
1

Paper 433-2011

 Measures, Members, and Sets, Oh My!

Advanced OLAP Techniques

ABSTRACT

Going beyond basic OLAP measures, members and sets gives the analytical user more flexibility to answer complex
business questions efficiently and effectively. Many times business requirements overtake the basic aggregate
measures of an OLAP cube and require customized measures that may or may not be non-additive. For example,
Percent of Totals, Weighted Averages, and Ratios across time cannot be determined through the standard
aggregation definitions of OLAP. The creation of custom OLAP member sets may be necessary to present these
custom measures. These custom sets can present specific members within multiple levels of a hierarchy or across
many dimensions. MDX allows for the creation of many highly customized measures, members, and sets but has its
limits. There are ways to move beyond these limits and create more dynamic and complex functions using SAS
Macros® in conjunction with custom MDX. Utilizing SAS Macros created by pre-processing base SAS code will open
a new world of dynamic functionality that is accessible within SAS OLAP cubes. This paper will discuss how to
create custom measures, members and sets using the standard OLAP approach and ways to combine base SAS and
macros variables to define more powerful members and sets.

INTRODUCTION

This paper uses the PRICEDATA dataset from the SASHELP library. For context, the current month is October
2002. The data revolves around monthly sales for a shoe store with outlets across the United States.

As a general tip, SAS Enterprise Guide ® can be used to rapid prototype measures, members, and sets. Once the
correct MDX is written, the code can be defined in OLAP Cube Studio ® or in the base PROC OLAP SAS code that
creates the cube. This paper focuses on writing PROC OLAP code directly, rather than using OLAP Cube Studio.
 This is a best practice for development purposes which decreases development cycles and improve troubleshooting
ability.

MEASURES

The most common aggregations are sum, count, min, max, and average. These can be used as building blocks for
much more complex calculations. The general idea is to break the calculation down into steps and compute through
multiple measures that relate to one another. Remember to set the solve order appropriately.

PERCENT OF TOTAL
Percent of total measures are those that rely on the parent total to compute a percent of the parent total. This can be
useful when showing the distribution of a measure across a dimension. A stacked bar graph shows this nicely.

DEFINE Member "[SGF].[Measures].[Percent of Total Sales]" AS
'([Product].[Product].CurrentMember, [Measures].[SalesSum])/
 iif(([Product].[Product].CurrentMember.Parent, [Measures].[SalesSum]) = 0
OR ([Product].[Product].CurrentMember.Parent, [Measures].[SalesSum]) = NULL,
 ([Product].[Product].CurrentMember, [Measures].[SalesSum]),
 ([Product].[Product].CurrentMember.Parent, [Measures].[SalesSum])

),FORMAT_STRING="PERCENT10.2" ' ;

ANNUALIZED TOTALS
Annualization of a measure can be approximated with simple calculations; for example take a monthly measure and
multiply by 12. This simple calculation does not take into consideration leap years or the number days in a month.

[June Sales] * [Months in Year]
$1,546,093 * 12 = $18,553,116

[June Sales] / [Days in Month] * [Days in Year]
($1,546,092.74 / 30) * 366 = $18,862,331.43

Business Intelligence and AnalyticsSAS Global Forum 2011

Measures, Members, and Sets, Oh My!, continued

2

Figure 1: Showing annualized sales across YQM hierarchy.

Month Days, Quarter Days and Year Days measures are base measures that are the number of days in the Month,
Quarter of Year, and are used to reduce the Sales Sum to the lowest grain before the annualization can occur.

Define the Monthly Annualization measure:
DEFINE Member "[SGF].[Measures].[Monthly Annualization]" AS

 '([Measures].[salesSUM] / [Measures].[monthdays]) * [Measures].[yeardays],

 format="dollar20.0"';

Define the Quarter Annualization measure:
DEFINE Member "[SGF].[Measures].[Quarter Annualization]" AS

 '([Measures].[salesSUM] / [Measures].[quarterdays]) * [Measures].[yeardays],

 format="dollar20.0"';

Lastly define a measure which checks the current level for QUARTER or MONTH types and display one of the two
measures above. This is a good example of how measures can relate to one another as long as they are defined in
the correct order or the solve order variable is set.

DEFINE Member "[SGF].[Measures].[Annualized Sales]" AS

 'iif([Time].[YQM].CurrentMember.Level.Name="Month",

[Measures].[Monthly Annualization] ,

iif([Time].[YQM].CurrentMember.Level.Name="Quarter",

 [Measures].[Quarter Annualization],

 [Measures].[SalesSum]

)), format="dollar20.0" ' ;

Point in Time Versus Additive Measures
Sometimes measures in the source data might be summarized to a certain level of time or are simply “as of right
now” or the sum of the entire population. In our sample dataset we have a column called „employee‟ which is the
number of employees at that month in time.

Business Intelligence and AnalyticsSAS Global Forum 2011

Measures, Members, and Sets, Oh My!, continued

3

Figure 2: Point in Time measures do not aggregate at parent members.

We want to show the „Employee Count‟ by month but do not want to aggregate it above month when viewing the
year. The idea is to use conditional logic and the isleaf() function to check if the current member is the lowest
possible level of time and only aggregate for the lowest grain of the source data, the MONTH in our case.

DEFINE Member "[SGF].[Measures].[Employee Count]" AS

 'iif(isleaf([Time].[YM].CurrentMember),

 [Measures].[employeeMax],

 ([Time].[YM].LastChild, [Measures].[employeeMax])

), format="comma8."';

The MDX logic follows these steps:

1. If the current member is a leaf member, it has no children and it is the last level in the hierarchy.

2. If this is the case, show the standard measure which has the desired measure at the lowest grain.

3. If the current member is not a leaf member, then use the LastChild function to determine the last child of the year
(month) and return the measure for that level.

MEMBERS
Calculated members are custom aggregations of members within a hierarchy. They can be shown simultaneously
with the same parent hierarchy and remain displayed even if the parent hierarchy is expanded or drilled.

SHOWING A ROLLING MONTH AGGREGATION USING A CALCULATED MEMBER
One common task is to show aggregations of time simultaneously. For example, business users may want to see 12,
24, and 36 month aggregations at the same time.

Business Intelligence and AnalyticsSAS Global Forum 2011

Measures, Members, and Sets, Oh My!, continued

4

Figure 3: Showing multiple aggregations of time using calculated members in Enterprise Guide.

From the example above, the user can see the 12, 24, and 36 month rolling totals while drilling into the standard time
hierarchy on the left.

To create the ‘12 Month’ calculated member, here is the OLAP statement.
DEFINE MEMBER "[SGF].[Time].[YM].[All YM].[12 Months]" AS

 'Aggregate(

 {

 [Time].[YM].[All YM].[2001].[November],

 [Time].[YM].[All YM].[2001].[December],

 [Time].[YM].[All YM].[2002].[January],

 [Time].[YM].[All YM].[2002].[February],

 [Time].[YM].[All YM].[2002].[March],

 [Time].[YM].[All YM].[2002].[April],

 [Time].[YM].[All YM].[2002].[May],

 [Time].[YM].[All YM].[2002].[June],

 [Time].[YM].[All YM].[2002].[July],

 [Time].[YM].[All YM].[2002].[August],

 [Time].[YM].[All YM].[2002].[September],

 [Time].[YM].[All YM].[2002].[October]

 })';

As you can see this is a tedious task that can become overwhelming for larger number of months. Later in this paper
we will discuss how to make this more dynamic and efficient using a 24 and 36 month example.

Suppose you wanted to create a custom member that displayed the aggregate of years prior to a certain year. This
can be done using the same DEFINE MEMBER statement as shown above and would look something like this:

Figure 4: Creating a calculated member called ‘Pre 2005’.

As you can see again, there would be a lot of manual effort around maintaining the static code as time moves
forward. Later this paper will again discuss how to write dynamic members.

Business Intelligence and AnalyticsSAS Global Forum 2011

Measures, Members, and Sets, Oh My!, continued

5

SETS
Custom member sets are sometimes needed to present measures more effectively. The method used to create a
custom member set depends on the output needed. Dashboards lend themselves very nicely to member sets
because it simplifies the number of objects needed to present as an indicator. For example, a company may have
multiple regions across the country but has a specific region it focuses on more often than others. A member set can
be defined which isolates this region.

Figure 5: Isolating ‘Region2’ using a member set.

Member sets are more useful when isolating custom groupings of time. For example, a dashboard indicator may
need to always show the last 7 days of a metric or any relative grouping of time. Since time is continuous and
changes as more data is added to the cube, it is not effective to define a specific set of time using the standard
approach. Later this paper will show how to use base SAS code to dynamically write the MDX needed for a desired
grouping of time.

Member sets can be defined in the base PROC OLAP code to build a cube or within OLAP Cube Studio. Information
Map Studio ® currently does not provide a simple way to add custom member sets. To add, simply create a new
data item and reference the member set using MDX syntax.

Business Intelligence and AnalyticsSAS Global Forum 2011

Measures, Members, and Sets, Oh My!, continued

6

Figure 6: Defining a member set in Information Map Studio.

MEASURES, MEMBERS, AND SETS, OH MY!
A key concept of designing cubes is that elements within the cube can be related. Another key concept to remember
is that the code used to build cubes can have pre-processing code to determine virtually any custom measure,
member, or set. Pre-processing code can be used to dynamically write the MDX needed to produce complex relative
time sets or calculated members. The past sections of this paper have shown how to create a few unique measures,
members, and sets. Now we will combine all of these and show the true power of OLAP.

ENHANCING THE ROLLING MONTH CALCULATED MEMBER
Let‟s go back to the example of showing 12, 24, and 36 month aggregations of time simultaneously. Originally we
manually specified the past 12 months. This can be very cumbersome and irrelevant as time move forward. To
overcome this we can use the power of base SAS to dynamically write the MDX needed for the calculated member.

Here is code that is run as a pre-processing step before the OLAP cube is generated.

%let maxdate = '05OCT2002'd;

/* Generates 24 months inclusive of current month */

DATA rolling24months;

 length mdx $50;

 format date mmddyy10.;

 do x = 0 to 23;

 date = intnx('month', &maxdate , -1 * x);

 mdx = "[Time].[YM].[All YM].[" || strip(put(year(date),4.)) || "].[" ||

 strip(put(date,monname9.)) || "]";

 output;

 end;

 drop x date;

run;

proc sql noprint;

 select mdx into :rolling24months_mdx separated by ', ' from rolling24months;

quit;

For our example, the MAXDATE macro variable is manually set to the latest available date in the source dataset. A
more dynamic date, such as the today() function, or querying the data at dynamically should be used in a live

environment.

To define the actual calculated member, this is the segment of code that is necessary.
DEFINE MEMBER "[SGF].[Time].[YM].[All YM].[24 Months]" AS

 "Aggregate({&rolling24months_mdx})";

This rolling 24 month calculation will be dynamically generated every time the cube is generated.

MAKING THE MEMBER SET MORE DYNAMIC
Analysts may want to compare a current month metric to the same month a year ago. Here is the pre-processing
code necessary to accomplish this.

DATA monthPmonth;

 length year $4 mdx $100;

 format date date9.;

 date = intnx('month', &maxdate, -12);

 mdx = "[Time].[YM].[All YM].[" || strip(put(year(date),4.)) || "].[" ||

strip(put(date, monname9.)) || "]";

 output;

 date = intnx('month', &maxdate, 0);

 mdx = "[Time].[YM].[All YM].[" || strip(put(year(date),4.)) || "].[" ||

Business Intelligence and AnalyticsSAS Global Forum 2011

Measures, Members, and Sets, Oh My!, continued

7

strip(put(date, monname9.)) || "]";

 output;

run;

proc sql noprint;

 select mdx into :monthPmonth_mdx separated by ', ' from monthPmonth;

quit;

Here is the DEFINE step needed to create the member set.
DEFINE SET '[SGF].[Latest Month and PY Month]' as "{&monthPmonth_mdx}";

TIME LEVEL ORDINAL MEASURE
Certain measures may need to know what hierarchy is being shown in order to dynamically adjust how it performs its
math. As described earlier, knowing which Time hierarchy is crucial for displaying point in time measures such as the
Employee Count accurately. The “Percent of Total Sales” measure could also be even more dynamic if there are
multiple hierarchies in a single dimension. For example, if the Product dimension had more than one hierarchy, a
new measure could be defined which checks for these different hierarchies so the correct calculation is used. This
measure is not intended to be shown to the end users but rather used by the true „Employee Count‟ measure. The
key to this type of measure is using the .ordinal function.

DEFINE Member "[SGF].[Measures].[TimeLevel]" AS

 'iif([Time].[YQM].currentmember.level.Ordinal > 0, "YQM",

 iif([Time].[YM].currentmember.level.Ordinal > 0, "YM",

 "UNKNOWN"))';

Once the „TimeLevel‟ measure is defined, we can use it to enhance the „Employee Count‟ measure and the „Percent
of Total Sales‟ measure. The „TimeLevel‟ measure is used to determine what hierarchy is being shown so the MDX
code can be written to reference more than one hierarchy. More hierarchies could technically be added but the MDX
code becomes more complicated.

Here is the „Employee Count‟ measure enhanced so both the YM and YQM time hierarchies can be used. Originally
this measure only worked accurately for the YM hierarchy. The tricky part is determining the hierarchy shown so the
correct number of nested LastChild functions are used. The level name has to also be referenced. For example, if
the YQM hierarchy is shown we will want to take the last child of the last child for the YEAR level total and the last
child of the QUARTER level for the Quarter total.

DEFINE Member "[SGF].[Measures].[Employee Count]" AS

 'iif(isleaf([Time].[YM].CurrentMember) OR isleaf([Time].[YQM].CurrentMember),

[Measures].[employeeMax], iif([Time].[YQM].CurrentMember.Level.Name = "Quarter",

iif([Measures].[TimeLevel] = "YQM", ([Time].[YQM].LastChild,

[Measures].[employeeMax]), null),

iif([Time].[YQM].CurrentMember.Level.Name = "Year" OR

[Time].[YM].CurrentMember.Level.Name = "Year",

iif([Measures].[TimeLevel] = "YM", ([Time].[YM].LastChild, [Measures].[employeeMax]),

iif([Measures].[TimeLevel] = "YQM", ([Time].[YQM].LastChild.LastChild,

[Measures].[employeeMax]), null)), null))

), format="comma8."';

The output would look like this:

Business Intelligence and AnalyticsSAS Global Forum 2011

Measures, Members, and Sets, Oh My!, continued

8

Figure 7: Enhancing the ‘Employee Count’ so it can be shown on the YQM hierarchy.

MEMBER SET INCLUDING A PREVIOUSLY DEFINED CUSTOM MEMBER
Suppose a standard view of time was to group older years into a single member and still show years following.

Figure 8: Showing a member set that includes a custom member.

This can be done by referencing the custom member in a predetermined member set.

DEFINE SET '[SGF].[Special Year View]' as "

 {

 [Time].[YM].[All YM].[Pre 2000],

 [Time].[YM].[All YM].[2000],

 [Time].[YM].[All YM].[2001],

 [Time].[YM].[All YM].[2002]

 }";

Again, we have static references in this code. You can learn from prior examples how to use base SAS code and
macro variables to produce this code dynamically so that years are automatically written as time progresses.

CONCLUSION
Many business problems can be solved much more efficiently with the use of OLAP. Using customized measures,
members, and sets to meet business requirements extends OLAP even further by providing a more complex and

Business Intelligence and AnalyticsSAS Global Forum 2011

Measures, Members, and Sets, Oh My!, continued

9

dynamic framework. Using OLAP simplifies the source data model by computing necessary variables on the fly.
 OLAP can reduce the data complexity and streamline the development infrastructure which promotes faster results
in the longer run.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Stephen Overton
Email: stephen.overton@gmail.com
Phone: (919) 341-9667

Bryan Stines
Email: btstines@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Business Intelligence and AnalyticsSAS Global Forum 2011

mailto:stephen.overton@gmail.com
mailto:btstines@gmail.com

	2011 Table of Contents

