.

This is often a non-issue if the unformatted and formatted order

are the same. For example, if we format „M‟ = „Male‟ and „F‟ =

„Female‟, both orders are the same. However, this can often be

confusing if the unformatted values are not in the same order

as the formatted values. For example, consider this format for

offense code values.

Programming: Foundations and FundamentalsSAS Global Forum 2011

9

value $ChargeType (notsorted)

 '23' = 'Property Crimes'

 '35' = 'Drugs'

 '94' = 'DWLS'

 other = 'Other';

There are a couple potential order issues here. First, Drugs is the lowest alphabetical formatted value,

but not the lowest numerical value. Second, if the “other” catch-all category contains values lower than

„23‟, it will be first in the unformatted list.

In fact, if we use this format in a procedure (PROC FREQ in the following examples) we can see the

default order may not be what we want. Just as we suspected, the OTHER category comes out on top

because there were values of less than „23‟ that were assigned to “Other.” The remaining values are in

unformatted order („23‟, „35‟, „94‟). We can use ORDER=FORMATTED on the procedure to change to the

formatted order, but this is still not what we want.

Default (ORDER=INTERNAL) With ORDER=FORMATTED

ChargeCode Frequency Percent

ƒƒ

Other 6299 58.97

Property Crimes 1020 9.55

Drugs 1488 13.93

DWLS 1874 17.55

ChargeCode Frequency Percent

ƒƒƒ

DWLS 1874 17.55

Drugs 1488 13.93

Other 6299 58.97

Property Crimes 1020 9.55

What we really want is the order that we coded in the PROC FORMAT, with OTHER as the last category.

Until v9, there were two methods for doing this. First, create a new variable that has values that will be in

the right unformatted order and then format that value to the label we want. In the above example, we

create a new variable based on ChargeCode: „23‟ = 1, „35‟ = 2, „94‟ = 3 and everything else = 4. Then,

we format values 1 - 4 according to the above format and our procedures will display in the right order

with ORDER=INTERNAL.

The second method is to contrive labels so they sort in the correct order. Adding spaces to the front of

the label strings or prefixing labels with a number or letter are ways to get the labels in order for display

with ORDER=FORMATTED.

But, now is a better solution that can sometimes be used. The NOTSORTED option on PROC FORMAT

specifies that the physical order of the values/ranges should be maintained for display purposes.

Unfortunately, only certain procedures can also take advantage of the unsorted order. At this time,

PROC MEANS, SUMMARY, REPORT and TABULATE can display formatted values in the NOTSORTED

order. The decision to support NOTSORTED is a procedure-level decision. The jury is still out on

whether additional procedures will support this option.

Note: There is also an ORDER=DATA option that will order the output according to how the data is

physically stored in the dataset. Whatever value is on the first observation will be the first displayed.

Whenever a new value is encountered it will be next in the displayed output.

PROC FORMAT Options – NOTSORTED

The NOTSORTED option is a statement level option which is placed

on the VALUE statement, simply place the keyword in parentheses

following the format name. If the format is used in a procedure the

formatted values will display in the order specified in PROC

FORMAT. There are also some options that must be set on the

reporting procedure to get the desired order.

Programming: Foundations and FundamentalsSAS Global Forum 2011

10

To take advantage of the NOTSORTED option, the PRELOADFMT and ORDER=DATA options must be

set in the reporting procedure. The PRELOADFMT option tells SAS to load the formatted values of the

variable before the procedure starts its work.

Used in conjunction with PRELOADFMT, ORDER=DATA specifies that the results should be displayed in

order defined in the PROC FORMAT step. It would seem that we would want to specify

ORDER=FORMATTED, to keep the newly defined NOTSORTED formatted order. However, the correct

syntax is ORDER=DATA.

In PROC REPORT, these options are placed on the DEFINE statement for the variable to which they will

apply. If they are not, the NOTSORTED option is ignored and the output will be the same as the default.

Without options (same result as before) With options (output in desired order)

proc report data=Charges nowd;

 columns ChargeCode N;

 define ChargeCode /

 group format=$ChargeType.;

 define n / format=comma5.;

run;

proc report data=Charges nowd;

 columns ChargeCode N;

 define ChargeCode /

 group format=$ChargeType. preloadfmt order=data;

 define n / format=comma5.;

run;

Charge NCIC N

DWLS 1,874

Drugs 1,488

Other 6,299

Property Crimes 1,020

Charge NCIC N

Property Crimes 1,020

Drugs 1,488

DWLS 1,874

Other 6,299

The results on the right are now in the desired order, the same order as was coded in the PROC

FORMAT.

PROC FORMAT Options – MULTILABEL

In the past (prior to v9), the only way to assign more than one formatted label to a value was to have

more than one format. For example, let‟s suppose that we have a format with county names for our five

state county. We also have a format that groups together all but the largest county – those formats and

the results of PROC TABULATE using those formats are shown below.

The NOTSORTED option was used on both formats to maintain the desired order. Also, there are a

couple things about the summarized format (MyCounty) that might seem odd. First, the Washington

County label has a leading space, when it might seem like just the name would do. Secondly, all of the

other values were listed for the Rest of State entry when it seems like OTHER= would have been the

more obvious choice. There are reasons for both of these that will be discussed later.

We had to run PROC TABULATE (or some other procedure) twice to get a report that contains both the

detail and summary information. But, we now have the option of creating both sets of values at the same

time using the MULTILABEL option on the VALUE statement.

Programming: Foundations and FundamentalsSAS Global Forum 2011

11

 value CountyBoth (multilabel notsorted)

 5 = 'Washington County'

 3 = 'Lincoln County'

 2 = 'Jefferson County'

 4 = 'Roosevelt County'

 1 = 'Grant County'

 5 = ' Washington County'

 1,2,3,4 = 'Rest of State';

Detail format „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†

‚ ‚Total‚ Pct ‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Washington County ‚4,341‚ 70.77‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Lincoln County ‚ 613‚ 9.99‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Jefferson County ‚ 337‚ 5.49‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Roosevelt County ‚ 447‚ 7.29‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Grant County ‚ 396‚ 6.46‚

․ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‥ƒƒƒƒƒ‥ƒƒƒƒƒƒƒƒƒƒƒƒ…

 value CountyDetail (notsorted)

 5 = 'Washington County'

 3 = 'Lincoln County'

 2 = 'Jefferson County'

 4 = 'Roosevelt County'

 1 = 'Grant County';

Summarized format

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†

‚ ‚Total‚ Pct ‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Washington County ‚4,341‚ 70.77‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Rest of State ‚1,794‚ 29.23‚

․ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‥ƒƒƒƒƒ‥ƒƒƒƒƒƒƒƒƒƒƒƒ…

 value CountySummary (notsorted)

 5 = ' Washington County'

 1,2,3,4 = 'Rest of State';

Notice now that we have only one format,

CountyBoth, but the range values are

repeated. For example, the value of 1 (one)

goes into both “Grant County” and “Rest of

State”. Obviously this breaks the rules that

we‟ve discussed so far about values

mapping to more than one label. Well, the

MULTILABEL option allows us to do just

that. Unfortunately, not all procedures allow

multi-label formats to be used. At this point, only the TABULATE, MEANS and SUMMARY procedure

support multi-label formats.

Prior to version 9.1, the MULTILABEL and NOTSORTED options did not work together. Beginning with

9.1 the two options do work together and provide a great deal of power is displaying the output from

multiple label formats. Both the options go in the parenthesis on the VALUE statement.

The MLF option is used in the reporting procedure to allow for processing of formats with multiple labels.

When we want to use this format in a procedure we need to specify the appropriate options for both the

MULTILABEL and NOTSORTED options. The PROC TABULATE code, with the needed options, and the

resulting output are shown below.

Programming: Foundations and FundamentalsSAS Global Forum 2011

12

value MultiDates (notsorted multilabel)

 '1jan2009'd - '19sep2009'd = 'YTD'

 '1jul2009'd - '19sep2009'd = 'QTD'

 '1sep2009'd - '19sep2009'd = 'MTD';

PROC TABULATE code Output

proc tabulate data=Bookings;

 class County / preloadfmt order=data mlf;

 table County='',all=''*

 (N='Total'*f=comma5. colpctn='Pct');

 format County CountyBoth.;

run;

So, with a single format and a single run of the
procedure the analysis is done at two levels. Note that
the percentages add up to 100 in each “half” of the
output and all the counts in the table add to the
appropriate values.

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†

‚ ‚Total‚ Pct ‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Washington County ‚4,341‚ 70.77‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Lincoln County ‚ 613‚ 9.99‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Jefferson County ‚ 337‚ 5.49‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Roosevelt County ‚ 447‚ 7.29‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Grant County ‚ 396‚ 6.46‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Washington County ‚4,341‚ 70.77‚

‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ•ƒƒƒƒƒ•ƒƒƒƒƒƒƒƒƒƒƒƒ‣

‚Rest of State ‚1,793‚ 29.23‚

․ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‥ƒƒƒƒƒ‥ƒƒƒƒƒƒƒƒƒƒƒƒ…

Notice that all of the format-specific options go on the CLASS statement for the variable to be formatted.

PROC TABULATE allows for multiple CLASS statements if different format options are needed for

different variables.

Remember the little quirks in the summary portion of the format (leading space and not using OTHER)?

The reason we needed to do this is because there is no way to distinguish the “groups” of entries that

make up the two parts of our format. The building of a format is based on creating groups of values that

go with unique labels. So, if we had 1 = “Washington County” in the format twice (once for detail and

once for summary), those two entries would be treated like any other case where the same label is

associated with “multiple” values. The resulting output would just have one row for “Washington County.”

Adding the leading space to the name makes the two labels different – fortunately, in most output

destinations the leading space is ignored.

What out OTHER? Well, the OTHER entry is going to look at the rest of the format as a whole and find

values that did not match to any other entry. In this case, all the values did match to the individual entries

in the “detail” portion of the format and OTHER would have no hits. By specifying all the values we make

sure that the multilabel specification works.

Using MULTILABEL to Prepare Data

Maybe even more useful than for display, multi-label formats can be used in procedures to create

datasets to be used in further processing. Let‟s say we had a job that needed to create a dataset with

month-to-date, quarter-to-date and year-to-date

counts of bookings on September 19, 2009. We

can use a multilabel format, specifying each of the

date ranges, to do this in one pass through PROC

TABULATE.

Programming: Foundations and FundamentalsSAS Global Forum 2011

13

ods output table=BookingCounts;

proc tabulate data=sample.bookings;

 class BookingDate / mlf preloadfmt order=data;

 table BookingDate*n='N'*f=comma6.;

 format BookingDate MultiDates.;

run;

 value MultiDates (multilabel notsorted)

 %sysfunc(intnx(year,&Today,0)) - &Today = 'YTD'

 %sysfunc(intnx(quarter,&Today,0)) - &Today = 'QTD'

 %sysfunc(intnx(month,&Today,0))- &Today = 'MTD';

Note that the variable name (BookingDate) in the output dateset is the same as in the input dataset, even

though it has changed from a numeric (containing a SAS date) to a character variable (containing the

format label). Also, note that since PROC TABULATE does not have an output option, ODS OUTPUT

was used to create the output dataset.

The resulting dataset could then be used in further processing or reporting. In the real world we would

probably be running this job daily and would not want to hard-code the date ranges in the format. We can

take advantage of the fact that PROC FORMAT can use macro variable references in ranges, values and

labels. So, our daily job has a

macro variable called &Today,

which contains the current SAS

date value. We can rewrite the

format as follows to contain the

correct date ranges for everyday.

The INTNX function returns a SAS date at some given interval from the base date passed to it. In this

case, all the rows of the format use INTNX based on the value of &Today. In the YTD line, we ask for the

first day of the year 0 years before today (that would be the first of the year in which &Today falls). In the

QTD line we ask for the first day of the quarter and the MTD line asks for the first day of the month. So,

no matter which day the job runs, the format will have the correct date ranges and our dataset will contain

the correct values.

Conclusion

I hope you can see that formats can be used for a lot more than just assigning a label to a value. The

ability to aggregate on formatted values and control the order of report output is very powerful.

PROC FORMAT can do a lot more as well. I invite you to take a look at the SAS documentation and

other papers follows to learn more.

Online SAS Documentation , PROC FORMAT,

http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/a000063536.htm

SUGI/SGF paper search: http://lexjansen.com/sugi/ has the most comprehensive collection of papers

(complete papers back to 1995 and even a few conferences before that).

Programming: Foundations and FundamentalsSAS Global Forum 2011

http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/a000063536.htm
http://lexjansen.com/sugi/

14

Author Contact Information

Feel free to make suggestions or ask questions!

Pete Lund

Looking Glass Analytics

215 Legion Way SW

Olympia, WA 98501

pete.lund@lgan.com

(360) 528-8970

Acknowledgements

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of

SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product

names are registered trademarks or trademarks of their respective companies.

Programming: Foundations and FundamentalsSAS Global Forum 2011

	2011 Table of Contents

