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ABSTRACT 
This article introduced a new SAS procedure, PROC TCALIS, in structural equation modeling (SEM). In the previous 
version of SAS, PROC CALIS was incapable of handling multigroup models, whereas in SAS 9.2, PROC TCALIS, is 
enhanced with many new features such as capability for multi-group analysis and for accommodating different model 
specification languages used in other major SEM software packages (e.g., EQS, Mplus and LISREL). Two types of 
modeling languages are illustrated in a multigroup measurement model with and without equality constraints across 
groups. Fit indices and parameter estimates from SAS are compared to those from Mplus and LISREL. The fit indices 
from SAS are essentially consistent with those from Mplus but not those from LISREL. The parameter estimates are 
identical across the three software packages. 

INTRODUCTION 
In past decades, structural equation modeling (SEM) has gained increasing popularity in a wide variety of research 
situations. Many specialized software packages have been developed for SEM, including EQS (Bentler & Wu, 2002), 
Mplus (Muthén & Muthén, 1998-2007), LISREL (Jöreskog & Sörbom, 1996), Mx (Neale, Boker, Xie, & Maes, 2003), 
and AMOS (Arbuckle, 2003). Since version 8, SAS has also added a procedure, PROC CALIS, to accommodate 
SEM. Compared to other specialized SEM software, however, PROC CALIS has one major limitation in SEM: its 
inability to implement multigroup comparisons (e.g., Fan & Fan, 2005). The fact that some researchers tried to “trick” 
SAS to analyze multigroup models (provided that each group had the same sample size), though instructive, is not 
applicable to general situations where group sizes are mostly different (Marcoulides & Hershberger, 1997; Jones-
Farmer, Pitts, & Rainer, 2008). In addition, using such a trick may give an incorrect degree of freedoms. Thus, one 
must be cautious about using PROC CALIS for multigroup analyses. Consequently, SAS is not the first choice to 
implement multigroup invariance tests (Jones-Farmer et al., 2008). According to Byrne (2004), most literature 
addressing multigroup invariance has used either LISREL or EQS. 

Although there are many other packages adept at handling multigroup analysis, there might be times when, by 
convenience or necessity, SAS must be used. As a versatile and comprehensive system for data management, 
programming, and statistical analyses, SAS offers quantitative researchers an extremely flexible environment to 
conduct various Monte Carlo simulation studies (Fan, Felsövályi, Sivo, & Keenan, 2003). SEM simulation work using 
PROC CALIS existed in previous years and can be found in the literature (e.g., Fan & Sivo, 2005; Yang & Green, 
2010). 

In SAS 9.2, PROC TCALIS is modified from PROC CALIS with changes and enhancements. According to the SAS 
document (SAS Institute, 2008), PROC TCALIS is not a simple functional enhancement of PROC CALIS. The basic 
computational architecture of PROC TCALIS is quite different from that of PROC CALIS. New features include, but 
are not limited to, new modeling languages, multigroup analysis, and improved mean structures analysis. 

The new modeling languages reflect different modeling terminology and philosophies. Traditionally, the LINEQS 
language in PROC CALIS, which is similar to EQS (Bentler & Wu, 2002), was frequently used to specify SEM models 
(e.g., Brown, 2006). In PROC TCALIS, the flexible PATH language that is similar to the language used in Mplus 
(Muthén & Muthén, 1998-2007) makes researchers almost ready to translate any path diagram into the PATH model. 
A model specified by using the PATH language is referred to as a PATH model for simplicity. In addition, the LISMOD 
language, which stands for LISrel MODeling, caters to the need of users who are used to LISREL models (Jöreskog 
& Sörbom, 1996). Therefore, users of other major SEM software, e.g., EQS, Mplus and LISREL, may find it easy to 
use PROC TCALIS by choosing one of the modeling languages that is most convenient and familiar to them. 

The purpose of this article is to illustrate the use of the two new modeling languages in PROC TCALIS, the PATH and 
LISMOD languages, for multigroup analysis by using the same data presented by Jones-Farmer et al. (p. 165, 2008). 
To show the validity of the results from PROC TCALIS, the results are also compared to those obtained from Mplus 
5.21 and LISREL 8.80. 
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EXAMPLE 
Details of the data and the measurement model were described by Jones-Farmer et al. (2008) below: 

“The data for this example were collected in a public safety organization undergoing an organizational merger. 
The new organization is the result of the consolidation of previously autonomous organizations providing fire 
suppression and emergency medical services in a midsized southeastern U.S. city. The variables considered in 
this example were selected from the results of a larger self-report quantitative survey. The survey data were 
collected on two separate groups with samples of size n1=213 and n2=213. Details regarding the study are 
available in Pitts (2006). 

It is necessary to establish the invariance of three constructs across the two groups. The first construct relates 
to a specific dimension from the Communication Satisfaction Questionnaire (CSQ; Downs & Hazen, 1977) that 
relates to an employee’s satisfaction with the communication between themselves and their immediate 
supervisor or manager. This construct, referred to in the analysis as F_comm, consists of six items. The second 
and third constructs result from two justice dimensions from scales developed by Niehoff and Moorman (1993). 
The Procedural Justice scale consists of six items that assess an employee’s perception of the fairness of the 
process and procedures by which decisions regarding the merger are made. The Distributive Justice scale, also 
a six-item scale, assesses an employee’s perception of the fairness of work outcomes related to the merger 
such as pay, workload, job responsibilities, and recognition. Procedural and distributive justice are referred to as 
F_pj and F_dj, respectively, in the analysis (p.156).” 

The path diagram depicting the measurement model is shown in Figure 1 (see also Jones-Farmer et al., 2008, 
p.157). Steps in this illustration strictly follow those of Jones-Farmer et al. (2008). First, a baseline model is fit to the 
data for each group separately. Second, an unconstrained model is estimated for both groups simultaneously. Third, 
cross-group constraints are placed on the corresponding factor loadings to specify a constrained model. 

 
Figure 1. Path diagram of the measurement model. 
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The SAS program, using PROC TCALIS, that is used in this example is given in Table 1, with line numbers given for 
reference. Lines 1 through 47 of Table 1 input two covariance matrices for Groups 1 and 2 separately. 

Table 1. Sample SAS Program for Example 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

data group1(type=cov); 
_type_="COV"; 
input _NAME_ $ com1-com6 disj1-disj6 proj1-proj6; 
cards; 
com1  4.8 4.2 4.1 3.8 3.6 3.2 0.7 0.7 0.7 0.7 1.0 0.4 0.7 1.2 1.1 0.9 1.2 0.4 
com2  4.2 4.9 4.0 4.1 3.5 3.3 0.8 0.8 0.9 0.8 1.1 0.5 0.8 1.2 1.2 1.1 1.3 0.7 
com3  4.1 4.0 4.8 3.9 3.6 3.3 0.8 0.8 0.8 0.6 0.9 0.4 0.7 1.2 1.1 1.2 1.3 0.8 
com4  3.8 4.1 3.9 4.7 3.5 3.2 0.9 1.0 0.9 0.8 1.3 0.7 0.9 1.2 1.3 1.2 1.2 0.6 
com5  3.6 3.5 3.6 3.5 4.5 3.5 0.6 0.8 0.7 0.6 0.9 0.4 0.8 0.9 1.0 0.9 1.0 0.5 
com6  3.2 3.3 3.3 3.2 3.5 4.8 0.5 0.5 0.4 0.4 0.6 0.1 0.9 0.9 0.9 0.9 0.9 0.3 
disj1 0.7 0.8 0.8 0.9 0.6 0.5 3.7 3.1 3.1 2.9 2.6 1.8 1.4 1.3 1.4 1.2 1.1 1.0 
disj2 0.7 0.8 0.8 1.0 0.8 0.5 3.1 3.4 3.0 3.0 2.7 1.8 1.4 1.1 1.2 0.9 0.9 0.8 
disj3 0.7 0.9 0.8 0.9 0.7 0.4 3.1 3.0 3.6 3.1 2.7 1.6 1.5 1.2 1.2 1.1 1.0 0.8 
disj4 0.7 0.8 0.6 0.8 0.6 0.4 2.9 3.0 3.1 3.3 2.7 1.6 1.5 1.2 1.2 1.1 1.0 0.7 
disj5 1.0 1.1 0.9 1.3 0.9 0.6 2.6 2.7 2.7 2.7 3.2 1.7 1.5 1.4 1.3 1.1 1.2 0.7 
disj6 0.4 0.5 0.4 0.7 0.4 0.1 1.8 1.8 1.6 1.6 1.7 3.4 1.2 0.8 0.9 0.7 0.7 0.5 
proj1 0.7 0.8 0.7 0.9 0.8 0.9 1.4 1.4 1.5 1.5 1.5 1.2 3.4 1.4 1.4 1.1 1.3 0.6 
proj2 1.2 1.2 1.2 1.2 0.9 0.9 1.3 1.1 1.2 1.2 1.4 0.8 1.4 2.5 2.0 1.4 1.6 1.2 
proj3 1.1 1.2 1.1 1.3 1.0 0.9 1.4 1.2 1.2 1.2 1.3 0.9 1.4 2.0 2.4 1.6 1.7 1.1 
proj4 0.9 1.1 1.2 1.2 0.9 0.9 1.2 0.9 1.1 1.1 1.1 0.7 1.1 1.4 1.6 2.6 1.6 1.3 
proj5 1.2 1.3 1.3 1.2 1.0 0.9 1.1 0.9 1.0 1.0 1.2 0.7 1.3 1.6 1.7 1.6 2.5 1.2 
proj6 0.4 0.7 0.8 0.6 0.5 0.3 1.0 0.8 0.8 0.7 0.7 0.5 0.6 1.2 1.1 1.3 1.2 3.1 
; 
data group2(type=cov); 
_type_="COV"; 
input _NAME_ $ com1-com6 disj1-disj6 proj1-proj6; 
cards; 
com1  4.2 3.2 2.7 2.8 2.4 2.4 1.0 0.9 0.9 0.9 0.7 0.9 0.8 0.6 0.9 0.6 0.8 1.0 
com2  3.2 3.8 2.3 2.7 2.5 2.4 0.8 0.9 0.8 0.8 0.7 1.1 0.7 0.5 0.9 0.7 0.9 0.9 
com3  2.7 2.3 3.9 1.9 1.6 1.4 0.5 0.5 0.6 0.3 0.3 0.4 0.4 0.2 0.4 0.5 0.5 0.6 
com4  2.8 2.7 1.9 4.2 2.3 2.2 0.8 0.8 0.8 0.9 0.6 1.0 0.9 0.8 0.9 0.7 0.9 0.9 
com5  2.4 2.5 1.6 2.3 3.7 2.3 0.5 0.4 0.3 0.3 0.4 0.5 0.4 0.4 0.5 0.2 0.6 0.5 
com6  2.4 2.4 1.4 2.2 2.3 3.7 1.1 0.7 0.9 0.9 0.7 1.2 0.3 0.3 0.7 0.5 0.7 0.7 
disj1 1.0 0.8 0.5 0.8 0.5 1.1 3.1 2.0 2.4 2.3 1.7 1.4 0.9 1.0 0.7 1.2 0.9 0.8 
disj2 0.9 0.9 0.5 0.8 0.4 0.7 2.0 3.0 2.1 2.2 2.0 1.5 1.2 1.3 1.1 1.0 1.2 0.7 
disj3 0.9 0.8 0.6 0.8 0.3 0.9 2.4 2.1 2.9 2.7 2.0 1.6 1.2 1.3 1.0 1.2 1.3 0.9 
disj4 0.9 0.8 0.3 0.9 0.3 0.9 2.3 2.2 2.7 3.0 2.1 1.7 1.1 1.2 1.1 1.2 1.3 0.9 
disj5 0.7 0.7 0.3 0.6 0.4 0.7 1.7 2.0 2.0 2.1 2.5 1.5 1.0 1.3 1.1 0.8 1.0 0.7 
disj6 0.9 1.1 0.4 1.0 0.5 1.2 1.4 1.5 1.6 1.7 1.5 3.6 0.7 1.1 1.2 0.9 1.2 1.0 
proj1 0.8 0.7 0.4 0.9 0.4 0.3 0.9 1.2 1.2 1.1 1.0 0.7 3.1 1.6 1.1 1.0 1.5 1.0 
proj2 0.6 0.5 0.2 0.8 0.4 0.3 1.0 1.3 1.3 1.2 1.3 1.1 1.6 2.3 1.4 1.0 1.5 1.0 
proj3 0.9 0.9 0.4 0.9 0.5 0.7 0.7 1.1 1.0 1.1 1.1 1.2 1.1 1.4 2.5 1.3 1.4 0.8 
proj4 0.6 0.7 0.5 0.7 0.2 0.5 1.2 1.0 1.2 1.2 0.8 0.9 1.0 1.0 1.3 2.5 1.2 1.0 
proj5 0.8 0.9 0.5 0.9 0.6 0.7 0.9 1.2 1.3 1.3 1.0 1.2 1.5 1.5 1.4 1.2 2.5 1.1 
proj6 1.0 0.9 0.6 0.9 0.5 0.7 0.8 0.7 0.9 0.9 0.7 1.0 1.0 1.0 0.8 1.0 1.1 3.2 
; 
run; 
 
********************** using PATH language **********************; 
%macro BasePath; 
path 
  com1  <- F_comm   1.0,    /***    F_comm -> com1   1.0,  ***/ 
  com2  <- F_comm   c2,     /***    F_comm -> com2   c2    ***/ 
  com3  <- F_comm   c3,     /***    F_comm -> com3   c3    ***/ 
  com4  <- F_comm   c4,     /***    F_comm -> com4   c4    ***/ 
  com5  <- F_comm   c5,     /***    F_comm -> com5   c5    ***/ 
  com6  <- F_comm   c6,     /***    F_comm -> com6   c6    ***/ 
  disj1 <- F_dj     1.0,    /***    F_dj   -> disj1  1.0,  ***/ 
  disj2 <- F_dj     d2,     /***    F_dj   -> disj2  d2,   ***/ 
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60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 

  disj3 <- F_dj     d3,     /***    F_dj   -> disj2  d3,   ***/ 
  disj4 <- F_dj     d4,     /***    F_dj   -> disj2  d4,   ***/ 
  disj5 <- F_dj     d5,     /***    F_dj   -> disj2  d5,   ***/ 
  disj6 <- F_dj     d6,     /***    F_dj   -> disj2  d6,   ***/ 
  proj1 <- F_pj     1.0,    /***    F_pj   -> proj1  1.0,  ***/ 
  proj2 <- F_pj     p2,     /***    F_pj   -> proj2  p2,   ***/ 
  proj3 <- F_pj     p3,     /***    F_pj   -> proj2  p3,   ***/ 
  proj4 <- F_pj     p4,     /***    F_pj   -> proj2  p4,   ***/ 
  proj5 <- F_pj     p5,     /***    F_pj   -> proj2  p5,   ***/ 
  proj6 <- F_pj     p6;     /***    F_pj   -> proj2  p6;   ***/ 
 
pvar 
  F_comm F_dj F_pj=VF__, 
  com1   com2   com3   com4   com5   com6 =vec__, 
  disj1  disj2  disj3  disj4  disj5  disj6=ved__, 
  proj1  proj2  proj3  proj4  proj5  proj6=vep__; 
 
pcov 
  F_comm F_dj=psi12, 
  F_dj F_pj=psi23, 
  F_comm F_pj=psi13; 
%mend; 
 
/* TCALIS - 1st group */ 
proc tcalis data=group1 nobs=213; 
  %BasePath 
run; 
 
/* TCALIS - 2nd group */ 
proc tcalis data=group2 nobs=213; 
  %BasePath 
run; 
 
/* multigroup: unconstrained model */ 
proc tcalis; 
group 1 / data=group1 nobs=213; 
group 2 / data=group2 nobs=213; 
model 1 / group=1; 
  %BasePath 
model 2 / group=2; 
  refmodel 1 / AllNewParms; 
run; 
 
/* multigroup: constrained model */ 
proc tcalis; 
group 1 / data=group1 nobs=213; 
group 2 / data=group2 nobs=213; 
model 1 / group=1; 
  %BasePath 
model 2 / group=2; 
  refmodel 1; 
    pvar 
      F_comm F_dj F_pj=G2_VF__, 
      com1   com2   com3   com4   com5   com6 =G2_vec__, 
      disj1  disj2  disj3  disj4  disj5  disj6=G2_ved__, 
      proj1  proj2  proj3  proj4  proj5  proj6=G2_vep__; 
 
    pcov 
      F_comm F_dj=G2_psi12, 
      F_dj F_pj=G2_psi23, 
      F_comm F_pj=G2_psi13; 
run; 
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123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
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134 
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147 
148 
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150 
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155 
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159 

********************** using LISMOD language **********************; 
%macro BaseLISMOD; 
lismod 
  yvar=com1-com6  disj1-disj6  proj1-proj6, 
  etavar=F_comm  F_dj  F_pj; 
matrix _LAMBDAY_  [,1] =1 c2-c6 12*0, 
                  [,2] =6*0 1 d2-d6 6*0, 
                  [,3] =12*0 1 p2-p6; 
matrix _THETAY_   [1,1]=vec1-vec6 ved1-ved6 vep1-vep6; 
matrix _PSI_      [,]  =VF1 
                        psi12 VF2 
                        psi13 psi23 VF3; 
%mend; 
 
/* multigroup: unconstrained model */ 
proc tcalis; 
group 1 / data=group1 nobs=213; 
group 2 / data=group2 nobs=213; 
model 1 / group=1; 
  %BaseLISMOD 
model 2 / group=2; 
  refmodel 1 / AllNewParms; 
run; 
 
/* multigroup: constrained model */ 
proc tcalis; 
group 1 / data=group1 nobs=213; 
group 2 / data=group2 nobs=213; 
model 1 / group=1; 
  %BaseLISMOD 
model 2 / group=2; 
  refmodel 1; 
matrix _THETAY_   [1,1]=G2_vec1-G2_vec6 G2_ved1-G2_ved6 G2_vep1-G2_vep6; 
matrix _PSI_      [,]  =G2_VF1 
                        G2_psi12 G2_VF2 
                        G2_psi13 G2_psi23 G2_VF3; 
run; 

IMPLEMENTING MULTIGROUP COMPARISONS USING THE PATH LANGUAGE 
A PATH model can be specified by the PATH, PVAR, and PCOV (if needed) statements. First, a baseline model for 
each group is specified in lines 51 through 80 of Table 1, which is defined by a SAS macro. The name of this macro 
is BasePath. Defining a model by a SAS macro is not essential. The PATH model code can be inserted directly into a 
PROC TCALIS step to get the same results. Using a SAS macro can show the organization of the model specification 
more clearly. 

The biggest advantage of the PATH language is that the path diagram can be translated easily into the PATH model. 
This conversion is very straightforward: 

 Each single-headed arrow in the path diagram is specified in the PATH statement. 

 Each double-headed arrow pointing to a single variable is specified in the PVAR statement. 

 Each double-headed arrow pointing to two different variables is specified in the PCOV statement. 

In the PATH statement, all loadings in the measurement model are translated to the corresponding path entries, and 
a fixed value or a unique parameter name is specified to each path entry. Specifying a parameter name to a path 
entry tells SAS that this particular parameter is freely estimated in the model. For example, the loading of F_comm to 
the first indicator, com1, is fixed to 1, whereas the loading to the second indicator, com2, is freely estimated and the 
parameter name is c2. The direction of these path entries does not matter at all. A -> B is equivalent to B <- A. 

In the PVAR statement, variance parameters for latent constructs and errors are specified with fixed values or unique 
parameter names. In this example, all variance parameters are freely estimated. Specifying a name followed by 
double underscores is a quick way to generate unique parameter names. The double underscores are replaced with 
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a unique number each time a new parameter name is generated. For example, the variances of F_comm, F_dj, and 
F_pj, are specified as VF1, VF2, and VF3, respectively. 

In the PCOV statement, the covariance parameters are specified: either error covariances or covariances between 
latent constructs. For example, the covariance between F_comm and F_dj is specified as psi12. 

In lines 83 through 91, the established path model is fit to the two groups separately. Some commonly reported 
model fit indices for the baseline models are given in Table 2. 

Table 2. Fit Indices for Baseline Models in Example 

 Software 
Package Chi-Square df SRMSR CFI NNFI RMSEA RMSEA 

(90% CI) 

Group 1 
SAS 9.2 322.12 132 .05 .95 .94 .082 (.071, .094) 
LISREL 8.80 322.12 132 .05 .97 .96 .075 (.063, .087) 
Mplus 5.21 323.64 132 .05 .95 .94 .083 (.071, .094) 

Group 2 
SAS 9.2 318.00 132 .06 .93 .91 .082 (.070, .093) 
LISREL 8.80 318.00 132 .06 .96 .96 .078 (.067, .090) 
Mplus 5.21 319.50 132 .06 .93 .91 .082 (.070, .093) 

 

Table 3. SAS PROC TCALIS Model Fit Summary from the Unconstrained Model 

The TCALIS Procedure 
Covariance Structure Analysis: Maximum Likelihood Estimation 

Fit Summary 
Modeling Info N Observations 426
 N Variables 18
 N Moments 342
 N Parameters 78
 N Active Constraints 0
 Independence Model Chi-Square 6340.2212
 Independence Model Chi-Square DF 306
Absolute Index Fit Function 1.5097
 Chi-Square 640.1148
 Chi-Square DF 264
 Pr > Chi-Square <.0001
 Z-Test of Wilson & Hilferty 11.8665
 Hoelter Critical N 202
 Root Mean Square Residual (RMSR) 0.1845
 Standardized RMSR (SRMSR) 0.0550
 Goodness of Fit Index (GFI) 0.8657
Parsimony Index Adjusted GFI (AGFI) 0.8260
 Parsimonious GFI 0.7469
 RMSEA Estimate 0.0820
 RMSEA Lower 90% Confidence Limit 0.0739
 RMSEA Upper 90% Confidence Limit 0.0901
 Probability of Close Fit 0.0000
 Akaike Information Criterion 112.1148
 Bozdogan CAIC -1222.2572
 Schwarz Bayesian Criterion -958.2572
 McDonald Centrality 0.6431
Incremental Index Bentler Comparative Fit Index 0.9377
 Bentler-Bonett NFI 0.8990
 Bentler-Bonett Non-normed Index 0.9278
 Bollen Normed Index Rho1 0.8830
 Bollen Non-normed Index Delta2 0.9381
 James et al. Parsimonious NFI 0.7756
 

Second, an unconstrained model fit to the two groups simultaneously is estimated in lines 93 through 101. In the two 
GROUP statements, the data and sample size are explicitly specified for each group. It is worth noting that the 
current example has the same sample sizes across groups, but different sample sizes are allowed in general cases. 
In this specification, Group 1 uses the path model specified by invoking the BasePath macro, whereas Group 2 
specifies the same model, but there is no cross-group constraint. Specifically, at line 100, the REFMODEL statement, 
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along with the AllNewParms option, within the scope of a MODEL statement, indicates that the pattern of fixed and 
free parameters in Model 2 is equivalent to Model 1, but the parameter names used in Model 2 are totally different. 
By default, SAS adds suffix, _mdl2, to the parameter names in Model 1 to create new parameter names for Model 2. 

It can be expected that parameter estimates of the unconstrained model are identical to the two separate baseline 
models just run, whereas the fit information is now combined as a single set of indices. In fact, some fit indices can be 
derived directly from the two baseline models, e.g., chi-square and degree of freedom. Table 3 gives the actual model 
fit summary for the unconstrained model, and Table 4 gives fit comparison among groups. Technical details of these 
fit indices calculated in PROC TCALIS can be found from the SAS/STAT user’s guide (SAS Institute, 2008, pp.6892-
6905). 

Table 4. SAS PROC TCALIS Fit Comparison from the Unconstrained Model 

The TCALIS Procedure 
Covariance Structure Analysis: Maximum Likelihood Estimation 

Fit Comparison Among Groups 
 Overall Group 1 Group 2 
Modeling Info N Observations 426 213 213 
 N Variables 18 18 18 
 N Moments 342 171 171 
 N Parameters 78 39 39 
 N Active Constraints 0 0 0 
 Independence Model Chi-Square 6340.2212 3689.4138 2650.8074 
 Independence Model Chi-Square DF 306 153 153 
Fit Index Fit Function 1.5097 1.5194 1.5000 
 Percent Contribution to Chi-Square 100 50 50 
 Root Mean Square Residual (RMSR) 0.1845 0.1756 0.1930 
 Standardized RMSR (SRMSR) 0.0550 0.0502 0.0594 
 Goodness of Fit Index (GFI) 0.8657 0.8684 0.8630 
 Bentler-Bonett NFI 0.8990 0.9127 0.8800 
 

Third, a model with cross-group constraints placed on the corresponding factor loadings is established in lines 103 
through 121. In this specification, Group 1 uses the path model specified by invoking the BasePath macro, whereas 
Group 2 specifies a new path model by integrating some replacements with the old path model. That is, the PVAR 
and PCOV statements in lines 111 through 120, nested within the scope of the REFMODEL statement in line 110, 
which is nested within the scope of the MODEL statement in line 109, replace the old specifications, and hence, new 
parameter names are specified for Model 2 variance and covariance parameters. Here, new parameter names are 
created by adding prefix G2_ to the old parameter names. So far, the equality constraints are placed on the factor 
loadings by leaving the parameter names of factor loadings unchanged. 

IMPLEMENTING MULTIGROUP COMPARISONS USING THE LISMOD LANGUAGE 
The same steps are applied in the LISMOD language, but the modeling philosophy is different. A LISMOD model is 
specified by the LISMOD and one or more MATRIX statements. First, a baseline model for each group is specified. In 
lines 124 through 135, a parallel SAS macro is defined to specify a LISMOD model. The name of this macro is 
BaseLISMOD. Like the original implementation of LISREL, the LISMOD language uses a matrix specification 
interface, which is characterized by two tasks. The first task is to define the variables in the model. The second task is 
to specify the parameters in the related matrices. 

The first task is accomplished in the LISMOD statement. In lines 126 through 127, the YVAR= option specifies the y-
side indicators, and the ETAVAR= option specifies y-side latent constructs. Special attention should be paid to the 
order of variables listed in those options because the order is implicitly used to define the variable order in rows and 
columns of the LISMOD model matrices. 

The second task is accomplished by the MATRIX statements. In each statement, the model matrix is specified by 
using the matrix names defined in the LISMOD language. Fortunately, these matrix names are conceptually 
consistent with the LISREL matrix names. In this example, assuming all the measurement models are in the y-side, 
the _LAMBDAY_ matrix is referred to as the loadings from the latent construct to the observed indicators, which is 
specified in line 128 through 130. 

The starting location of a matrix and the different continuation direction for assigning fixed values or matrix element 
names are specified in the following different forms of elements in the bracket: 

 The form of [i, ]/[ ,j] specifies a vertically/horizontally continued matrix elements, starting at [i,1]/[1, j]. 

PostersSAS Global Forum 2011

 
 



8 

 The form of [i, j] specifies a diagonally continued matrix elements [i,j], [i+1,j+1], …, [i+n-1,j+n-1]. 

 The form of [ , ] specifies all valid matrix elements starting at [1,1] and continuing row-wise. For a symmetric 
matrix, valid matrix elements are those in the lower triangle. 

The same steps to test multigroup invariance are followed as the previous PATH language section. Fit indices and 
parameter estimates using the LISMOD language are essentially the same as those by using the PATH language. 
Programming details in Table 1 are adequate for illustration purposes, and thus, discussion is omitted here. 

RESULTS 
Before we compare the results from SAS to those from Mplus and LISREL, readers are encouraged to run the SAS 
code in Table 1 and look at the layout of the output generated by the different languages in PROC TCALIS. Not only 
are the languages similar to those from Mplus/LISREL, but the layout of the SAS output is remarkably similar to those 
from Mplus/LISREL as well. 

FIT INDICES 
Compared to the values reported in Jones-Farmer et al. (2008), different results, except the degree of freedom, are 
obtained due to the different precision of the data. Table 2 reports some fit indices for the baseline model in Group 1 
and Group 2. The same value of the chi-square index is obtained from SAS and LISRE, but Mplus reports a slightly 
higher value because the minimum fit function is multiplied by the sample size, n, instead of (n-1). It is easily verified 
that, in Group 1, if we divide the chi-square value from SAS/LISREL by (n-1) and multiply it to n, we get (322.12/(312-
1))*312 = 323.64 in Mplus. In terms of the standardized root mean square residual (SRMSR), identical values are 
reported in SAS, LISREL, and Mplus. However, inconsistency occurs in CFI, NNFI, and RMSEA and in the 90% 
confidence interval of RMSEA. SAS essentially reaches quite good agreement with Mplus on these indices, but 
LISREL gives higher values for CFI and NNFI but lower values for RMSEA and the 90% confidence interval of 
RMSEA. 

For the unconstrained and constrained models, a list of commonly used fit indices is reported in Table 5. First, the 
degree of freedom and the degree of freedom for the independence model reported in SAS, Mplus, and LISREL are 
identical (i.e., 264 and 279 for the unconstrained and constrained model separately, and 306 for the independence 
model) indicating that models are correctly specified. 

Table 5. Fit Indices for the Constrained Model in Example 

 Unconstrained Multigroup Model Constrained Multigroup Model 
SAS 9.2 LISREL 8.80 Mplus 5.21 SAS 9.2 LISREL 8.80 Mplus 5.21 

Chi-square 640.11 640.11 643.13 677.16 677.16 680.36 
df 264 264 264 279 279 279 
Chi-square for Independence Model 6340.22 11533.99 6370.13 6340.22 11533.99 6370.13 
df for Independence Model 306 306 306 306 306 306 
Group 1 Standardized RMSR .05 .05 N/A .05 .05 N/A 
Group 2 Standardized RMSR .06 .06 N/A .07 .07 N/A 
Standardized RMSR .06 N/A .06 .06 N/A .07 
CFI .94 .97 .94 .93 .96 .93 
NNFI .93 .96 .93 .93 .96 .93 
RMSEA .082 .077 .082 .082 .077 .082 
RMSEA (90% CI) (.074, .090) (.068, .085) (.074, .090) (.074, .090) (.069, .085) (.074, .090) 

Note. N/A means not reported by the software. 

Second, in spite of the fact that the minimum fit function chi-squares are the same across SAS and LISREL, the chi-
square for the independence model are drastically different between LISREL and SAS/Mplus. These chi-square fit 
indices are important in that many other fit indices depend on either the minimum fit function chi-square (e.g., 
RMSEA) or the chi-square for the independence model (e.g., NNFI and CFI). Readers interested in the detailed 
discussion of different types of chi-square statistics should refer to Jöreskog (2004). 

Third, the SRMSR reported in SAS, Mplus, and LISREL are nearly identical. Table 4 shows that SAS has a complete 
report for individual groups and the overall model, whereas LISREL does not report the overall SRMSR, and Mplus 
does not report for individual groups. 

Lastly, inconsistency remains on indices such as CFI, NNFI, RMSEA, and the 90% confidence interval of RMSEA. As 
before, SAS and Mplus agree well on values of CFI, NNFI, RMSEA, and the 90% confidence interval of RMSEA, but 
higher or lower values are reported from LISREL. 
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PARAMETER ESTIMATES 
Despite the various discrepancies in fit indices, parameter estimates are essentially equivalent regardless of the 
software packages among SAS, LISREL, and Mplus. 

CONCLUDING REMARKS 
Historically, SEM models specified in SAS PROC CALIS are limited in scope. In this article, two types of modeling 
languages in the new PROC TCALIS, offering programming similarity and comfort to users of other major SEM 
software, are illustrated for multigroup model analysis. Comparing the fit indices and parameter estimates to those 
from Mplus and LISREL shows that PROC TCALIS is a valid procedure for SEM. Taken together, PROC TCALIS 
provides substantial assistance to multigroup analyses. Although some temporary issues are still being resolved, 
PROC TCALIS will eventually be rolled back to PROC CALIS in a future version of SAS. In terms of Monte Carlo 
simulation, where multigroup analysis is needed, it can be expected that the SAS system will be an ideal choice. 
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