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ABSTRACT 

Solvency 2 is an EU directive set out to strengthen capital adequacy and risk management for insurers. The directive 
gives the insurers an opportunity to develop internal model in order to quantify the capital requirements. In this work 
we give examples on how this can be done for a non-life insurance company in the major risk areas: operational, 
counterparty, catastrophe, market and insurance risk. Insurance risk is usually the largest risk in non-life and we 
demonstrate how SAS

®
 may be used to model this. Insurance risk is composed of underwriting risk and reserve risk, 

where underwriting risk is the risk arising from claims incurring in future accounting periods, and reserve risk is the 
risk arising from previous accounting periods. We demonstrate how these risks can be modeled and show an 
example on how copulas can be used to find non linear dependencies between lines of business. 

 

INTRODUCTION 
The current directive for insurers (Solvency 1) in EU is based on individual member country regulations and is the first 
stage in a more fundamental harmonization of the solvency requirements for EU insurers. The capital requirements 
for non-life insurance undertakings are basically a factor model of the written premium and technical provisions and 
do not necessary account for all of the real, underlying risk. The Solvency 2 directive aims at providing the insurance 
companies with more flexibility on how the capital requirements are calculated by allowing internal models [1].  

SOLVENCY 2 OVERVIEW 

The proposed Solvency 2 framework has three major parts or pillars: 

Pillar 1: quantitative requirements, like amount of capital an insurer should hold. 

Pillar 2: risk management requirements. 

Pillar 3: transparency requirements towards regulators. 

In this work we will try to exemplify how one can calculate the value of different risk factors under pillar 1 for a non-life 
insurance company and how one can combine these to a single risk value. A schematic overview over the different 
quantitative risk factors for non-life insurance can be given as: 

 

 

 

The goal of the model is to find distributions for each of the risk factors and combine them with an appropriate 
dependency. In Solvency 2 particularly, we are interested in finding the total distribution for the company and hold 
enough capital to cover the 99,5% quantile based on the risk for the next accounting year. 

OPERATIONAL RISK 

Operational risk is usually considered as risks connected to the people, systems and processes in a business. This is 
a very broad group of risk and includes fraud, system failures, terrorism and employee compensation claims. The 
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model for operational risk may be very complex with detailed models for each element influencing the risk, but 
simplified models based on some appropriate exposure figure is also common. For non-life insurance a factor of 
earned premium is commonly used.  

COUNTERPARTY RISK 

The risk of not receiving payment as agreed is often called counterparty or credit risk and the event is often called a 
default. For non-life insurance the counterparty is often a reinsurer. The probability of default (PD) is often given by 
credit rating agencies like S&P and Moody’s. The value at risk is simply the amount at stake multiplied by the 
probability of default given by the rating agencies. An example of rating and default probabilities are: 

 

  
 

A further sophistication of this model is to give a distribution of the loss given default.  

MARKET RISK 

When modeling market risk we want to find how much the company assets may decrease due to change in the 
market factors. The four standard market risk factors are stock prices, interest rates, foreign exchange rates, and 
commodity prices [2]. The actual portfolio of the company decides which factors are to be taken into consideration.  
Usually one wants to model these factors as time series and a lot of work is done in this field. However, most 
insurance companies will rely on Economic Scenario Generators (ESG) as a part of a risk management tool rather 
then develop own methods for market risk. 

CATASTROPHE RISK 
Catastrophe modeling tries to estimate the losses that could be sustained due to a catastrophic event. Such event 
can be both man made and nature made. Due to the low frequency of catastrophic events, this risk is often modeled 
through standard formulas. What is considered a catastrophic event is often defined by the national supervisory 
authorities. A simplified model is based on the net written premium (P) in each line of business (t) together with a 
predefined constant (C) for each line of business. 

 

INSURANCE RISK 

Insurance risk is the risk arising from the process of transferring risk from persons or companies to the insurance 
company and it is the fundamental business idea of an insurance company. It is usually divided in two main 
categories: underwriting risk and reserve risk. Underwriting risk is the risk arising from claims incurring in future 
accounting periods, while reserve risk is the risk arising from previous accounting periods. We will try to give details 
on how this can be calculated using SAS

®
. 

UNDERWRITING RISK 

To be able to predict the claims for a future accounting period we need to know about the claims in previous 
accounting periods. We will show an example on how to model next periods claims based on historical claims. To 
give an example we have accumulated periodical claims data from two lines of business, health insurance and 
workmans’ compensation insurance.  

 

Rating PD

AAA 0,010 %

AA 0,100 %

A 0,500 %

BBB 1,000 %

BB 3,000 %

B 5,000 %

…

D 26,000 %
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These time series of data will enable us to model the total underwriting risk for these two lines combined. One way of 
doing this is to model each of these lines separately and then combining them assuming some kind of dependency 
between the lines. A single line of business can easily be modeled by using PROC GENMOD. Workmans’ 
compensation insurance is assumed to gamma distributed and the SAS

®
 code will be: 

 
PROC GENMOD DATA=Sparebank1_lob1; 

    MODEL Workmans_comp= / DIST=gamma 

                                LINK=log 

                                TYPE1 TYPE3; 

         OUTPUT OUT=pred_gamma PREDICTED=wc_pred; 

RUN; 

 

This gives as output the needed parameters, intercept and scale, to describe workmans’ comp claims as a gamma 
distribution. We can then use this distribution to simulate outcomes from workmans’ comp and find the desired 
quantiles. 

 

 
 

Health insurance claims are proportional with number of claims since payment pr claim is fixed. It is therefore 
reasonable to assume the total claim amount to be poisson distributed. We then apply the same GENMOD code but 
with a poisson assumption on the historical health claims. 

 
PROC GENMOD DATA=Sparebank1_lob2; 

    MODEL health_claim= / DIST=poisson 

                               LINK=log 

                               TYPE1 TYPE3; 

         OUTPUT OUT=pred_poisson PREDICTED=health_pred; 

RUN; 

 

The output from this is the mean of the poisson distribution and the only parameter needed to simulate outcomes 
from this distribution. The quantiles of this distribution are: 

 

 
 

It is natural to assume that claims are somewhat correlated and if we make a plot, we observe that there is indeed 
some positive correlation. 

Workmans' comp Health

443                            95

477                            75

485                            86

489                            82

… …

591                            121

593                            122

609                            126

649                            136

Gamma Workmans' 

Quantile comp

50 % 536

95 % 584

99,5 % 615

Poisson

Quantile Health

50 % 100

95 % 117

99,5 % 127
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By applying PROC CORR on the claims we get a Pearson correlation coefficient of 0.829. However we suspect that 
the larger claims are more correlated then smaller claims. This means that we need to use more complex 
dependency structures, so called copulas. When using copulas we use the already established marginal distributions, 
in our case: gamma for workman’s compensation and poisson for health. Given these distributions, we can list the 
corresponding probability for each observed claim. 

 

 
 

We may plot the corresponding probabilities in a [0,1] x [0,1] grid to get a visual impression of the dependency. 
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By using maximum likelihood techniques we can find a copula that fits these points much like we did when 
establishing which marginal distributions to use. In this case, a Gumble copula with constant 2.84 fits well. By 
choosing this copula we have chosen the dependency structure between the two marginal distributions. The next 
step is to simulate with this dependency structure together with the chosen marginal distributions and compare it with 
regular correlation. Regular correlation is also a copula often referred to as normal or gaussian copula. This is 
implemented in the PROC MODEL and is simulated as [3]: 

 
DATA histdata; 

y = .5; z = .5; *Initial observed data;  

RUN ; 

 

DATA sdata; *Give correlation in normal copula; 

_type_ = "cov";y = 1; z = .829; _name_ = "y"; OUTPUT; 

_type_ = "cov";y = .829; z = 1; _name_ = "z"; OUTPUT; 

RUN; 

 

PROC MODEL OUT=sim DATA=histdata SDATA=sdata; 

y = 0; ERRORMODEL y ~ Uniform(0,1); 

z = 0; ERRORMODEL z ~ Uniform(0,1); 

SOLVE y z / random=10000 seed=12345 copula=(normal); 

RUN; 

QUIT; 

 

PROC GPLOT DATA = sim; 

PLOT y*z; 

RUN; 

QUIT; 

 

 
 
The Gumble copula is not given explicitly in PROC MODEL but can easily be simulated as: 

 
DATA t1; 

 DO i=1 TO 10000; 

 y=UNIFORM(-1); 

    OUTPUT; 

 END; 

RUN; 
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PROC MODEL DATA=t1;     

     EXOGENOUS  x; 

     x*(1-log(x)*(1/2.84))-y =0;      

     SOLVE x/out=b; 

RUN; 

QUIT; 

 

DATA c; 

SET b; 

v1=UNIFORM(-1); 

u1=exp(log(y)*v1**(1/2.84)); 

u2=exp(log(y)*(1-v1)**(1/2.84)); 

RUN; 

 

PROC GPLOT DATA = c; 

PLOT u1*u2; 

RUN; 

QUIT; 

 
The plot shows a higher density of points in the upper right corner and this is due to higher correlation for lager 
claims. The total claim for the two lines of business is then: 

 

 
 

 

The numbers show that we do underestimate the combined risk of the two lines of business by using the normal 
copula instead of the more suitable Gumble copula. 

RESERVE RISK 

The reserve risk is often calculated based on so called payment triangles. In this triangle, rows represent the year the 
claim incurred and the columns represent the delay of payment in years. An example of such a triangle is given as: 

Quantile Normal Gumble

Mean 636 636

95,00 % 699 700

99,50 % 739 741
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In this triangle we observe that the peak of payments is after 3 to 4 years and the line of business is long tailed, 
meaning that it will take many years before all the claims are settled for a given year. The future payments can be 
modeled with PROC GENMOD if we assume the claims to be gamma distributed and we introduce a variable that 
accountings for the long tail nature of the claims [4]. If we define g=log(1+d) we get: 

 
PROC GENMOD DATA=total; 

 MODEL betalt = d  g / LINK=log DIST=gamma; 

 OUTPUT OUT=new P=probet3 STDRESDEV=resid U=u95 L=l95; 

RUN; 

 

It would be natural to also include the variable skaar in the model but in this case it is not significant. The output 

from PROC GENMOD gives us a gamma distribution dependent of d and the resulting future payments: 

 

 
 

This method is an alternative to the very popular chain ladder method and will in some cases give a better reflection 
of the underlying risk.  

TOTAL MODEL 

The total model combines all of the risks in question and combines them to a total risk distribution. For all the risks 
the actual values need to be discounted to present value to reflect the cash flow. Once this is taken into account the 
Solvency 2 capital requirement is the 99,5% quantile of this distribution. To get an impression on typical values of the 
main risk categories we give a waterfall plot: 
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As the figure shows insurance risk and market risk is the larges risks in a non-life insurance company.  

CONCLUSION 

The opportunity Solvency 2 gives to use own developed models to determine risk for insurers is bound to increase 
risk modeling activity. SAS

®
 software provides many procedures that are well suited to solve internal risk models and 

we have demonstrated one such model for reserve and underwriting risk using PROC GENMOD. In addition we show 
how PROC MODEL is used to model non linear dependency with copulas.  
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