

Paper 63-2010

You Did That Report in SAS®!?:

The Power of the ODS PDF Destination

Pete Lund, Looking Glass Analytics, Olympia, WA

Abstract

The Output Delivery System (ODS) has been around since SAS® version 7 and yet many people still don‟t
realize that they use it every day just to send results to the output window. They‟re still more amazed when they
see that publication quality reports in PDF files can be created with SAS and ODS.

This paper explores a number of ODS options in general and, more specifically, their use in creating PDF
output. We will cover ODS ESCAPECHAR, which allows for inline formatting of titles, footnotes and other text
and new syntax for version 9.2; ODS LAYOUT, which lets you place output wherever you want it on the page -
even output from more than one procedure, both text-based output and graphics; inline formatting in PROC
REPORT; the new world of DATA _NULL_ reporting using the ODS object and more.

We'll work from real life examples and see how you can produce output that looks like it took hours to create.

Introduction

This paper is an update of a paper that was first presented at SUGI 31 in San Francisco in 2006. There have
been some nice changes to ODS in version 9.2, which was released since that paper was first written. We‟ll still
go a number of the same real world examples that demonstrate techniques that can be used with the PDF
destination to make your reports crisper, cleaner and more useful than ever before. Some new examples and
updated syntax will also be covered.

All too often it seems that the examples presented in conference papers are difficult to translate to “real” code
and the reader is forced to bridge the gap between concept and reality. All the examples shown here are copied
directly from production code – the only exception being some macro variable references have been “resolved”
to show the real values. The hope is that these annotated examples will give some ideas to use in your own
jobs and see the breadth of options available to make your output look the way you want it to – without any
after-the-fact intervention.

PROC REPORT, ODS PDF and Inline Styles

Many of the examples presented in the paper use PROC REPORT. This procedure has the most flexibility in its
use of ODS-related options and can best demonstrate the possibilities of creating PDF output. However, there
are similar techniques that can be used with PROC PRINT and PROC TABULATE, as well as a number of
techniques we‟ll see that are procedure independent.

CREATING GROUPS OF DATA COLUMNS

We‟ll start with something simple – simple that is with ODS and PDF, not so simple just a few short years ago.
Notice in Exhibit 1 that there is a little extra space between some of the columns. Not quite a full data column
worth, but enough to offset groups of data columns.

This is easy to do in PROC REPORT with some in-line formatting and a computed column. The pertinent code
is shown below:

1

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Typewriter
Paper 247-2011

Note in the report that the columns with yearly data (thisyear, lastyear and diff) are placed under a common
column header (the “across” variable locationgroup). To visually separate the columns we can include a fourth
variable, blank. Blank does not exist in the incoming dataset – it is computed in the procedure and set to
missing (note the COMPUTE block). This could be done prior to ODS and you‟d get a blank column in your
output. However, notice the STYLE= parameter on the DEFINE statement for blank: we can specify the width of
the column with the CELLWIDTH parameter and create a gap as large or small as we need.

We‟ll see a number of other examples of style parameters. The syntax is simple:

 STYLE=[<style option=style value> <style option=style value >]

You can enclose as many option=value pairs as you need, separated by spaces. A complete list of style options
is included in Appendix A at the end of the paper.

CREATING GROUPS OF DATA ROWS

We‟ve seen how to add and control the appearance of blank columns in a report. We can use another
technique to add blank rows to a report. Again, this technique could be used prior to ODS, but with the addition
of STYLE we can control the appearance of those blank rows. Take a look at Exhibit 2. Note that the blank line
every five rows is a different color than the data rows and that it‟s not as tall as the data rows. The blank lines
are created in the following COMPUTE block.

The variable LineGroup is a non-printing GROUP variable that changes values every five observations. So,
this COMPUTE code executes at the beginning of each group of five observations and writes a blank row to
the table. However, it‟s size and color are different from the surrounding rows because of the STYLE= option.

DIFFERENTIAL STYLES ON DATA ROWS

Another use of inline styles can be seen in Exhibit 3. Item 1 points out that we have different text styles on
different rows of the table, depending on the type of data displayed. The total lines are italicized for added
emphasis.

2

Programming: Beyond the BasicsSAS Global Forum 2011

There is one other trick to note from Exhibit 3. We just alluded to the fact that the header row has a background
color. It‟s hard to see in the black and white copy in the paper, but the background color of the header rows are
the same color as the bars in the corresponding graph on the bottom of the page. The Adult rows in the table
and bars on the Adult graph are green. The background and bars for the youth are blue. We can use another
style trick to make this easy.

We start out by defining a SAS format that has RGB color codes as the labels for the data values.

The format will be used in an unusual place. As we saw above, the dataset used in the report contains a
variable called TreatmentDetail that contains the type of treatment received (i.e., OPA=outpatient adult). We‟re
going to reference the format we‟ve just created, which defined the colors we want to use based on the type of
treatment received, in the DEFINE statement for TreatmentDetail.

So, using the format in a STYLE= option on the DEFINE statement allows us to control the appearance of the
data cell based on the value of the data.

We‟ll have one more example of inline STYLE= options when we discuss methods for putting output from more
than one procedure on a page. For now, let‟s look at the greatest thing to happen to ODS since…. Well, it‟s
just the greatest thing ever to happen to ODS.

EMBEDDING A HISTOGRAM IN PROC REPORT

Graphics and pictures often help to tell the story that our data contains. There‟s a little trick that will allow you
embed a histogram in PROC REPORT output with nothing more than PROC REPORT code.

3

Programming: Beyond the BasicsSAS Global Forum 2011

The hex character 67 in the Webdings font produces a solid rectangle (). The key to our little trick is that there
is infinitesimal white space between consecutive characters so that when viewed or printed in a PDF document a solid

bar is seen.

In the following example, we have a dataset that is pre-aggregated by age group. Our table has a column for
age range, count and percent of total. To make the values in the table jump out at the reader, we‟ll also include
a computed column that contains a bar representing the percentage for the age group. The bar will be made up
of a string of „67‟x characters in the Webdings font.

By trial and error we‟ve determined that the column to hold the bars will be 75mm wide and that we can fit 50
4pt „67‟x characters in it. The width of the column is set to 75mm, the font to Webdings and the size to 4pt.
Also, make sure that the column is left-justified so that the bars are against the edge of the column and centered
vertically so that align visually with the numbers in the table.

Use the REPEAT function to get the right number of characters for the current bar. Since the REPEAT function
always returns at least one character, even if the repeat value is 0, the Bar value is set only is the BarSize is
greater than 0. If it is 0, Bar will have a null value and no bar will be displayed. As you can see from the output
below, this little trick can give the reader a jump on where to look in the table.

There is actually another technique used to display the histogram. In order to get the vertical line to the left of
the bars we‟ve turned on a single cell border. This requires setting style attributes in a couple places. On the
PROC REPORT statement, we turn off all cell borders with FRAME=VOID and RULES=NONE. Then, in the
Percent variable DEFINE statement, we turn on the right-side border with BORDERRIGHTCOLOR=BLACK.

proc report ... style(report)=[frame=void rules=none cellpadding=1 cellspacing=0];

 :

define Percent / style(column)=[borderrightcolor=black borderrightwidth=1pt];

Notice that we had to make the border color assignment in the column preceding the Bar column. The border
definitions are applied from right to left, so if we‟d set the BORDERLEFTCOLOR attribute for the Bar column, it
would have been clobbered by the default right border color in the Percent column. We also had to set the
BORDERRIGHTWIDTH attribute, since the CELLSPACING=0 in the PROC REPORT statement takes away the
space allocated for borders. A full page of the report can be seen in Exhibit 8.

ODS ESCAPECHAR – THE GREATEST THING SINCE SLICED BREAD

4

Programming: Beyond the BasicsSAS Global Forum 2011

The ODS ESCAPECHAR statement, while not specific to PDF, is one of most powerful new features of the
Output Delivery System. The statement defines a character that is used to designate the beginning of a series
of formatting commands.

 ODS ESCAPECHAR='~'

That character will be used to designate sequences of text to be treated as “instructions” for the text that follows
them. You can use the escaped sequences to change the style of titles and footnotes, add page numbers and
superscripts, highlight single words in your output, and much more. You‟ll want to choose a character that is not
likely to be used in your data so as not to “confuse” ODS. Common choices are carets (^) and tildes (~). The
examples in this paper use a tilde.

We‟ll look at a number of examples of using escape sequences to enhance your output. For all the examples
we‟ll use assume that we‟re using the command above and use a caret to denote our escape sequences.

Inline Formatting

We‟ve seen a number of examples of formatting with the STYLE= option in PROC REPORT. A major use of
ESCAPECHAR is to allow formatting of output almost anywhere – either from procedures, titles and footnotes.

The escape sequence “~{style […] }” allows you to embed style attributes in the brackets anywhere in your text.
Any number of style parameters can be placed inside the brackets. The text between the closing square
bracket and the closing curly brace will be formatted using the style attributes listed. (Note: this is a syntax
change for inline styles beginning in SAS v9.2. For pre-9.2. syntax, please see the discussion in Lund, 2006).

The following example is from Exhibit 4. Note in the exhibit that the leading part of the text is bold and the
number part of the text is not. The code uses the STYLE sequence in the value to be displayed by a LINE
statement.

Notice also that there is a STYLE= option on the COMPUTE statement which left justifies the text. You can use
both methods for assigning styles. In this case, the ~{style […]} gives us control over whichever portions of the
text need it.

This same exhibit (4), item 1 points to another use of inline styles. The leading line of each section contains a
name, booking number, booking date, etc. for inmates in a jail. (The names have been obscured or changed for
confidentiality reasons.) Notice that the name is a larger, bold font and that the header text for the other items
on the row are bold.

All the information on this row is actually contained in one big text variable. The value of the variable contains
all the formatting information, along with the actual data values. Here is the datastep code that creates the
variable (Key).

5

Programming: Beyond the BasicsSAS Global Forum 2011

When this value is printed in PROC REPORT, the formatting information does not print but is applied to the
other parts of the value.

This method of inline formatting can be used anywhere text is displayed: titles, footnotes, variable values, etc. It
gives you a great deal of control over the appearance of your output.

It should be noted that inline styles are only rendered in text-based output. No SAS/Graph output, from
procedures or SAS/Graph statements (i.e., AXIS, LEGEND, TITLE, FOOTNOTE), support them and the text of
the style attributes will be printed in the output.

Special Escape Sequences

In addition to {style […]}, the ESCAPECHAR can also be used to add some special values to your output.

In Exhibit 1 we see a superscript on the footnote at the bottom of the page. Superscripting is achieved with the
escape sequence {super nn}, where nn is the value to be superscripted. The code used in Item 3 shows that we
can just add the escape sequence to the footnote text.

 footnote1 '~{super 1}Totals may include contract beds';

The 1 is superscripted at the beginning of the text and, again, the escape sequence does not print. As you can
guess, there is also a {sub nn} sequence to subscript values.

Exhibit 1 also shows another use of superscripts. Item 1 shows a superscript in a column header. The
superscript value is actually contained in the label of the format for these values.

As we‟ve already seen, anywhere text can be generated the escape sequences can be used.

A topic which has generated a number of SUGI/SAS Global Forum papers is putting dynamic page numbers on
your output. This is a paper topic no more as it now only an escape sequence added to your titles or footnotes.
There are two escape sequences that we‟ll demonstrate for included page numbers on your output.

A number of the exhibits included in this paper have page numbers – we‟ll look at those shown on Exhibit 4.

6

Programming: Beyond the BasicsSAS Global Forum 2011

We can use the {thispage} and {lastpage} sequences together to get the nice “page x of y” that we‟ve struggled
so many years for. There is a currently a bug with {lastpage} if there are any graphics on the page. The graphic
could be SAS/Graph output that is on the page in a LAYOUT region (we‟ll talk about this later) or placed via a
PREIMAGE or POSTIMAGE tag in a title or procedure output. If {lastpage} is used, the graphics will not
display.

One last set of special escape sequences to note are line breaks and wrapping to a marker. Exhibit 5 shows a
nice set of footnotes indented under a header. All of the footnotes in this example are done with a single
footnote statement.

We will use two escape sequences here to get the footnotes looking this way. First, the -n sequence produces
a line-break in the text. (A quick side note here – does the fact that there are a whole bunch of nicely arranged
footnotes generated from a single footnote statement give you a clue that you‟ll never have to worry about the
10 footnote limit again!). But, we can use -n in conjunction with another escape sequence (m) to get the
indented effect that we see.

The m escape sequence sets a “marker” that the -n will wrap to. This is more easily explained with the code
that generated the example. First, notice that this is all one footnote statement. Second, if you look between
the code and the exhibit you will see that the individual physical line in the code do not affect the output – they
are there only to make them fit on my screen when I‟m writing the code. Now, let‟s look at the use of the two
escape sequences.

There is another line break sequence, {newline n}. This will insert n new lines in the text, the default being one
line. There is no {newline} syntax that will break to a marked location – only –n will do that.

7

Programming: Beyond the BasicsSAS Global Forum 2011

SUPERSCRIPTS REVISITED
One drawback of the {super xx} and {sub xx} sequences is that you have no control over the appearance of the
text. The size is proportionately adjusted to the size of the preceding text and cannot be changed. None of the
other font attributes can be changed. There is an undocumented work around for this – but, as it is
undocumented, there is no guarantee that it will continue to work in future releases.

The escape sequences –nY and nY move the text up and down respectively. Following the move up or down,
normal style attributes can be applied. When mimicking a superscript the most common stylistic change will be
to decrease the font size. However, there may be times when other changes are desired, such as an italic note
with a roman (non-italic) superscript, as shown in the following example:

ODS TEXT

The ODS TEXT command is like a PUT statement that you can use anywhere. The syntax is simple,

 ods text='<text goes here>';

The output of the statement will be placed on the page immediately following the last procedure output. It would
be a relatively useless command if all it did was place plain text. I bet you‟ve already figured out that all the
inline style functionality provided by ESCAPECHAR can be used in PDF TEXT.

Exhibit 6 shows an entire page generated using nothing but PDF TEXT. This offers a wonderful method of
adding explanatory text to your reports without having to edit them after the fact.

The ODS TEXT statement can also be made destination-specific. This is done simply by placing the destination
name between the other two keywords, i.e. ODS PDF TEXT. This allows for notes that are specific to a
destination, if more than one ODS destination is open at a given time.

OUTPUT FROM MORE THAN ONE PROCEDURE ON A PAGE

8

Programming: Beyond the BasicsSAS Global Forum 2011

With SAS/Graph we‟ve had PROC GREPLAY and the VPOS/HPOS/VSIZE/HSIZE options that have allowed
putting output from more than one graphic procedure on the page at one time. This has always been more of a
challenge with output from text-based reporting procedures. We‟ll look at two methods now available with ODS
which allows us to do just that.

STARTPAGE=NO

By default, any time a new procedure is run a new page will be created in the output document. There is an
option (STARTPAGE=) on the ODS PDF statement which controls that page generation.

The STARTPAGE=NO option tells ODS that you don‟t want a page generated between procedures. You still
get a new page when the current page fills up, but new procedure output will start immediately following
previous output.

Exhibit 5 shows an example of how this works. The data at the top of the page is generated from a PROC
REPORT. The data at the bottom of the page is from a second PROC REPORT. The ODS PDF statement
contained a STARTPAGE=NO so that the output from both procedures showed up on the same page.

There is s STARTPAGE=NOW option you can use to force a new page whenever you want it, which is handy if
you‟ve turned the startpage off. You can set the startpage to NOW with a ODS PDF statement that does not
reference a file, so will be applied to the current PDF file being created. For example,

 ods pdf file='my pdf file.pdf' startpage=no;

 <procedure 1>

 <procedure 2>

 ods pdf startpage=now;

 <procedure 3>

There would be no page break between the output from procedures 1 and 2 above, but output from procedure 3
would begin on a new page.

It was noted earlier that there would be one more STYLE= example when we discussed multiple outputs on a
page. In Exhibit 5, the single columns in the upper report need to be centered over the groups of three columns
in the lower report. We can do this with STYLE= options on the DEFINE statements in the two procedures.

9

Programming: Beyond the BasicsSAS Global Forum 2011

Notice also that we‟ve made one more use of -2n. In the variable labels for ResolutionCode and MedianDays,
we‟ve added a -2n to split the label. Note: in order to fit this all on the page some code has been removed that
is part of those labels. This additional information makes the use of the PROC REPORT SPLIT= option
unusable in this case.

ODS LAYOUT

Another method of putting more than one piece of output on the page is with ODS LAYOUT. LAYOUT enables
you to specify regions on the page that output will be written to. Exhibit 7 shows a report with output from one
PROC SQL, three PROC REPORTS and six PROC GCHARTS. How did we do this one?

The first table is generated with PROC SQL with nothing special added, except that STARTPAGE=NEVER is
set so that all the other output shows up on the same page. Then we start with LAYOUT. There are three
commands necessary to use ODS LAYOUT.

 ODS LAYOUT START;

 ODS REGION X=xxx Y=yyy WIDTH=www HEIGHT=hhh;

 ODS LAYOUT END;

START and END turn on and off the LAYOUT and REGION specifies the size and position of the page region to
write output to. There can be as many regions as you want on the page. There are some important region rules
to be aware of:

 regions are not transparent. If they overlap, the first one defined has that space on the page and will
overwrite the output beneath it.

 the size of the region is determined by the WIDTH and HEIGHT parameters, not the amount of data
sent to the region. If you have a large region set and only one row of data, the region is still large (and
may overlay other regions).

 output is not sized to the region. If if doesn‟t fit, it is truncated. There is a log note warning you of this.

 LAYOUT is limited to one page. There is no spanning of regions or output to additional pages.

With those rules in mind, let‟s look at the code for the three PROC REPORTs in Exhibit 7.

10

Programming: Beyond the BasicsSAS Global Forum 2011

Notice that our regions do not overlap, the X value on each region is greater than the width of the previous
region. Also, as noted above, the Y value is set from the top of the page (0=top of printable area). This is
opposite of the Y position values in SAS/Graph, where 0 is the bottom of the page.

Beginning in version 9.2, SAS/Graph output is scaled to fit an ODS LAYOUT region. Be aware that though the
graphic image itself will scale, if you‟ve specified font sizes for text in the graph, they will remain that size. Some
trial and error is often necessary to get the font sizes correct.

Even in version 9.3, ODS LAYOUT will still officially be pre-production. The code seems relatively stable and
syntax is unlikely to change, but keep that in mind. For more information on using ODS LAYOUT, see Dan
O‟Connor and Scott Huntley‟s 2009 SAS Global Forum paper listed in the references section.

DATA _NULL_ REPORTING AND ODS PDF

Traditional DATA _NULL_ reporting, with PUT statements writing the desired output to a file or the output
window, has allowed SAS programmers to generate custom reports that can‟t be created with a procedure.
Now that output can be sent directly to PDF, or any other ODS destination, and can be stylistically enhanced
with inline styles. Actually, if you have a data step with a FILE PRINT statement all you need to do is issue an
ODS PDF statement before and an ODS PDF CLOSE statement following the data step and the PDF document
will be created with the results.

ods pdf file='c:\temp\test.pdf';

data _null_;

 set sashelp.class(where=(sex eq 'M'));

 file print;

 put Name @20 Height;

run;

ods pdf close;

All the escape sequences discussed above (style, newline, nbspace, etc.) can be added to PUT statements, or
in the PUT or to the variable referenced in PUT statements and will be rendered in the PDF output. This makes
creating nice looking output quite simple.

We think of FILE PRINT as sending
results to the output window. Actually,
they will go to any open ODS
destination. In this case, a PDF file.

11

Programming: Beyond the BasicsSAS Global Forum 2011

Another enhancement to data step reporting is the ODS= option on the FILE PRINT. This options associates
the data step output with a table template which allows you to create tabular output. You can actually create
output that looks like procedure output using a data step.

Even though it does not look very tabular, Exhibit 9 shows an example of a report created in a data step using a
table template. The table in this report has only one column and we‟ll use a lot of embedded style attributes to
format the text the way we want it. This report could have been done with just the simple FILE PRINT and PUT
statements method mentioned above except for one thing This method is still restricted by the 256-character
LINESIZE limit and the lines in this report are more than 256 characters wide. Using the table template method
gets around that limit.

We start by modifying the style template that we‟ll use. This lets us set some global attributes that we won‟t
have to repeat on each line of text and to set some general appearance attributes for the report.

You can learn a lot more about using PROC TEMPLATE to create style templates in Cynthia Zender‟s 2010
SAS Global Forum paper.

Normally, the FILE PRINT statement sends the results of PUT statements to the output window and/or any open
ODS destination.

The default table template that is used is called BASE.DATASTEP.TABLE and most of the time you can use this
default. A different template can be specified with the TEMPLATE= parameter of the ODS= option, but you
need to understand the way table templates work and the information that they expect. Cynthia Zender‟s SUGI
30 paper (2005) has a number of great examples of creating tabular output in a datastep using table templates.

In this example, the variable BigLine is the only variable that will be put into the output table that the table
template will create. As you can see in Exhibit 9, a lot of information can be put on each line. Here we set up
the header for each agency in the report which will be at the top left of each page. All the style information and
data values are concatenated together in one big data value.

This PUT statement looks different from what we usually see – there is no quoted text or variable names. The
ODS specification is a reference back to the FILE PRINT statement. All the variables listed in the
VARIABLES parameter are written to the output file. In this example, there is only one variable, BigLine, listed
there and its value will be written to the PDF document.

12

Programming: Beyond the BasicsSAS Global Forum 2011

Following the agency header on each page are rows of information about each person booked into the jail by
that agency. The first row for each person has the booking number, name and dates of incarceration. We want
that row to have a gray background and, like the agency row, have header text in bold and the data values in
normal text. Again, we put all the necessary information into the value of BigLine and use PUT _ODS_ to write
it to the PDF document.

We similarly create a value of BigLine that has the arrest and charge information, with embedded styles, that will
go on the next line(s). The results are quite nice. Notice in the partial output below that all the style instructions

have been rendered: font sizes are changed, the bold text is turned “on” and “off” and that the gray background
is added to the first row of each person‟s information. All of this is achieved by embedding the style information
in the variable values themselves.

THE FUTURE OF DATA _NULL_ REPORTING – THE REPORT WRITING INTERFACE

It‟s pretty cool to be able to create formatted, tabular reports from a data step. But, in the new world of DATA
NULL reporting you can define tables right in the data step code and have many different table on the same
page of output. Before we begin a discussion of the Report Writing Interface (RWI), please understand that this
section is just to get your interest piqued. This is huge topic and you can get much more information in Dan
O‟Connor‟s 2009 SAS Global Forum paper listed in the references section. It contains 40 pages on this topic
alone.

The RWI uses a data step object called ODSOut. There are “methods” (like functions) of that object that will
create tables, rows, cells, text, page breaks, lines, etc. To use an ODSOut object it is first declared and given a
name – this only has to be done once in the data step and is routinely placed in a conditional section of code:

Once the object is declared you can call methods that perform different tasks. For instance, with our object
“obj,” just a few of the possible methods are:

 obj.table_start() - begins a table (there is a table_end method that closes a table)

 obj.row_start() - begins a row in that table – you can have as many rows in the table as you want
(there is also a row_end method that closes a row)

 obj.format_cell() - inserts a cell (column) into that row – you can have as many cells in a row as you

13

Programming: Beyond the BasicsSAS Global Forum 2011

want, but each row must have the same number of cells

 obj.format_text() - inserts a line of text (not part of a table)

 obj.line() - puts a horizontal line on the page

 obj.page() - inserts a page break

Note that all of these methods have parameters that can be placed in the parentheses. For example, the
Format_Cell method has a “text” parameter that specifies the text to be printed in the cell. You can specify style
attributes in most method calls as well, specifying cell borders, appearance of text, line widths, etc., with the
OVERRIDES parameter. The report shown in Exhibit 10 uses the RWI and each page can have as many as 20
or more separate tables.

The report contains information about inmates housed in a county jail that have used extra-fee services
(infirmary, psych unit, guarding at a hospital, etc.). It reports, by inmate, the charges that they have and the
details about the premium fee services. Each type of information presented has data elements and this makes
using a simple tabular output difficult. The RWI is a perfect tool for this report because and we can use a
different table structure for each type of information. The segment of the report shown below contains six
separate type of output : a line, a text string and four tables.

So, how did we get those results? Let‟s look at each of those types of output here. There is a horizontal line
between the set of data for each inmate.

The inmate information is put into a table, even though there is always only one row. The main reason for this is
to make the inmate numbers have the same horizontal justification from inmate to inmate. The report uses a
proportional font, so we can‟t just pad the name with blanks before putting the inmate number. So, a single-row,
two-cell table is used.

The inmate information, like the LINE() method call, is also in the block of text that runs on the first record for
each inmate. Note that there are additional attributes, set in the OVERRIDE parameter, on the TABLE_START
and FORMAT_CELL calls that are not shown because of space here. They control things like the width of the
cell, the justification of the text, the font size and style, etc.

14

Programming: Beyond the BasicsSAS Global Forum 2011

The charge data is also in a table, with a row for each charge that the inmate has. The components of the table
are split up a little bit here. The TABLE_START is called inside the first.InmateNum block, along with the line
and inmate information. The table rows and cells are built on each iteration of the data step and the
TABLE_END is called in a block of code for last.InmateNum.

The tables for the premium location and guarding data are built in much the same way. If there is no data for
one or the other of those tables, nothing is printed.

Finally, also inside the block of code that runs for last.InmateNum, a line of text is written containing the
summary information. This is done with a FORMAT_TEXT method call similar to the way the “Charge
Information” header was done in the example above.

This is a very quick run-through of an RWI report. We have up to four tables per inmate, each with different
number of rows and columns. It‟s not the simplest example we could have run through, but it shows the power
of this technique. As with ODS LAYOUT, the Report Writing Interface is still pre-production and will be even in
version 9.3. However, this example shows it can still do quite a bit right now. Please take a look at Dan‟s paper
for a lot of good examples and a more thorough coverage of the methods and options available.

CONCLUSION

This paper has presented a number of tips and tricks that you can use to enhance to look of your SAS output.
There are a number of other options available for ODS in general and PDF output in particular. I‟d encourage
you to go to the SAS website where there is a wealth of information. Go to support.sas.com and click on
Communities and Base SAS. There you‟ll find FAQs, white papers, news and other information on ODS. Past
SUGI/SAS Global Forum papers are a wonderful resource for most any subject related to SAS. ODS-related
topics are no exception. Just a few that offer additional information on the topics covered in this paper are listed
in the following reference section.

REFERENCES

Lund, Pete, “PDF Can Be Pretty Darn Fancy: Tips and Tricks for the ODS PDF Destination,” Proceedings of the
Thirty-First Annual SAS Users Group International Conference, SAS Institute Inc. (Cary, NC), 2006.
(http://www2.sas.com/proceedings/sugi31/092-31.pdf)

O‟Connor, Daniel, “The Power to Show: Ad Hoc Reporting, Custom Invoices, and Form Letters,” Proceedings of
the 2009 SAS Global Forum Conference, SAS Institute Inc. (Cary, NC), 2009.

15

Programming: Beyond the BasicsSAS Global Forum 2011

http://www2.sas.com/proceedings/sugi31/092-31.pdf

(http://support.sas.com/rnd/base/datastep/dsobject/Power_to_show_paper.pdf - this is an updated version of the
paper presented at the conference)

O‟Connor, Daniel and Huntley, Scott, “Breaking New Ground with SAS® 9.2 ODS Layout Enhancements,”
Proceedings of the 2009 SAS Global Forum Conference, SAS Institute Inc. (Cary, NC), 2009.
(http://support.sas.com/resources/papers/proceedings09/043-2009.pdf)

Kevin D. Smith, “PROC TEMPLATE Tables from Scratch,” Proceedings of the 2007 SAS Global Forum
Conference, SAS Institute Inc. (Cary, NC), 2007.
(http://www2.sas.com/proceedings/forum2007/221-2007.pdf)

Zender, Cynthia, “The Power of TABLE Templates and DATA _NULL_,” Proceedings of the Thirtieth Annual
SAS Users Group International Conference, SAS Institute Inc. (Cary, NC), 2005.
(http://www2.sas.com/proceedings/sugi30/088-30.pdf)

Zender, Cynthia, “SAS® Style Templates: Always in Fashion,” Proceedings of the 2010 SAS Global Forum
Conference, SAS Institute Inc. (Cary, NC), 2010.
(http://support.sas.com/resources/papers/proceedings10/033-2010.pdf)

AUTHOR CONTACT INFORMATION

Pete Lund
Looking Glass Analytics
215 Legion Way SW
Olympia, WA 98501
(360) 528-8970
pete.lund@lgan.com

ACKNOWLEDGEMENTS

SAS® is a registered trademark of SAS Institute, Inc. in the USA and other countries. Other products are
registered trademarks or trademarks of their respective companies.

16

Programming: Beyond the BasicsSAS Global Forum 2011

http://support.sas.com/rnd/base/datastep/dsobject/Power_to_show_paper.pdf
http://support.sas.com/resources/papers/proceedings09/043-2009.pdf
http://www2.sas.com/proceedings/forum2007/221-2007.pdf
http://www2.sas.com/proceedings/sugi30/088-30.pdf
http://support.sas.com/resources/papers/proceedings10/033-2010.pdf

Exhibit 11 – Superscript in

column headers 2 – Gaps between

data columns

3 – Superscript in

footnote text10
17

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Typewritten Text

pete
Rectangle

Exhibit 2

1 – Groups of

rows

2 – gap color

and size

11
18

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Rectangle

Exhibit 3

1 – Differential

text style

2 – Text

background

matches

graph bars

12
19

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Rectangle

Exhibit 4

2 – Embedded

style info in

LINE statement

3 – Page

numbers

1 – Style info

embedded in data

13
20

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

Exhibit 5

2 – Indented

footnotes

1 – Multiple sets of

columns aligned

14
21

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Rectangle

Exhibit 6

15
22

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Rectangle

Exhibit 7

16
23

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Rectangle

Guam

Exhibit 8

24

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Rectangle

pete
Typewriter
Guam

Exhibit 9

25

Programming: Beyond the BasicsSAS Global Forum 2011

Exhibit 10

26

Programming: Beyond the BasicsSAS Global Forum 2011

Appendix A - ODS Style Attributes

Attribute Description HTML RTF PDF

ABSTRACT= Specify whether or not graph styles are used in CSS or LaTex style files. x

ACTIVELINKCOLOR= Specify the color for links that are active. x x

ASIS= Specify how to handle leading spaces and line breaks. x x x

BACKGROUND= Specify the color of the background of the table or graph x x x

BACKGROUNDIMAGE= Specify an image to use as the background. x

BODYSCROLLBAR= Specify whether or not to put a scrollbar in the frame that references the body file. x

BODYSIZE= Specify the width of the frame that displays the body file in the HTML frame file. x

BORDERCOLOR Specify the color of the border if the border is just one color. x x

BORDERCOLORDARK Specify the darker color to use in a border that uses two colors to create a three-dimensional

effect.
x x

BORDERCOLORLIGHT Specify the lighter color to use in a border that uses two colors to create a three-dimensional

effect.
x x

BORDERWIDTH Specify the width of the border of the table. x x

BOTTOMMARGIN= Specify the bottom margin for the document. x x x

BULLETS= Specify the string to use for bullets in the contents file. x

CELLHEIGHT= Specify the height of the cell. x x x

CELLPADDING= Specify the amount of white space on each of the four sides of the text in a cell. x x x

CELLSPACING= Specify the thickness of the spacing between cells. x x x

CELLWIDTH= Specify the width of the cell. x x x

CONTENTPOSITION= Specify the position of the frames in the frame file that displays the contents and the page

files. x

CONTENTSCROLLBAR= Specify whether or not to put a scrollbar in the frames in the frame file that displays the

contents and the page files. x

CONTENTSIZE= Specify the width of the frames in the frame file that display the contents and the page files.

x

CONTRASTCOLOR= Specify the alternate colors for maps. The alternate colors are applied to the blocks on region

areas in block maps.
x x x

DROPSHADOW= Specify whether to use a drop shadow effect for text in a graph. x x x

ENDCOLOR= Specify the end color for a gradient effect in a graph. x x x

FILLRULEWIDTH= Cause a rule of the specified width to be placed into the space around the text (or entire cell if

there is no text) where white space would otherwise appear. x

FLYOVER= Specify the text to show in a tool tip for the cell. x x

FONT_FACE= Specify the font to use. x x x

FONT_SIZE= Specify the size of the font to use. x x x

FONT_STYLE= Specify the style of the font. x x x

FONT_WEIGHT= Specify the font weight. x x x

FONT_WIDTH= Specify the font width compared to the width of the usual design. x x x

FONT= Specify a font definition. x x x

FOREGROUND= Specify the color of text or data items x x x

FRAME= Specify the type of frame to use on an HTML table. x x x

FRAMEBORDER= Specify whether or not to put a border around the HTML frame for an HTML file. x

FRAMEBORDERWIDTH= Specify the width of the border around the HTML frames for an HTML file. x

FRAMESPACING= Specify the width of the space between HTML frames for HTML files. x

GRADIENT_DIRECTION= Specify the direction of the gradient effect in either the X or Y axis direction to influence the

graph background, legend background, charts, walls, floors, etc. x x x

HREFTARGET= Specify the window or frame in which to open the target of the link. x

HTMLCLASS= Specify the name of the stylesheet class to use for the table or cell. x

HTMLCONTENTTYPE= Provide the value of the content type for pages that you send directly to a web server rather

than to a file. x

HTMLDOCTYPE= Specify the entire doctype declaration for the HTML document, including the opening

"<!DOCTYPE" and the closing ">". x

HTMLID= Specify an ID for the table or cell. x

HTMLSTYLE= Specify individual attributes and values for the table or cell. x

IMAGE= Specify the image to appear in the background. This image can be positioned or tiled. x x x

INDENT= Set a numeric value to use as the indention depth. x x

JUST= Specify justification. x x

JUST= Specify the image's horizontal positioning. x x x

LEFTMARGIN= Specify the left margin for the document. x x

18
27

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Rectangle

Appendix A - ODS Style Attributes

Attribute Description HTML RTF PDF

LINESTYLE= Specify the line type to use in a graph. You can use SAS/GRAPH line types -46. x x x

LINETHICKNESS= Specify the thickness (width) of a line that is part of a graph. x x x

LINKCOLOR= Specify the color for links that have not yet been visited. x x x

LISTENTRYANCHOR= Specify whether or not to make this entry in the table of contents a link to the body file. x

LISTENTRYDBLSPACE= Specify whether or not to double space between entries in the table of contents. x

MARKERSIZE= Specify the size of the symbol used to represent data values. x x x

MARKERSYMBOL= Specify the symbol used to represent data values. x x x

NOBREAKSPACE= Specify how to handle space characters. x x

OUTPUTHEIGHT= Specify the height for graphics in the document. x x x

OUTPUTWIDTH= Specify the width of the table or of the graph or line thickness. x x x

OVERHANGFACTOR= Specify an upper limit for extending the width of the column. x x x

PAGEBREAKHTML= Specify HTML to place at page breaks. x

POSTHTML= Specify the HTML code to place after the HTML table or cell. x

POSTIMAGE= Specify an image to place after the table or cell. x x

POSTTEXT= Specify text to place after the cell or table. x x x

PREHTML= Specify the HTML code to place before the HTML table or cell. x

PREIMAGE= Specify an image to place before the table or cell. x x

PRETEXT= Specify text to place before the cell or table. x x

PROTECTSPECIALCHARACTERS= Determine how less-than signs (<), greater-than signs (>), and ampersands (&) are

interpreted.
x x x

RIGHTMARGIN= Specify the right margin for the document. x

RULES= Specify the types of rules to use in a table. x x x

STARTCOLOR= Specify the start color for a gradient effect in a graph. x x x

TAGATTR= Specify text to insert in the HTML x

TOPMARGIN= Specify the top margin for the document. x x x

TRANSPARENCY= Specify the level of transparency for a graph. x x x

URL= Specify a URL to link to. x x x

VISITEDLINKCOLOR= Specify the color for links the visited links. x x

VJUST= Specify vertical justification. x x x

WATERMARK= Specify whether or not to make the image that is specified by BACKGROUNDIMAGE= into a

"watermark." A watermark appears in a fixed position as the window is scrolled.
x

Using Styles in…

 PROC REPORT STYLE=[style attributes]

 can be placed on PROC REPORT, STYLE(HEADER)=[style attributes]

 DEFINE or COMPUTE statements STYLE(COLUMN)=[style attributes]

 PROC TABULATE STYLE=[style attributes]

 can be placed on the CLASS,

 VAR and CLASSLEV statements

 or as a BOX= option value

 PROC TABULATE [STYLE=[style attributes]] note extra brackets

 as part of a TABLE definition

 PROC PRINT STYLE=[style attributes]

 can be placed on the PROC PRINT STYLE(HEADER)=[style attributes]

 or VAR statements STYLE(COLUMN)=[style attributes]

 Escape sequences ^S={style attributes} assuming ̂as ODS ESCAPECHAR

19
28

Programming: Beyond the BasicsSAS Global Forum 2011

pete
Rectangle

	2011 Table of Contents

