Paper 242-2011

Don’t Waste Too Many Resources to Get Your Data in a Specific Sequence
Henri THEUWISSEN, BI Knowledge Sharing, Belgium

ABSTRACT

Many applications contain too many PROC SORT steps, and sorting data is CPU and space consuming.

This presentation compares different sorting methods, the SORT procedure, the SQL procedure, and sorting in HASH
tables, and compares the results in performance.

Tips are given on how to remove redundant sorts by using the SORTEDBY option, the NOTSORTED option, or the
implicit sort of procedures such as PROC SUMMARY and PROC REPORT.

Also, new options in SAS® 9.2 enable you to get the data in the required sequence without extra DATA steps.

All technigques are presented with examples and resource usage figures.

INTRODUCTION

Data and information is almost always presented in a sorted or a structured way. The presentation of information must
be intuitive, easy to understand or easy to analyze. This requires that tables must be sorted several times to prepare
the data or to create the information.

Developers often write — obsolete — PROC SORT steps to make sure that the data is in the correct sequence for a
subsequent DATA or PROC step. Developers often justify these PROC steps with the — incorrect — assumption “If the
data is sorted, SAS will not sort again”. This is only partly correct.

The paper provides an answer to two questions:

= How to get the best performance of sorting?

= How to avoid SORT steps?

In the performance improvement possibilities, the paper covers:

= A comparison of different methods to sort data: the SORT and SQL procedures and the HASH object in DATA
steps.

= The best method to create sorted output with uniqgue combinations of the BY variables.
= Options that reduce the resources (CPU time, real time, memory) in sorting.

Tips to remove redundant SORT steps or to avoid additional DATA steps are presented by:
= Exploiting the implicit sort of several procedures.

= Options to avoid the execution of a PROC SORT step.

= Options to get an intuitive sequence as result of a SORT procedure.

COMPARING SORT METHODS
SORT Procedure — SQL Procedure — HASH Object

SAS provides many methods to get your data in a specific sequence. The most familiar ways are the SORT and the
SQL procedure. The HASH object in DATA step processing also offers a solution to get your data sorted.

Within the next example these three methods are compared by means of resource requirements. The three methods
are used to sort a SAS table on two variables. The same methods are executed on different SAS tables with the same
structure, but with the number of observations varying from 1 million to 100 million.

Notice the MULTIDATA option in the HASH object definition to allow duplicate key combinations.

SAS Global Forum 2011

S *;
* SORT Procedure *;
S * .
14
proc sort data = sgf.invoices
out = invoices sort;
by doc nr
line nr;
run;
S * .
’
* SQL Procedure *
K * .
14
proc sqgl;
create table invoices sqgl as
select *

from sgf.invoices
order by doc nr,
line nr;

data null ;

if n = 0 then set sgf.invoices;

if n =1 then do;
declare hash ht (dataset:

"sgf.invoices",

ordered: "A",
multidata: "Y");

ht.definekey ("doc_nr",
"line nr");

ht.definedata ("client™",
"doc _nr",

"line nr",

"posting date",
"consumption",
"clearing date",
"doc_ type",
"clearing reason");

ht.definedone ()
end;
ht.output (dataset: "invoices_hash");

run;

The resource statistics show that:

Programming: Beyond the Basics

The HASH object can treat only a limited table size, due to memory limitations. In our example, the following error

occurred:

ERROR: Hash object added 12058608 items when memory failure occurred.

The SQL procedure performs better than the SORT procedure, both on real time and on total CPU time. Notice that
in SAS® 9.2 the performance of the SQL procedure is improved a lot compared to previous releases.

Memory requirements for the SORT and the SQL procedure are independent of the number of observations; the
memory requirements in the HASH object depend on the table size.

The HASH object requires more CPU time than the SORT or the SQL procedure.

1,600
ReaL TIME SR e
v TEEEER % 1,200

GOl 01575 | 36375 | 42415 iy +,100 T

Ol 15303 s 51615 | 83063 5 800 sl

294145 | 222605 N/A < 600 —

633845 | 474335 N/A % 400 —

NN 1432775 | 1,031465 NiA 200 I—| —

o ; . :

1M 5M 10M 25 M 50M 100 M
#RECORDS

ESORT OSQL @ HASH

400
SORINE SORT SOL HASH ol
) s21s| 259 = 300
AYM 17245 | 1457s|29495 w 280
5 =
AN 34295 | 28745 | 65605 = 200
LAY 53865 | 76135 N/A g 150
SN 165625 | 15595 5 NAA 100
AN 24500 s | 268.65 5 N/A 50 I:l
D A, T T
1M 5 M 10 M 25 M 50M 100M
RECORDS
W SORT OSQL BHASH
1,200
MEMORY 1,000
1M 118 MB T g
GOl 74 MB | 74MB| 553 MB e
{RYN 74 ME | 74 MB | 1,109 MB % 600
PEATE 74 ME | 74 MB N/A Z 400
COIl 74 ME | 74 MEB NiA =
TIN 74 MEB | 74 MB N/A 200
o4 N
1M 5M 10M 25M 50M 100M
RECORDS

ES50RT OSQL ®HASH

SAS Global Forum 2011 Programming: Beyond the Basics

ELIMINATING DUPLICATE BY COMBINATIONS

SORT Procedure - HASH Object

The NODUPKEY option in the PROC SORT statement checks for and eliminates observations with duplicate BY
values.

Initially HASH objects in DATA step processing required unique key combinations. From SAS® 9.2 onwards, duplicate
key combinations are supported. By default, the HASH object will store only unique key combinations. A DATA step
with a HASH object can be used to build a similar result as with the NODUPKEY option in the SORT procedure.

The following example compares both methods on a SAS table with 8 variables, sorting on 1 variable. The SORT
procedure and the DATA step are executed on SAS tables with the same structure but with a different number of

observations.

S * ;

* SORT Procedure *

S * ;

proc sort data = sgf.invoices
out = invoices sort
nodupkey;

by client;

run;

e ——— * ;

* HASH Object *;

e ——— *

data null ;

if n = 0 then set sgf.invoices;
if n =1 then do;
declare hash ht (dataset: "sgf.invoices",
ordered: "A");
ht.definekey ("client");
ht.definedata ("client",
"doc _nr",
"line nr",
"posting date",
"consumption",
"clearing date",
"doc type",
"clearing reason");
ht.definedone ()
end;
ht.output (dataset: "invoices hash");
run;

The code for the HASH object is more complex than the traditional PROC SORT statements, and the HASH object is
limited by the memory, but the resource statistics show that:

= The HASH object is much faster than the SORT procedure.
= The HASH object requires fewer memory (550) than the SORT procedure (66930)

[
o

[y
o

—_
()]

—_
o

CPU TIME (3)

()]

D,;!;LIT

10 M 25 M
#RECORDS

EMSORT OHASH

SORT RESOURCE OPTIMIZATION
The NOEQUALS Option

With the default execution of the SORT procedure, observations within BY groups keep the same relative order as
within the original data set. You can specify an option within the PROC statement to explicitly request this behavior
(EQUALS) or you can indicate that the sequence of the observations within a BY group can be in any order
(NOEQUALS). The option NOEQUALS requires fewer resources than the — default — option EQUALS.

Consider a SAS table SAMPLE with 2 variables: NAME and INDEX. Sorting this table on the variable NAME results in a
different output, depending on whether you specify the EQUALS or NOEQUALS option. Both results have a correct
sequence for the variable NAME. The EQUALS option results in an output where the observations in each BY-group
kept their relative position (Henri 2 — 4 — 6 — 7, Nancy 1 — 3 — 5) whereas the NOEQUALS option lost the original
relative position (Henri 6 —2 — 7 — 4, Nancy 3 — 1 —5). It is obvious that keeping the original relative position will
request more search operations.

SAMPLE SAMPLE_EQUALS SAMPLE_NOEQUALS
NAME INDEX NAME INDEX NAME INDEX
NANCY 1 HENRI 2 HENRI 6
HENRI 2 HENRI 4 HENRI 2
NANCY 3 HENRI 6 HENRI 7
HENRI 4 HENRI 7 HENRI 4
NANCY 5 NANCY 1 NANCY 3
HENRI 6 NANCY 3 NANCY 1
HENRI ¥/ NANCY 5 NANCY 5

The impact of the EQUALS / NOEQUALS option is examined in the execution of the SORT procedure on a table with 1
million observations. To get an idea about the impact of the content of the table on the resource differences, the table is
sorted on four different variables. The main difference between these variables is the number of unique values in the
table (15 — 1,000 — 55,000 — 950,000).

SAS Global Forum 2011 Programming: Beyond the Basics

K e * .
* SORT Procedure with EQUALS Option *;
K ——————_—_———————— * .
proc sort data = sgf.invoices

out = invoices equals

equals;

by &variable;

run;
K e e ‘k;
* SORT Procedure with NOEQUALS Option *
K ——————————————— * .
proc sort data = sgf.invoices

out = invoices noequals

noequals;
by &variable;
run;

Note: the test was executed with four different values for the macro variable in the BY statement; each variable used in
the BY statement has a different number of unique values in the table.

The resource statistics show that the NOEQUALS option is always faster than the — default - EQUALS option. The
difference increases with a lower number of unique values.

3.0

N
o
{1

DIFFERENCE

N
o
Il

CPU TIME (3)
7

I

l

o
o
I

15 1,000 55,000 950,000
UNIQUE VALUES

BEQUALS DNOEQUALS

SAS Global Forum 2011 Programming: Beyond the Basics

The TAGSORT Option

When sorting a large table, disk space or memory might become a problem. Using the TAGSORT option in the PROC
SORT statement will execute the sort in two steps: First a sort is executed, using only the variables in the BY statement
and the observation number, and the result is stored in the temporary utility files. Then the observation number is used
to add the remaining variables from the base table. The option is useful when the total length of the variables in the BY
statement is small, compared to the total observation length.

The effect of the TAGSORT option is examined on sorting a table with approx. 850,000 observations on three variables.
A first test is executed on this table with a total of 170 variables and an observation length of 752 bytes. Afterwards a
second test is executed on the table with only 20 variables and an observation length of 88 bytes.

K e * .
* SORT Procedure without TAGSORT Option *;
K e *

proc sort data = sgf.flight details
out = flight details sort;
by confirmation code
first name
last name;

run;
K e e e *;
* SORT Procedure with TAGSORT Option *;
K e e e *

proc sort data = sgf.flight details
out = flight details tagsort
tagsort;
by confirmation code
first name
last name;
run;

When using the TAGSORT option, a note is written to the Log, indicating that every observation is read twice.

NOTE: Tagsort reads each observation of the input data set twice.

The resource statistics show that:

= The TAGSORT option results in an important decrease in memory requirements.
= The TAGSORT option consumes more CPU time.

= The TAGSORT option requires less real time.

100

90
80
70
60
50
40
30
20
10

REAL TIME (s)

0

#VARIABLES

B NORMAL SORT OTAGSORT

N
[43)

N
o

—_
w

-
o

CPU TIME (s)

oL

20 170
#VARIABLES

B NORMAL SORT OTAGSORT

70

60 1

o 50

= 40 -
(@]
2 30 1

i
= 20 A

MEMORY

10 4

04 T
20 170
#VARIABLES

B NORMAL SORT OTAGSORT

The THREADS Option

Parallel processing is supported in SAS since SAS® 9: it allows multiple CPUs to process simultaneously a task. This
technology takes advantage of hardware that has multiple CPUs, called SMP (Symmetric MultiProcessor) machines.
Performance improvements are achieved for both I/O and application processing.

Parallel processing is requested by specifying the THREADS option. The THREADS or NOTHREADS option can be
specified in a global OPTIONS statement or within a specific PROC statement. The default value is THREADS.
Additionally you can specify the number of CPUs to use, using the CPUCOUNT option.

A PROC SORT is executed on a table with 12 variables. Both THREADS and NOTHREADS were examined. The
procedure was executed on a PC with 2 processors.

The following table shows the real time for a SORT on a table with the same structure but with a different number of
observations. Notice that THREADS shows an important performance improvement on large tables.

10,000 _

9,000 L |

Eral THREADS NOTHREADS 8,000 |

1M EREE 23485 e ;ggg @
5n [JERREE 107.75 5 = 5

£ 5000 L

10M IRERCE 162.06 5 N — |

25 M 22884 s 439.31 s & 3,000 | |

SOl G6765s| 4561545 2,000 =

WUIYN 1193565 | 9615955 1,000 L

0 : : e 11_

1M 5M 10M 25M 50M 100M
#RECORDS

B THREADS ONOTHREADS

Separate Disks for Permanent and Temporary Data

When examining the CPU usage of a process, you will find out that often the CPU is not fully used: the application waits
for I/O operations to continue processing. Such a process is said to be I/O-bound.

A possible solution to improve the I/O performance is the usage of the SAS Scalable Performance Data (SPD) engine.
The SPD engine partitions the data in partitioned data sets to improve I/O operations. These data sets can reside on
one disk or on multiple disks.

Another solution is to split the permanent data and the WORK library on different volumes. The benefit of using multiple
disks is illustrated in a SORT procedure execution on a table with the same structure but with a different number of
observations. The sort is first executed with all data on the same disk, afterwards with the WORK library on a separate
external disk.

300

250

[
[
o

1M
10 M

25 M

REAL TIME (3)
o
o

100 —

244 5 50

1M 10M
RECORDS

256 M

B SAME DISK OEXTRA DISK

SAS Global Forum 2011 Programming: Beyond the Basics

AVOIDING REDUNDANT SORTS

Examining any set of SAS programs will show a lot of PROC SORT steps. Many of these SORT steps are not required,
and will just consume a lot of resources.

Obsolete Sorts Preceding other Procedures

Many procedures, like MEANS, SUMMARY, TABULATE and REPORT have a built-in functionality to return a report or
data set in sorted order. They do not require a preceding sort of the data set.

When a BY statement is used in the PROC step though, the data must be sorted on the variables in the BY statement
or an index must exist on these variables.

Consider the following example, building a tabular report. The result is created on a table with 5 million observations.
First the result is created by using the TABULATE procedure on the base table, which is not sorted, then the base table
is sorted in a PROC SORT step, and the TABULATE is executed on the sorted result.

4 * .
* TABULATE Procedure with Unsorted Data *;
K e e e * .
proc tabulate data = sgf.invoices;

class client posting date;

table client = ' ',

posting date = ' ' * n ="' ' * f = commax9.;
run;
S *;
* TABULATE Procedure with Sorted Data *;
S * .
proc sort data = sgf.invoices
out = invoices sorted;
by client
posting date;

run;
proc tabulate data = invoices sorted;

class client posting date;

table client = "' ',

posting date = ' ' * n ="' ' * f = commax9.;

run;

The resource statistics show that:
= Using the procedure on sorted data is indeed faster than creating the report on unsorted data.

= The gain is lost completely by the preceding execution of the SORT step: the cost of the SORT procedure is more
than 50 times the profit in the TABULATE procedure.

= Due to the SORT procedure, the second solution requires higher memory values.

10

S T o P vl 2
TIME
(s)
UNSORTED SORTED
TABULATE TABULATE 0 10 20 30 40 50 60 70 8O 90 100
8895 s o e e)
%EN’?EL + 0933 CPU
1.29 5 8988 5 TIME
o -
e
TIME S T
2.851s 15965 0 2 4 6 8 10 12 14 16 18 20
MEMORY B4BMB| 6693 MB I ’ I
MEMORY | OSORTED
(MB) F BUNSORTED
0 20 40 60 80

The Sort Flag

To avoid unnecessary sorting of your SAS tables, SAS stores a sort flag in the descriptor portion of the tables when a
SORT or SQL procedure is executed. Additionally, information is kept about the variables used in the sort and about the
collating sequence.

Sort Information

Sortedby DOC_NR LINE_NR
Validated YES
Character Set ANSI

When you execute a PROC SORT step, SAS will check the sort flag, and will not execute a sort, when the data set is
already sorted on the specified variable(s). A message is printed in the Log.

NOTE: Input data set is already sorted, no sorting done.

When you execute a PROC SORT to store the result in a new table, SAS will check the sort flag, and will not execute a
sort, when the data set is already sorted on the specified variable(s). SAS will copy the input table in the output table
and a message is printed in the Log.

NOTE: Input data set is already sorted; it has been copied to the output data set.

Notice that the SORT procedure and the SQL procedure set the sort flag, while sorting using the HASH object does not
set the sort flag. Also, procedures like MEANS and SUMMARY create an output table that is sorted. Examining the
descriptor portion of such an output table shows that no sort flag is set.

When you process a sorted table with a DATA step, the sort flag is lost. Notice that this is quite normal, since the values
of the variables — on which the table is sorted — can change in the DATA step.

The following table summarizes what happens when you use a PROC SORT on a table that is created with different
methods, and which contains sorted data.

11

SAS Global Forum 2011 Programming: Beyond the Basics

TABLE CREATEDBY ... 2,0 ACTION
SORT procedure No sarting done.
SQL procedure No sorting done.
SUMMARY procedure Data is sorted again.
HASH ohject Data is sorted again.
DATA step Data is sarted again.

The SORTEDBY Option

The SORTEDBY option can be specified when creating a SAS table, to set the sort flag to YES.
When specifying the SORTEDBY option SAS will:

= Setthe sort flag to YES in the descriptor portion of the data set.

= Indicate that the sort is not validated by the system.

= Use the variables specified in the SORTEDBY option to create the descriptor information.
When specifying the SORTEDBY option the SAS system will NOT:

= Sort the data set when a PROC SORT is executed.

= Verify whether the data set is sorted on the variables specified in the SORTEDBY option.

Example

data invoices hash flag (sortedby = doc nr line nr);
set invoices hash;
run;

Sort Information

Sortedby DOC_NR LINE_NR
Validated NO
Character Set ANSI

The PRESORTED Option

The PRESORTED option was introduced with SAS® 9.2. The PRESORTED option in the PROC statement checks if
the input data set is sorted already, even if the sort flag is not set. This option can avoid sorting a sorted data set, which
does not have the sort flag.

A test is executed on a table with 1 million observations and 8 variables. The table is already sorted on 1 variable. The
table is used in a PROC SORT step with and without the PRESORTED option. The same test is executed on a table
with the same structure but with 5 million observations. Finally a SORT procedure with the PRESORTED option is
executed on the 2 tables, where the table was not sorted yet.

proc sort data = invoices_hash

out = invoices presorted
presorted;
by doc nr;

run;

12

A note is written to the Log about the result of the check on the input data set.

NOTE: Sort order of input data set has been verified.
NOTE: Input data set is already sorted; it has been copied to the output data set.

The resource statistics show that the PRESORTED option:
= Can result in an important reduction of real time, CPU time and memory requirements.

= Requires more resources if the table is not sorted yet.

REAL
TIME

SORT SO

TED TABLE SORT UNSORTED TABLE
SORTED + PRESORTED

SORT SORTED TABLE

CPU
TIME

SORT SORTED TABLE SORT UNSORTED TABLE

O e e PPESORTE + PRESORTED

SORT UNSORTED TABLE
+ PRESORTED

66,747 kB 66,747 kB
66 925 kB 130 KB 66,925 kB

ISVl @ SORT SORTED TABLE

w
o
-
o}

]
(4]
-
o

[
[}
[=x)

o
CPU TIME (s)

REAL TIME (3)
o

o

o N RO

1M 2M 1M

#RECORDS #RECORDS

o

.
0,000 8 SORT SORTED TABLE

60,000 + O SORT SORTED TABLE + PRESORTED
50,000 - B SORT UNSORTED TABLE + PRESORTED
40,000

30,000 A
20,000 +
10,000 A

0 T

MEMORY (KB)

#RECORDS

13

The NOTSORTED Option

Consider a table with data consolidated by weekday and another variable. The table has no sort flag.

INVOICES_TOTALS
DOC_TYPE CONSUMPTION

MONDAY FINAL 1,500
MONDAY PERIODIC 10,800
WEDNESDAY | FINAL 2,500
WEDNESDAY | PERIODIC 18400
FRIDAY FINAL 4,000
FRIDAY PERIODIC 21,000

Specifying a BY statement with the variable DAY in a task, will result in an error, for instance:

proc print data = invoices totals;
by day;
run;

ERROR: Data set WORK.INVOICES_TOTALS is not sorted in ascending sequence. The current BY group
has day = Wednesday and the next BY group has day = Friday.

You can specify the NOTSORTED option in the BY statement to indicate that the data are not sorted in alphabetical
order, but that they are grouped.

proc print data = invoices totals;
by day notsorted;
run;

SORT SEQUENCES

The internal presentation of a character on a z/OS machine is different from the presentation on a PC or Unix machine.
The z/OS machine uses EBCDIC, whereas the Unix and PC platform use ASCII. This also impacts the collating
sequence in a PROC SORT output. For example, numeric values in EBCDIC are presented by the highest hex values
(FO=0,F1=1, ..., F9 =9) whereas in ASCII the same numbers are presented by low hex values (30 =0, 31 =1, ...,
39=9,41=A,61=a).

When using data, created on an EBCDIC platform, on an ASCII platform you have to take into account this different
collating sequence, if you treat the data using BY group processing.

The sort sequence of characters in EBCDIC is: blank . < ...abc..zABC..Z01..9
The sort sequence of these characters in ASCII is: blank . <01 ... 9ABC..Zabc..z

The SORT procedure by default uses the collating sequence of the platform on which the sort is executed. You can
change this by specifying the SORTSEQ option.

14

SAS Global Forum 2011 Programming: Beyond the Basics

Traditional Sort Sequences

Specifying the SORTSEQ option in the SORT or SQL procedure is very useful in client/server applications as illustrated
by the following example.

Suppose that you prepare your data on a z/OS machine and that you transfer a sorted table to PC for further
processing in BY groups. For instance, consider the following table, created on a z/OS machine, sorted with the —
default — EBCDIC sequence.

COMPANIES
COMPANY YEAR RUNS
B-Intelligent 2009 12
B-Intelligent 2010 12
Bl Knowledge Sharing | 2009 125
Bl Knowledge Sharing | 2010 98
3Q 2009 27
3Q 2010 26

When this table is processed on PC in a procedure with a BY statement, the result is created, using the EBCDIC
sequence, without any errors.

When you use this table in a DATA step MERGE statement, to combine the table with a PC table (sorted using the
ASCII sequence), you will get an error:

ERROR: Input data sets cannot be combined because they have different collating sequences
(SORTSEQ) .

To solve this issue, avoiding an extra SORT step on PC, you can sort the data on the z/OS machine, using the
SORTSEQ = ASCI|I option.

proc sort data = companies
sortseq = ascii;
by company;
run;

The SORTSEQ = LINGUISTIC Option

The LINGUISTIC sort sequence was introduced with SAS® 9.2, to enable more intuitive sorts. Consider the table
PEOPLE, containing a variable NAME containing data in mixed case. Using a simple sort on this table will return an
unwanted result. You expect a result that is not case sensitive.

proc sort data = people
out = people sorted;
by name;
run;

15

Before SAS® 9.2, the only way to solve this problem was to create a new variable, with all values in upper case or in

SAS Global Forum 2011

PEOPLE

NAME
CROONEN Nancy

Croonen nancy

CROONEN NANCY

PEOPLE_SORTED

Programming: Beyond the Basics

CROONEN NANCY

CROONEN Mancy

THEUWISSEN HENRI

Theuwissen Henri

Theuwissen Henri

THEUWISSEN HENRI

Croonen nancy

theuwissen henri

theuwissen henri

lower case and sort on that new variable.

data people tmp;
set people;

name uc = upcase (name);
run;
proc sort data = people tmp

out =

by name uc;

run;

people tmp sorted;

PEOPLE_TMP

PEOPLE_TMP_SORTED

NAME_UC NAME NAME_UC
CROONEN Nancy CROONEN NANCY CROONEN Nancy CROONEN NANCY
croonen nancy CROONEN NANCY croonen nancy CROONEN NANCY
CROONEN NANCY | CROONEN NANCY CROONEN NANCY | CROONEN NANCY

Theuwissen Henri

THEUWISSEN HENRI

Theuwissen Henri

THEUWISSEN HENRI

THEUWISSEN HENRI

THEUWISSEN HENRI

THEUWISSEN HENRI

THEUWISSEN HENRI

theuwissen henri

THEUWISSEN HENRI

theuwissen henri

THEUWISSEN HENRI

Specify the SORTSEQ = LINGUISTIC option in the PROC statement to request an intuitive accepted sort, following the

locale used in the SAS session. The sort is not case sensitive.

proc sort data = people

out = people ling sorted
sortseq = linguistic;
by name;
run;
PEOPLE PEOPLE_LING_SORTED

NAME NAME
CROONEN Mancy Croonen nancy
Croonen nancy CROOMEN Mancy
CROONEN NANCY CROONEN NANCY
Theuwissen Henri theuwissen henri

THEUWISSEN HENRI

Theuwissen Henri

theuwissen henri

THEUWISSEN HENRI

16

SAS Global Forum 2011

Programming: Beyond the Basics

The SORTSEQ = LINGUISTIC (ALTERNATE_HANDLING = SHIFTED) Option
The SORTSEQ = LINGUISTIC option in the PROC statement allows additional parameters. The general syntax is

shown below:

PROC SORT DATA = table-name SORTSEQ = LINGUISTIC (collating-rule

value) ;

Variables that contain for instance name information often contain embedded blanks. Usually that data must be sorted,
ignoring the blanks to get a result as in telephone lists.

Consider a table PEOLPE, with a variable NAME, containing information with embedded blanks. Using a simple sort on
this table will return an unwanted result, caused by the embedded blanks.

proc sort data =
out =
by name;
run;

people

people sorted;

PEOFLE PEOPLE_SORTED
NAME NAME
Van De Velde “an Cleemput
Yander borght Yan De Velde
Vanderheelen “an den abeele
Van den abeele “an dueren
Yan Cleemput Vancaetsbeeck
‘ancaetsheeck ‘ander borght
“an dueren Vanderbeelen

Prior to SAS® 9.2, the only way to solve this problem was to create a new variable, with all values in upper case or in
lower case, and all embedded blanks removed, followed by a sort on that new variable.

data people tmp;
set people;

name uc_comp = upcase (compress
run;
proc sort data = people tmp

out =
by name uc comp;
run;

people tmp sorted;

(name)) ;

PEOPLE_TMP PEOPLE_TMP_SORTED
MAME NAME_UC_COMP NAME NAME_UC_COMP
Van De Velde | VANDEVELDE Vancaetsheeck | VANCAETSBEECK
Yander borght | VANDERBORGHT Yan Cleemput | VANCLEEMPUT
Vanderbeelen | VANDERBEELEN “an den abeele | YANDENABEELE
“an den abeele | VANDENABEELE Vanderbeelen | VANDERBEELEMN
Yan Cleemput | VANCLEEMPUT Yander borght | VANDERBORGHT
Vancaetsheeck | VANCAETSBEECK “an De Velde | VANDEVELDE
“an dueren VANDUERENM “an dueren VANDUEREN

17

SAS Global Forum 2011 Programming: Beyond the Basics

Use the collating rule ALTERNATE_HANDLING = SHIFTED to treat spaces as minimally important in the sort.

proc sort data = people
out = people ling sorted
sortseq = linguistic (alternate handling = shifted);
by name;
run;

PEOPLE PEOPLE_LING_SORTED

Van De Velde Yancaetsheeck

“ander borght Van Cleemput
Vanderbeelen Van den abeele

‘an den abeele Yanderbeelen

Van Cleemput “ander borght
Vancaetsheeck Van De Velde

Van dueren “an dueren

The SORTSEQ = LINGUISTIC (NUMERIC_COLLATION = ON) Option

You often receive data, where a character variable starts with a number, indicating a specific sequence for the variable.
Sorting on such a variable can be cumbersome. Consider the table REPORT_CODES, containing a variable CODE.
Using a simple sort on this table will return an unwanted result.

proc sort data = report codes
out = report codes sorted;
by code;
run;
REPORT_CODES REPORT_CODES_SORTED

1 Global Yiew 1 Global View
2 Global View Europe 11 Service Details
3 Global View USA 12 Service Details Europe
11 Service Details 13 Service Details USA
12 Service Details Europe 2 Global View Europe
13 Service Details USA 21 Licenses Details
21 Licenses Details 3 Global View USA

To build a sorted result, taking the numeric values at the beginning of the string as real numeric numbers, you can
create a new numeric variable and then sort on that new variable.

data report codes tmp;

set report codes;

length sequence nr 4;

sequence nr = input (scan (code, 1, ' '), 4.);
run;

proc sort data = report codes tmp
out = report codes sorted;
by sequence nr;
run;

18

REPORT_CODES_TMP REPORT_CODES_TMP_SORTED

CODE SEQUENCE_NR CODE SEQUENCE_NR

1 Global View 1 1 Globhal View 1
2 Global View Europe 2 2 Glohal view Eurape 2
3 Global View USA 3 3 Global View USA 3
11 Service Details 11 11 Service Details 1"
12 Service Details Europe 12 12 Service Details Europe 12
13 Service Details USA 13 13 Service Details USA 13
21 Licenses Details 21 21 Licenses Details 21

The collating rule NUMERIC_COLLATION = ON treats integer values within a string as their numeric equivalent for
sorting.

proc sort data = report codes
out = report codes ling sorted
sortseq = linguistic (numeric collation = on);
by code;
run;,
REPORT_CODES REPORT_CODES_LING_SORTED
1 Global View 1 Global View
2 Global View Europe 2 Global View Europe
3 Global View USA 3 Global View USA
11 Service Details 11 Service Details
12 Service Details Europe 12 Service Details Europe
13 Service Details USA 13 Service Details USA
21 Licenses Details 21 Licenses Details

CONCLUSION

It takes 2 minutes to write a PROC SORT step, but it might take hours to execute that step! Most applications waste a
lot of resources (CPU time, memory, disk space) due to redundant sorts or inefficient sorts. Often these applications
can be simplified a lot by just removing several steps.

The better you know your data, the better you will be able to write efficient SAS code.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Henri THEUWISSEN
Enterprise: Bl Knowledge Sharing
Address: Sterrenlaan 40
B-3360 BIERBEEK
BELGIUM
Work Phone: +32 (0)496 28 45 28
E-mail: henri.theuwissen@biknowledgesharing.be
Web: www.BlKnowledgeSharing.be

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

19

	2011 Table of Contents

