
1

Paper 051-2011

Stacking the Deck: Dynamically Filtering Prompt Values for Stored Processes
Alesia Pehl, Blue Cross and Blue Shield of Minnesota, Eagan, MN

Susan Trelstad, Blue Cross and Blue Shield of Minnesota, Eagan, MN
Kyle Koenig, Blue Cross and Blue Shield of Minnesota, Eagan, MN

ABSTRACT
In self-service applications that access sensitive information, accurate data filtering cannot be left open to chance.
Companies must fulfill legal obligations to restrict access to data or they might need to protect data to meet business
requirements. Integrating security and other business rules to filter table-driven prompt values can be a significant
challenge, especially if the source database does not accommodate row-level security. SAS® 9.2 has new
capabilities for presenting user-appropriate content in report-selection prompts. This paper offers two solutions for
implementing dynamically filtered parameters: one for off-the-shelf SAS® applications and the other for custom
applications. The off-the-shelf solution uses SAS® Information Maps to source dynamic prompts for SAS Stored
Processes®. The custom solution uses stored processes to populate parameter values in a Java Web application.
Having implemented both at Blue Cross and Blue Shield of Minnesota, we share our lessons learned while
comparing the two solutions. Never gamble on filtered content again.

INTRODUCTION
Dynamically filtering parameter prompt values is a critical and valuable functionality for both SAS and custom web
applications. Filtered parameter prompt values provide a level of control that supports a precise report generation
configuration.

Prompt values can be limited to meet specific requirements for various considerations. User security can be used as
data filtering criteria when generating a list of prompt values. Security is a major driving factor when filtering allowable
prompt values for a user. Application specific security roles not only allow users to log in to the application and
access specific reporting objects, they can also be used to filter a prompted parameter list when the information is
available in a retrievable format.

Business rules can dictate the need for filtered prompt values. The business rules function as fine-grained security to
provide access to only particular rows in a data source. Prompt values that are not meaningful, based on business
usage, are excluded from specific reports. Situations such as these define prompted content in terms of the report’s
functional criteria. The applications highlighted in this paper have specific requirements for security and usage that
require the use of dynamically filtered parameters.

The off-the-shelf Blue Cross SAS application delivers employer group reports to external insurance agents and
internal underwriting and sales users. The parameters are dynamically filtered to display only the appropriate content
based on the user’s security role and their association with the employer group(s). As an example, multiple users
might have access to the same report because they have the same security role, but see different values in the
dynamic pick-list due to their unique business responsibilities.

The custom Blue Cross application delivers employer group reports to external insurance agents, employer groups,
and internal sales, underwriting, finance, and informatics users. The client list is dynamically filtered based on the
security role, association with the employer group(s), and type of report. For example, a user requests security to a
specific role and employer group. When the user logs into the application, only those reports which correspond to the
user’s security role are viewable. When the user selects parameters for a report, the list of available employer groups
is pre-filtered to display only the employer group(s) to which the user has a business connection.

Both applications are highly visible, servicing thousands of external users. Delivering sensitive information to external
entities needs to be without error. Health companies such as Blue Cross and Blue Shield of Minnesota are legally
required by the Health Insurance Portability and Accountability Act (HIPAA) to enable security to protect the
confidentiality of patients’ medical information. Violation of this law carries significant fines.

The implementation of dynamically filtered prompt values is procedurally similar between the off-the-shelf SAS and
the custom Java applications, but the technology used is different. Figure 1 shows the architecture of the two
solutions. The key similarity to both approaches is that they are data-driven. An underlying data structure contains
the business information necessary to drive decisions as to which values to display. The SAS application uses data
stored in SAS data sets and Oracle tables compared to the custom application, which uses a series of SAS data sets.
The tools used to query these table structures are quite different. The off-the-shelf SAS solution uses an information

Business Intelligence and AnalyticsSAS Global Forum 2011

2

map to access the data; the custom solution uses a stored process to retrieve data in XML format. In the off-the-shelf
SAS solution, the values are used to populate a dynamic prompt in a stored process while the custom application
feeds the XML data into a Java web application to create a parameter.

DYNAMICALLY FILTERING PROMPT VALUES USING SAS INFORMATION MAPS
The SAS Information Delivery Portal provides a user-friendly interface from which to launch stored processes. Stored
processes are just one of the various objects that can be accessed via the Information Delivery Portal, but they have
the benefit of producing highly customized output. Using SAS 9.2, they become an even more powerful way of
generating reports. Now, developers can create dynamic stored process prompts sourced from SAS Information
Maps. Because information maps can be assigned pre-filters, including authorization-based filters, stored process
parameter prompt values can also be filtered. Another benefit coming out of SAS 9.2 is that dependencies can be
applied to prompts, based on previously selected prompt values, so parameter prompt values can be cascading.

Figure 1. Architectural Comparison between Off-the-Shelf SAS and Custom Solutions

Figure 2. Dynamically Filtered Parameters Using SAS Information Maps

Business Intelligence and AnalyticsSAS Global Forum 2011

3

CREATING THE INFORMATION MAP
The information map is the key to selecting filtered data and returning the results to the stored process dynamic
prompt. The information map must have certain features in order for it to populate the parameter prompts accurately
and simulate row-level security. First, a table is required, containing a list of user IDs and the data that each user ID
is authorized to access. For example, if sales representatives are only supposed to access the accounts that they
have sold, the table would contain sales representatives’ user IDs and their corresponding sales rep identifiers. This
look-up table is then joined to other table(s) containing the sales rep identifier and detailed information about their
accounts, as shown in figure 3. Configuring the look-up table as a “Required Table” in the information map properties
ensures that the table is queried each time the information map is accessed.

After configuring the data, the information map filter(s) can be defined. SAS metadata identity-driven values, such as
&SAS.Userid, can be used to simulate row-level permissions for the authenticated user ID. Figure 4 illustrates how to
define a filter to ensure that the user ID in the security table is equal to the &SAS.Userid. The filter must then be
defined in the information map properties as a “General Pre-Filter”.

 Figure 4. Information Map Security Filter

Figure 3. Information Map Security Table

Business Intelligence and AnalyticsSAS Global Forum 2011

4

SETTING UP THE STORED PROCESS PROMPTS
SAS Management Console 9.2 is used to set up stored process parameter prompts that are dynamically populated
using an information map. The prompts can be added as shared parameters, if there are multiple stored processes
that require the same prompt. The current version of Enterprise Guide (version 4.3) does not allow the creation of
shared prompts or the sourcing of dynamic prompts from information maps. However, if the parameter is created as
a shared prompt in Management Console 9.2, it can be added to other stored processes using Enterprise Guide
(version 4.2 or higher).

The steps to create the dynamically generated parameter prompts, as shown in Figure 5, are as follows:

After filtered data is received from the information map for the initial prompt, the stored process can populate any
dependent dynamic prompts based on the selected value (or default hidden value) of previous prompts. This is
achieved through setting up prompt dependencies, located on the “Dependencies” tab in Figure 5.

When the prompt allows multiple values to be selected, as in Figure 5, additional logic is required in the stored
process SAS code. A SAS data set, populated with the macro variable values, can be built as in the following
example:

data agencyagent;
length agency_agent $10.;
%if &agencyagent_count >1 %then
%do i=1 %to &agencyagent_count;

agency_agent=resolve("&&agencyagent&i");
output;

%end;
run;

If the potential list of values is longer than a few items, the data set created above can be merged with the report
query result set, keeping only the selected values. Otherwise, a comma-delimited string of values can be created
from the data set, made into a macro variable, and included in the query criteria. Of course, if the count of selected
values is just one, that single value can be used in the report query filter criteria.

1. Create a new prompt and navigate
to the “Prompt Type and Values”
tab at the top.

2. Select a dynamic list as the
method for populating the prompt.

3. Browse to the location of the
information map that contains the
security filter and data item to
populate the prompt.

4. Choose the data item to populate
the dynamic prompt list. One data
item can be used for the code
value (unformatted), to be passed
to the stored process, and another
for the displayed value
(formatted), to populate the pick
list. The unformatted values can
be appended to the formatted
values within the pick list, so that
the user can see both.

Figure 5. Stored Process
Parameter Prompt

Business Intelligence and AnalyticsSAS Global Forum 2011

5

LAUNCHING THE STORED PROCESS
Once the stored process is created, it can be accessed via the SAS Information Delivery Portal. When the stored
process is kicked off, the information map generates the query to return values into the first dynamic prompt.
Subsequent prompts that are dependent upon the value(s) selected in previous prompts are grayed out until a value
is selected.

Upon clicking on the magnifying glass icon next to the drop down list, as seen in figure 6, users can enter search
criteria. This is particularly useful when the list of values is long, or when the list is, for example, sorted by last name,
but only the first name is known, etc. The operators that can be selected for the search criteria are: contains, exactly
matches, starts with, ends with, and matches pattern.

The SAS 9.2 release provides a quick and easy solution for generating dynamic secure prompt values, and for
cascading prompts. Previously, this was only possible with a custom web application. One drawback, however, to
the out-of-the-box solution is that drop down lists are empty when no values are found. Unfortunately, there is no
message to the user to indicate that they do not have any values corresponding to their business function. This is
one scenario where a custom web application might still be beneficial.

Figure 6. Stored Process Parameter Page

Business Intelligence and AnalyticsSAS Global Forum 2011

6

DYNAMICALLY FILTERING PROMPT VALUES FOR CUSTOM WEB APPLICATIONS
Dynamically filtering user prompt values is equally important and useful for custom web applications as it is for off-
the-shelf SAS applications. One way to query, filter, retrieve and display user prompt values on a custom web
application page is to combine the functionality of a Java-based web servlet with a SAS Stored Process.

INVOKING THE WEB PAGE APPLICATION SERVLET
A web application can utilize a Java servlet to connect to and access SAS services. Using the Java libraries provided
by SAS, the servlet can create a stored process instance, pass query filter criteria to it as parameters and execute it.

A Java-based web servlet is used to generate the user interface and manage the display, functionality and content of
the parameter prompts on a web page. It utilizes the Java libraries provided by SAS to instantiate various objects
required to access SAS services. The Java libraries provide a vast array of capabilities and functionality. The logic
needed to access and utilize the SAS services and resources through a Java application can be extensive and is
outside of the scope of this paper. The online SAS JavaDocs documentation is listed in the References section of
this paper.

The servlet must contain specific logic to connect to SAS Remote Services and locate the stored process service.
The SAS services are used to access the stored process functionality rather than using the /SASStoredProcess web
application directly. This provides greater control of the process and allows for passing parameters through the
service connection instead of appending them to the stored process web URL.

After the servlet connects to the stored process service, it must pass the query filter criteria as a list of parameter
values to the stored process. The values used as query filter criteria to the stored process could come from user
input from web page forms, embedded values within the servlet itself or from data returned by a different stored
process, all possibly representing different filtering criteria. User-specific security information, report criteria or other
conditions at run-time could be used as query filtering values to be passed to the stored process.

The Java servlet then runs the data query stored process. The stored process execution can be in either a
synchronous or asynchronous mode. Executing the stored process synchronously would require less Java code, but
will block input and output for the servlet until the stored process has completed. For short running queries this
should not be a problem. Utilizing an asynchronous call of a stored process requires more Java coding to run the
stored process in its own executable thread and requires logic to monitor the progress of the query process. This is
best used for queries that might take longer than a few seconds to complete.

Figure 7. Dynamically Filtered Parameters for Custom Web Applications

Business Intelligence and AnalyticsSAS Global Forum 2011

7

Java servlet code fragment showing how a stored process object is created and executed:

// Create the stored process
PathUrl path
 = new PathUrl("sbip://" + metadataRepositoryPath + stpName + "(StoredProcess)");
com.sas.services.storedprocess.metadata.StoredProcessInterface metadataSPI =
(com.sas.services.storedprocess.metadata.StoredProcessInterface)privUserRepository.
getObjectByPath(path);
StoredProcessOptions spo = new StoredProcessOptions();
StoredProcess2Interface storedProcess
 = (StoredProcess2Interface)storedProcessService.newStoredProcess(metadataSPI,spo);

// Set stored process parameters
HashMap<String,String> params = new HashMap<String,String>();
params.put("SOMEPARM","some value");
stp.setParameterValues(params);

// Execute the stored process
Execution2Interface stpExecution = stp.execute(false,null,false,null);

// Read in the results
BufferedReader stpOutputStream = null;
com.sas.io.InputStreamHeaderInterface header
 = stpExecution.getInputStreamHeader("_WEBOUT");
stpOutputStream = new BufferedReader(
 new InputStreamReader(stpExecution.getInputStream("_WEBOUT")));

EXECUTING THE UTILITY STORED PROCESS
The stored process called by the Java servlet executes base SAS code to access one or more data sources and
returns the filtered data. It is designed to return data to the calling process instead of creating and displaying a user
readable report. In this configuration the stored process is referred to as a “utility” stored process instead of a user-
consumable, report-generating stored process.

A stored process session is used to execute the query logic instead of a workspace session since a stored process
session is already initiated and provides a quicker response, which is important for web applications.

The stored process uses the passed filter criteria to query data from one or more sources. It can access any data
that's available to SAS and has the capabilities of any base SAS program. The stored process can contain any
DATA step or procedure to retrieve data. However, since the results of the query will not be used for display
purposes, no PROC REPORT, ODS or other page formatting code should be used in a utility stored process.

The stored process must be coded to return the filtered results in XML format. The utility stored process can
optionally be coded to return multiple XML data sections in a single execution. The code example below offers more
information on the design and logic of a stored process that returns XML data.

Utility stored process code example:

filename xmldata temp lrecl=200 mod;
libname xmldata xml;

%macro build_xml(data_table);
data xmldata.&data_table;
 set &data_table;
run;
%mend build_xml;

data example_1;
 set some_data_source;
run;

%build_xml(example_1)

Business Intelligence and AnalyticsSAS Global Forum 2011

8

data _null_;
 infile xmldata length=L end=eof;
 file _webout;

 input @;
 input @1 key $6. @1 line $VARYING32767. L
 ;
 if (_n_ gt 2) and (eof = 0) then do;
 if key in ('<?xml ', '<TABLE', '</TABL') then delete;
 end;

 label line='00'x;
 put line;
run;

POPULATING THE PARAMETER LIST
The servlet must detect when the stored process query has completed and should include logic to verify that it has
completed successfully. SAS provides a variety of return codes and conditions that can be used to determine the
success or failure of a stored process executed from Java code. If the execution of the stored process is successful,
the servlet must retrieve and process the results of the query. The Java servlet must be able to handle the condition
when no valid values are found by the query stored process and no result XML is returned.

The servlet reads the filtered data from the returned XML stream and uses the information to dynamically generate
HTML and other content needed to populate a web page. If utilizing AJAX capabilities, the information can be used
to update specific areas of a web page. The data received from the stored process could be displayed on the web
page as static text, a single value parameter, a parameter list or a hidden support parameter. There are several
options to display and combine filtered and other parameters, including selection drop-downs and scrollable selection
lists.

Instead of a list of values, the utility stored process could be coded to return a single, non-selectable value. This
value could be displayed on the page as static text or could be retained as a hidden value not shown to the user.

Since XML supports multiple data sections in a single file, the results from a single utility stored process call could be
used to populate multiple displayed or hidden parameters.

Other user input, such as parameter value entry or selection, could be passed to the utility stored process as filter
criteria. The output value of a data filtering utility stored process could also be used to as input to another utility stored
process. Multiple cascaded utility stored processes could be linked to support a chain of parameter dependencies.

Figure 8. Dynamically Generated Prompt and Associated Pop-up Values List

Business Intelligence and AnalyticsSAS Global Forum 2011

9

CONCLUSION
The off-the-shelf SAS solution offers significant time and cost savings as it requires only SAS Information Map Studio,
SAS Management Console, and Enterprise Guide to create the necessary information map and stored process
objects. A developer who is familiar with these tools is able to incorporate this functionality with general knowledge of
the corporate security model and business rules. Using the off-the-shelf technology and home-grown experience
contributes to the ease and speed of development making this solution an attractive choice. To further promote
efficiency, the stored process prompts can be shared among other stored processes, saving time and money for
future projects.

The custom solution offers the flexibility of a customizable user interface which can be especially important when a
particular look and feel is needed for branding purposes or incorporating stand-alone or web-based Java applications.
The custom solution marries the excellent data handling capabilities of SAS with the more robust and refined user-
interface of Java. In addition, it provides the opportunity for custom messaging to clearly communicate the dynamic
nature of the data and status of the filtering process. Various data sources can be used to drive the parameter
content filtering. Any source that is accessible by base SAS code can be leveraged by the utility stored process.
This provides the ability to access disparate data sources, expanding the data source options beyond that which can
be consumed directly by an information map. This utility stored process can then be shared by many reports to
promote reusability.

REFERENCES
SAS Institute Inc. (2010), “Fine-Grained Controls for Data”:
http://support.sas.com/documentation/cdl/en/bisecag/61133/HTML/default/viewer.htm#a003250936.htm

SAS Institute Inc. (2010), “How to Implement BI Row-Level Permissions”:
http://support.sas.com/documentation/cdl/en/bisecag/61133/HTML/default/viewer.htm#a003086341.htm

SAS 9.2 JavaDocs: http://support.sas.com/rnd/gendoc/bi92/api/index.html

ACKNOWLEDGMENTS
Special thanks to our colleague, Mike Wesley, for his contributions to the SAS solution.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Name: Alesia Pehl
Enterprise: Blue Cross and Blue Shield of Minnesota
Address: 3535 Blue Cross Road
City, State ZIP: Eagan, MN 55122
Work Phone: 651-662-1679
E-mail: alesia_pehl@bluecrossmn.com

Name: Susan Trelstad
Enterprise: Blue Cross and Blue Shield of Minnesota
Address: 3535 Blue Cross Road
City, State ZIP: Eagan, MN 55122
Work Phone: 651-662-7070
E-mail: susan_trelstad@bluecrossmn.com

Name: Kyle Koenig
Enterprise: Blue Cross and Blue Shield of Minnesota
Address: 3535 Blue Cross Road
City, State ZIP: Eagan, MN 55122
Work Phone: 651-662-8790
E-mail: kyle_n_koenig@bluecrossmn.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Business Intelligence and AnalyticsSAS Global Forum 2011

	2011 Table of Contents

