

1

Paper 377-2011

Implementing SAS® GRID computing in an Analytical Environment

Shivashanker Bitla, Discover Financial Services, Riverwoods, IL

Rich Kerwin, Discover Financial Services, Riverwoods, IL

ABSTRACT

This paper focuses on the value of implementing SAS Grid in a large analytical environment and
uncovers the lessons learned in the course of the Grid implementation and subsequent rollout.
The former environment consisted of 4 SAS v9.1.3 EBI installations on four server partitions,
which served as Adhoc, Development, Production and Metadata environments, and were housed
on one physically large server. The new SAS Grid is an internally hosted SAS 9.2 M 0 EBI
installations housed on a SAS Grid with 8 identical server nodes using a shared file system.

Primary objectives for converting the SAS environment to a Grid with shared file system were to
provide a cost effective, readily scalable in-house analytical environment for a rapidly expanding
SAS User community that would replace an expensive, externally housed, difficult to upgrade
environment that lacked the ability to distribute data across a shared file system. A pilot of SAS
Grid on Linux was completed at an offsite vendor location before onsite implementation. Putting
the SAS Grid on a shared file system promised to alleviate duplicate data, be more cost effective
to upgrade and allowed us to more effectively utilize resources (cpu/memory) over the partition
based environment. Secondary considerations included providing business users with all of the
same functionality and access to SAS tools as was available in the old environment, including the
ability to submit jobs on the server in both batch and Interactive mode, and to run jobs against
databases.

INTRODUCTION

Our SAS EBI environment has users from across the company – Human Resources, Marketing,
Risk, Card member Services, Finance, and Consumer Banking. The bulk of the processing on
our SAS environment is from ad hoc related jobs – model development, reporting, campaigns,
etc. Some of the processing is from running monthly production models and some processing
takes place as Users perform new model development and the testing of new models before they
are fully implemented in the production area. Most of our data is sourced from Relational
Databases housed on separate servers and accessed by SAS through SAS/DBMS access
engines. Additionally, along with SAS, other data mining and modeling products are also
employed on the environment.

CHALLENGES IN OLD ENVIRONMENT

Our former environment was a SAS913 EBI Installation that was housed at an offsite vendor
location. It consisted of a single P595 server that was partitioned into four LPARs as below.

o Ad hoc - assigned for business users
o Metadata
o Production – assigned for Model Run
o Development – assigned for model development (also acts a staging area)

The largest LPAR was the Ad hoc area, which had a majority of the CPUs and memory. This
setup, while serviceable, presented us with a number of challenges and frequent processing
bottlenecks, particularly in the Ad hoc environment where we had many concurrent SAS users
who were sharing a single, large multi-CPU server. As our user base was continuing to grow and
the demands on the server were continuing to increase, it was readily apparent that the lack of

2

adequate processing power and frequent processing bottlenecks truly needed to be addressed.
Our large multi-user environment had grown beyond what a single server could be expected to
handle.

o The first challenge we faced in the old environment was with the availability of the
servers: Because the four partitions sat on a single frame, any microcode upgrades on
the hardware or OS level maintenance required downtime across the entire frame.

o The second challenge was with resource mobility across the partitions. The Production

server was busy only during month end processing (usually the first 15 days of each
month) and was available and very underutilized after month end processing had
completed. The ad hoc server was almost always busy and was under near constant
resource constraints. This was partially alleviated by allowing some of the CPUs on the
Production and Development areas to be added to a dynamic pool which could be used
by the Ad hoc area based on need and availability. This helped with the processing
bottlenecks on the Ad hoc server, but only for approximately half of each month.

o A third challenge was the frequent need to create multiple copies of data across the

Development, Production, and Ad hoc areas. The previous environment lacked
functionality for sharing data via a shared file system. Business users had frequent need
to access Production data in the process of performing analysis, requiring the month end
data to be copied from the Production server to the other environments, especially the Ad
hoc server. Also, there was often movement of data from the Production to the
Development areas when the models in Production required changes or fixes. To
address this challenge, a major component of our planned Grid infrastructure was the
implementation of General Parallel File System (GPFS a shared file system that is
available to all nodes on the Grid and is capable of sustaining the I/O bandwidth required
by our SAS environment.

o The fourth challenge was the cost of upgrades – as we added more users and wanted to

add CPU, memory, or storage, the cost was very high and required downtime on all
partitions. Additionally, not only were the maintenance costs of the partitioned frame quite
expensive, but the cost of replacing that server with something similar, but capable of
adequately meeting our growing needs was prohibitively expensive.

WHY GRID?

The planned Grid environment offered several advantages over other architectures and
addressed the challenges faced in our old environment. From the perspective of Business
Technology, our primary objective in converting the SAS environment to a Grid was to provide a
highly available, cost effective and readily scalable environment for our Business Users. And the
addition of the GPFS shared file system minimized the duplication of the data by various
departments, and across the Development, Production and Ad hoc areas. From the perspective
of our Business partners, a Grid implementation offered several advantages as well. Our
Business Partners desired to drive more business value with a new environment, and A SAS Grid
offered this:

 A Grid/GPFS implementation offered cost-effective scalability to:
o Absorb growth in the number of users
o Absorb the ever-growing data needs of an analytical application
o Accelerate ROI through improvements to the Model Development process and

more efficient execution of end of month processing
o Improve on ability to run larger and more complex analytics
o Provide greater reliability to business processing while providing the flexibility to

incrementally grow the environment without system downtime.

3

o Eliminate the single point of failure inherent in the current environment to
guarantee continuous availability

Additionally, our former SAS environment was housed at a vendor site and was up for refresh.
The decision to re-host at our in-house Production Center from an external vendor facility
promised to save significant amounts of money long-term. Once we came to understand the
refresh expenses associated with staying with an external vendor versus moving to an in-house
solution, an internal Grid strategy became quite enticing.

GRID IMPLEMENTATION

We have implemented the SAS GRID for Production on eight servers/nodes with the following
architecture.

All the eight grid nodes are connected via private network to a shared file system, which is using
General Parallel File System (GPFS). The functionality of the nodes can be divided into three
categories – Master node, Failover node and the Grid node. Master node is the essential node
which controls the entire environment – from user connections to the jobs submissions. Failover
node acts as a grid node while the Master node is up and running and will act as a Master node
in the event of failover (when the master node dies or taken off line for maintenance). Grid nodes
essentially act as worker nodes, taking their instructions from the master node which evenly
distributes jobs to the Grid nodes for execution.

GPFS Storage

sasgrid

`

SAS Client/Workstation

Node 3
Grid Node

Node 7
Grid Node/

Test Env

Node 4
Grid Node

Node 5
Grid Node

Node 6
Grid Node

Node 8
Grid Node/

Test Env

Node 2
Failover

Node

Node 1
Master

Node

Database

4

All the SAS EBI clients connect to the GRID through a virtual IP called sasgrid, which
automatically connects them to the master node. The Master node has the entire suite of EBI
server applications installed and configured including metadata, application tiers, and middle tiers
and also the Platform suite for LSF. LSF is the back bone for the job scheduling, job submissions
and the failover. To keep the Master node more available to manage the Grid, job slots on it are
closed and the object spawners and work space servers are load balanced on to all other nodes.
The object spawner on any one of these nodes is designated as a parent and all other object
spawners on other nodes are designated as children. This eliminates the necessity for the master
node to manage several hundred sessions from the EBI clients (from our business users).

Our business users also use Xclients like Exceed for job submissions. These applications tend to
take up lot of resources on the servers and hence the Master node can’t be used to manage
these connections. A need to create a separate virtual IP which we named sasenv was identified
and created. This virtual IP has been designated for all Xclient sessions. SAS users running
Xclient sessions are instructed to utilize this virtual server, which routes traffic to all active grid
nodes except the master node, in a round robin method. Compliance with this rule is enforced via
a script that monitors for violations, and users who fail to follow this rule run the risk of having
their X sessions terminated.

The Test environment is also mounted on two of the grid nodes, Nodes 6 and 7, which are also
Grid nodes on the Production Grid. This was done by creating a separate virtual IP, called -
sasgridtest. This is similar to the Production environment – Node 6 is designated as a master
node for the Test Environment, while Node 7 acts as both the Master Failover node and the grid
node. The sasgridtest virtual IP test environment was setup to be used by technology resources
to be employed for activities like hot fix testing and maintenance upgrades. The 6

th
 and 7

th
 nodes

can be removed from the Production Grid if necessary, or sasgridtest can be run in parallel with
the full Grid, with the server nodes in the test grid remaining designated as part of the full grid
environment.

As the three servers from our former environment – Adhoc, Production and Development were
combined into one Production environment, there was need a need to prioritize actual Production
month end jobs that need to meet SLAs. For this purpose, Queues have been implemented and
all month end processing jobs were placed in the high priority queue, while ad hoc and
development jobs remain in a normal queue. The high priority queue jobs are always given
precedence on the Grid and immediately submitted from the Master node to the grid nodes for
execution. If resources are needed for the high priority jobs, jobs in the normal queue are moved
to a pending state and only re-released for processing after the high priority jobs are completed
and resources become available. Any new jobs submitted to the Grid during month end
processing are also moved to the pending state until resources are available or the high priority
jobs are completed. Jobs can be moved between these queues dynamically and several different
queues with varying degrees of priority can be implemented based on need.

Existing SAS jobs do not need to be modified to be run on the Grid. There is a pre-code and an
optional post-code that can be included in Enterprise Guide sessions or in the batch scripts that
submit the jobs to the server. Job run time can be dramatically reduced by parallelizing jobs to
take advantage of the Grid architecture. SAS provides a procedure called – Proc scaproc, which
can be employed to automatically parallelize sas code to run on multiple grid nodes.

The job slots and the CPU thresholds also need to be configured after the install. The suggested
configuration is to increase the number of job slots for each of the machines and also implement
CPU utilization thresholds for each of the machines. Increasing the number of job slots will allow
a larger number of simultaneous SAS sessions on each grid node. This is desirable because the
workload of each session will be sporadic as compared to a large batch job that is I/O and
compute intensive for a prolonged period of time. Setting the CPU utilization on each machine
will ensure that if many users submit CPU intensive work at the same time, the SAS Grid

5

Manager will suspend some of the jobs while allowing other jobs to complete, and then resuming
the suspended jobs when resources become available. This serves to prevent resource overload
and avert potential hardware failures. All the modifications on resource allocations for queues,
jobs or hosts can be dynamically modified and will not require a reboot of the nodes for changes
to take effect.

The shared file system also minimizes the duplication of the data across our Business Partners
data storage areas and across the Development and Production areas. The same file paths can
now be utilized by the business users and the developers when they are developing models, or
when business users validate the data, they can access data directly on the shared file system.

GRID EXPANSION

The Grid environment was expanded after the initial migration to accommodate the user growth
and the demand for the storage. After the initial Grid deployment, the SAS Grid consisted of
seven nodes. To address rapid growth in the size of our user community, and in order to test out
the purported scalability of our new environment, a new node was added to our grid as a grid
node. This 8

th
 node was installed, configured and tested for all the connectivity with the

databases, outside servers through firewalls etc. and successfully incorporated into the Grid
seamlessly without any downtime on the environment or interruptions to user jobs or disruptions
to processing. The same was true when a new storage appliance was added to double to storage
capacity. The new appliance was setup, tested and then added to the cluster without the need to
reboot the servers or remount the file systems. This ability to perform maintenance,
enhancements and deploy additional server nodes and entire storage facilities without
interrupting service to the environment displays one of the greatest advantages of the Grid
architecture over other designs.

UPGRADING THE ENVIRONMENT

At the time of writing this paper, we are in the process of upgrading the SAS software from 9.2
M0 to 9.2 M3. We have taken the approach of installing the 9.2 M3 instance side-by-side with 9.2
M0 and running the two environments in parallel. Once we have completed testing and are
satisfied with the M3 environments ability to replace M0, we will then switch our users over to the
M3 environment. We should be able to seamlessly transfer our users from M0 to the M3
environment. On the sasgridtest virtual IP, M3 was installed, configured and tested on a side by
side with M0 before we began implementing M3 on full SAS Grid.

LESSONS LEARNED

We have learned these lessons as we have implemented the Grid environment at our site. Some
of these have greatly improved the performance on the Grid.

1) The Master node should be used exclusively for high availability and to manage the Grid
environment. It should not be used to run any jobs on it, as running jobs on the Master node can
create bottlenecks on the entire Grid and result in varying response times from the master nodes
to the clients. And this could pose issues to the stability of the entire Grid environment. The
Master node should be used to maintain connections to users’ sessions submit jobs to the grid
and maintain the metadata, which is an in-memory process. Slow response times on the Master
node could corrupt metadata and increase the job submission times for the users, which could be
frustrating for the users. Xclients should never be allowed to connect to the Master node, as the
connections from these sessions take up an inordinate amount of resources.

2) Home directories on the shared file system are needed for the Grid environment. By default,
operating systems create home directories on the local disk and when the users create ssh keys,
they are stored in those home directories. We found that because we were using a shared file
system on a grid, this could cause issues when users needed to transfer files from or to the Grid

6

using the ssh keys, as the users jobs could be running from any grid node based on the load on
the Grid. So, having the home directories on the shared disk facilitates that users store their ssh
keys in a centralized location which can be accessed from any grid node. This also enables the
users who use Xclients for sas submissions to customize their operating system profiles on a
shared home directory, so that they can have a uniform environment whenever they login to the
Grid.

3) This suggestion is specifically for clients using a GPFS file system. On GPFS file systems, it is
recommended to have one large file system and several filesets within it so that you can get more
usable space from the disk. The advantage with the filesets is that you can set the quotas on
them dynamically without the need for un-mounting or re-mounting. As the file system is large,
the standard Unix commands will take lot of time to execute. Hence, we strongly recommend
using the GPFS commands instead of standard Unix whenever possible. E.g. Use Mmlsquota
instead of du.

4) Separate the access for SAS clients and Xcients to the Grid. Xclients like Exceed takes lot of
resources on the servers and hence, should not be allowed to login to the Master node directly,
as it could cause serious stability issues to the entire Grid environment. So, Xclients logins can be
distributed across the grid nodes so that the terminal load on the servers is equally distributed on
the Grid. SAS Clients could continue to use the master node for submitting the jobs.

5) A small Test Grid environment which is a subset of the Production Grid environment should be
implemented in your Grid environment. This provides a place to test all changes and
enhancements before implementing them into the Production instance, and it negates the
necessity to have a separate Test environment for testing new and upgraded software. This is a
very cost effective approach, as the test environment nodes are fully utilized at any point of time
in the Production Grid and can be activated only when they are in need. Also, these nodes can be
taken out of the Production Grid if there is a need to upgrade the Operating System (OS) or any
software.

6) Do not combine Grid and Non-grid enabled applications – You may have other applications
running on the Grid environment along with SAS. The Platform license that is distributed through
SAS, can only manage SAS applications on the Grid. Other applications running on the Grid will
give undesired results. It’s best to limit all Non-Grid applications to run on one node on your grid.
And that node should not be either the Master or Fail-over nodes.

7) LSF provides the flexibility to close any node at any time so that no jobs are submitted to that
node. This can be utilized to do maintenance on any of the grid nodes and test separately while
the Production remains running. The node can be added back to the Grid after the testing is
complete. This can be utilized not only for SAS software fixes/license upgrades but also for OS
upgrades.

8) Crontab jobs are scheduled locally on the server. Since there are multiple nodes on the grid,
the users need to keep track of where their jobs are scheduled.

CONCLUSION

Implementing a SAS Grid along with a GPFS file system has helped us to significantly increase
productivity and improve cost. It has allowed us to exploit the previously under-utilized power of
our computing resources while providing a more stable and scalable environment. Grid
computing has proven to be a cost effective approach to providing large amounts of computer
processing cycles to our Business Partners. While the implementation of the Grid and GPFS
presented some significant challenges, given that grid computing is in its early stages of
development, some of this was to be expected. But for applications like large analytical
environments that lend themselves to a grid implementation, a SAS Grid can be used to tap

7

unused capacity and reduce total execution time. Our SAS/GPFS implementation has provided
our Enterprise with:

o GPFS Clustered storage that enables sharing of storage across platforms, reducing the
overall amount of disk storage necessary for user community, and production model
execution

o Scalability – Our initial outlay is far less than replacing the existing environment with 'like'
hardware software. It has proven to be less expensive and easier to grow the
environment

o Confidence that further refreshes will not incur environmental downtime. Individual nodes
can be varied off-line and replaced one by one, as time and money permits

o Addition of a new compute node and additional storage has proven that computing
resources can be scaled out to cost-effectively add new users and capacity with no
impact to existing activities and user

o Load balancing and grid management across nodes leads to effective utilization of all
available nodes while providing automated optimization for SAS application processing
based on custom rules based routing logic

o Multiprocessing capabilities allow work flows to be processed in parallel on multiple
machines, reducing SLA's of SAS model production and end of month processing

o The Enterprise SAS Environment refresh into our in-house Production Center from an
external vendor facility was successfully implemented in a phased approach, with fewer
risks, reducing impact and risk to SAS user community

The outcome of our production SAS Grid implementation is that it has been a success. We are
able to run all of our current production SAS applications with no resource downtime during our
last year. In that time, we have increased our user base by almost 50% and scaled our
environment, adding a new compute node and an additional storage array, while suffering no
disruption of service. Our organization has successfully migrated to an Enterprise SAS Grid
Platform that ideally addresses our business requirements and technology goals.

Contact Information

Your comments and questions are valued and welcome. Contact the authors at:

Shivashanker Bitla
2500 Lake Cook Road, Riverwoods, IL 60015
Phone: (630) 212-4776
E-mail: sbitla@discover.com

Richard A. Kerwin Jr.
2500 Lake Cook Road, Riverwoods, IL 60015
Phone: (224) 405-5547
E-mail: rkerwin@discover.com

SAS and all other SAS Institute Inc. products or service names are registered trademarks or
trademarks of SAS Institute, Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

	2011 Table of Contents

