
1

Paper 359-2011

Tunneling Your Way to a More Secure SAS/CONNECT®
Greg McLean, Statistics Canada, Ottawa, Ontario, Canada

ABSTRACT
For many years now SAS/CONNECT software has allowed SAS® users to make use of remote servers for data
processing. However, in our modern day processing environments, security has become a very important issue that
cannot be neglected.

Within the SAS/CONNECT environment we have several encryption technologies available that will allow us to
communicate securely between a client SAS session and a remote SAS session. Choosing the appropriate
encryption technology will depend on the level of security that is required. Many of the common encryption algorithms
that are utilized include RC2, RC4 DES, TripleDES and AES.

The purpose of this paper is to explore the use of a particular encryption technology referred to as Secure Shell
(SSH) Tunneling within the SAS/CONNECT environment. One of the great advantages of SSH is its flexibility and
ease of use. SSH can be obtained through several commercial vendors as well as freeware (such as OpenSSH).

The intended audience for this paper are SAS developers with a medium to advanced knowledge of SAS/CONNECT
within the Microsoft Windows environment.

INTRODUCTION
As surprising as this may sound, it is very common for organizations not to use encryption on their computer
networks. These organizations are either not concerned or unaware of the potential threats by hackers, employees,
and any other interested parties. Often firewalls are used to act as the primary barrier against attacks. Without
encryption, data travels from one machine to another often as open text. These transmissions may include user ids,
passwords, as well as sensitive data.

Therefore, the use of encryption when using SAS/CONNECT is both easy and recommended. The following table
compares several encryption technologies that are available to us when using SAS/CONNECT software. Although all
of these methods are viable strategies for encryption, we will focus on the encryption technology referred to as
Secure Shell (SSH).

Features SAS Proprietary SAS/SECURE SSL SSH

License required No Yes No No

Encryption Yes Yes Yes Yes

Authentication No No Yes No

Encryption Level Medium High High High

Algorithms
Supported

SAS Proprietary fixed
encoding

RC2, RC4, DES,
TripleDES, AES

RC2, RC4, DES,
TripleDES, AES

Product
Dependent

Installation Required No (Part of Base SAS) Yes Yes Yes

OS Supported

UNIX

Windows

z/OS

UNIX

Windows

z/OS

UNIX

Windows

z/OS*

OpenVMS*

UNIX

Windows

z/OS

SAS Version Support 8 and later 8 and later 9 and later 8.2 and later

Table 1- Encryption options within SAS

Systems Architecture and AdministrationSAS Global Forum 2011

2

In the following sections we will detail the steps required to set up a SSH Tunnel and show how we can make use of
it using SAS/CONNECT software. In particular, we will illustrate using open source software called “OpenSSH”. This
software is freeware and does support many of the most popular encryption algorithms.

SAS/CONNECT
Before getting into the details of using SSH, a brief review of SAS/CONNECT may be beneficial. Simply put,
SAS/CONNECT software allows a SAS session on one machine, referred to as the client, to “spawn” or start SAS
sessions on one or more remote machines, referred to as the server(s). These machines may or may not be of the
same operating system type, as long as the necessary SAS software is installed and configured (including
SAS/CONNECT). Once a connection has been made, users may be able to remote submit code to these connected
machines or move data to and from using special SAS/CONNECT procedures (PROC UPLOAD and PROC
DOWNLOAD). Of course there is a lot more functionality available within the SAS/CONNECT product; however, for
the purposes of discussion, the above mentioned functionality is sufficient.

Figure 1- SAS/CONNECT between two machines

The problem that we have when using SAS/CONNECT over a network is that any data or information passed
between the connected machines is typically unencrypted and available to any persons who have the expertise and
desire to intercept. Figure 2 below illustrates how a special program called a “sniffer” is able to gain access to data
and information that is passed between machines.

Systems Architecture and AdministrationSAS Global Forum 2011

3

Figure 2 – Vulnerability of transmitted data

Therefore, the solution to this problem is to encrypt the data and information that is transmitted between these
machines. And of course the solution that we wish to consider is called Secure Shell (SSH).

SECURE SHELL (SSH) - TUNNELING
In particular we wish to focus our attention on a SSH feature called “tunneling”. The concept of a SSH Tunnel is quite
simple and easy to understand without having to discuss the underlying details of this encryption technology. SSH
Tunneling is often referred to as “Port Forwarding”. A virtual tunnel is created between machines, which allow data
and information to travel in an encrypted format, thus preventing any interception by undesired recipients.

Once we successfully setup a SSH tunnel, we will show how we can then make use of it within the SAS environment
(using SAS/CONNECT). The successful use of this encryption technology will then allow SAS/CONNECT to function
in a secure manner. This is illustrated in Figure 3.

Systems Architecture and AdministrationSAS Global Forum 2011

4

Figure 3- SAS/CONNECT using SSH Tunnel

Several commercial SSH Software packages are available, as well as an open source version called “OpenSSH”. For
illustration purposes, we shall discuss the syntax and use of OpenSSH in this paper. The following section will
describe in detail the steps required to successfully setup and use a SSH tunnel within a SAS/CONNECT context.

STEPS TO SETUP AND USE A SSH TUNNEL
Before performing the following steps, ensure that the Foundation SAS system, including SAS/CONNECT, has been
installed and configured on both the client and server machines.

SAS Spawner Setup on Server

The first order of business is to setup a SAS Spawner on the machine that we will refer to as the server. The SAS
Spawner is responsible for launching SAS sessions on the server as requested from client SAS sessions. Typically
when instantiating a SAS Spawner service we do not normally specify a port number. However, in this case we will.

1. Start a Command (DOS) window and navigate to the folder that contains the “Spawner.exe” program. A
typical location for this file is:

“C:\Program Files\SAS\SAS 9.1” (SAS 9.1.3)
“C:\Program Files\SAS 9.2\SASFoundation\9.2” (SAS 9.2)

Under Vista or Windows 7 you may have to open a Command window as an “Administrator” due to the increased
security in these versions of the Microsoft Operating systems:

1. Start ► All Programs ► Accessories ► Command Prompt
2. Select Run as administrator (right mouse click).

Systems Architecture and AdministrationSAS Global Forum 2011

5

2. In the Command (DOS) window, type the following command and hit enter to create the SAS Spawner
service:

spawner –i –service 4321 –name “SpawnerSSH” –security

We have chosen an unused port (4321) on the server machine and we have named the Windows service
“SpawnerSSH”.

3. Now that the SAS Spawner Service has been created, it must be started. To start the SAS Spawner Service
type the following command in the Command window:

Net Start “SpawnerSSH”

We have chosen the name “SpawnerSSH” for our example. Any name may be used; however it must be the same
name that was used in step 2.

4. Now that the SAS Spawner is setup on the server machine, it would be a good idea to test the SAS
connection. Start a SAS session on the client machine and submit the following code to determine if the
SAS Spawner is functioning correctly.

%LET myremote=SERVER1 4321;
OPTIONS REMOTE=myremote;
SIGNON;
SIGNOFF;

In the above test program we used the name of our test server (SERVER1) as well as the port number that we used
when creating the SAS Spawner service in Step 2. Ensure that you use the correct name or alias of your remote
server. A successful SAS/CONNECT session can be verified in the SAS log on the client machine.

SSH Setup on Client Machine

We now need to install and configure the OpenSSH software on the client machine.

1. Download the OpenSSH software (“setupssh381-20040709.zip”) from the following internet location.

http://www.filewatcher.com/m/setupssh381-20040709.zip.2410307.0.0.html

This is an older version of OpenSSH and several newer versions are available. Also note that the OpenSSH software
(freeware) is available for download from several other internet sites.

2. Unzip the downloaded file (“setupssh381-20040709.zip”) and run the executable file called “setupssh.exe”.
This program will then install the SSH client. Simply select all of the default settings during installation.

3. In a Command (DOS) window, navigate to the following folder “C:\Program Files\OpenSSH\bin” (default
location where OpenSSH software is installed) and type the following commands:

mkgroup -d >> ..\etc\group

This step could take several seconds.

Systems Architecture and AdministrationSAS Global Forum 2011

6

4. In the same Command (DOS) window, at the same folder location type the following command to add a
user:

mkpasswd -d -u user1 >> ..\etc\passwd

“user1” is an example of a user id on the domain. Make sure that you specify a valid user id on your domain.

5. In the same Command (DOS) window, type the following command to start the SSH service:

Net Start “opensshd”

SSH Setup on Server Machine

We now need to install and configure the same OpenSSH software on the server machine. Basically the setup is the
same as performed in the previous section (SSH Setup on Client Machine). Login to the server machine and
perform the following steps:

1. Copy the previously downloaded file (“setupssh381-20040709.zip”) to the server machine and run the
executable file called “setupssh.exe”. This program will then install the SSH software. Simply select all of the
default settings during installation.

2. In a Command (DOS) window, navigate to the following folder “C:\Program Files\OpenSSH\bin” (default
location where OpenSSH software is installed) and type the following commands:

mkgroup -d >> ..\etc\group

3. In the same Command (DOS) window, at the same folder location type the following command to add a
user:

mkpasswd -d -u user1 >> ..\etc\passwd

“user1” is an example and should be a valid user id on your domain.

4. In the same Command (DOS) window, type the following command to start the SSH service:

Net Start “opensshd”

Systems Architecture and AdministrationSAS Global Forum 2011

7

Creating the SSH Tunnel

Now that we have the SSH software running as services on both the client and server machines, we can now create
the SSH Tunnel by performing the following:

1. On the client machine, start a Command (DOS) window and navigate to the following folder “C:\Program
Files\OpenSSH\bin” (default location where OpenSSH software is installed) and type the following
commands:

2. You will be prompted and asked if you would like to continue. Select “Yes”.

3. You will then be prompted for your network password. Type your valid password and hit the Enter Key.

4. It will appear as if your command window is doing something (Figure 4). Simply minimize this window. This
will be an indication that your SSH Tunnel has been successfully implemented.

Figure 4- SSH Tunnel Connection

Systems Architecture and AdministrationSAS Global Forum 2011

8

The SSH Tunnel that would be created following the preceding steps is illustrated in Figure 5.

Figure 5 – SSH Tunnel

USING SAS/CONNECT WITH SSH TUNNEL
Now that we have the SSH Tunnel in place we can use SAS/CONNECT software to communicate from the client
machine to the server machine using a safe and encrypted medium. Start a SAS session on the client machine and
run the following SAS code to remotely connect to a SAS session on the server machine using the configured SSH
Tunnel.

%let mynode=localhost 4444;
OPTIONS remote=mynode;
SIGNON;

The difference, compared to traditional SAS/CONNECT statements, is that we actually point to a port (4444) on the
client machine and not the SAS Spawner Port (4321) on the server machine. Also note that we are using the term
“localhost” and not the actual name of the client machine. The SSH Tunnel will automatically forward all data between
the client machine to the server machine in an encrypted fashion.

Systems Architecture and AdministrationSAS Global Forum 2011

9

Figure 6 – SAS/CONNECT through SSH Tunnel

Once we have a valid SAS/CONNECT session established between the two machines, we can then use various
SAS/CONNECT statements and procedures to move data accordingly. The following is an example that illustrates
how we can move data from the server machine to the client machine (by submitting code on the client machine).
And of course since we are moving the data through the SSH Tunnel, all communication is encrypted and safe.

LIBNAME DATAOUT "C:\Temp"; /*Client Machine */
RSUBMIT;
 LIBNAME DATAIN "C:\Data"; /*Server Machine */
 PROC DOWNLOAD IN=DATAIN
 OUT=DATAOUT;
 RUN;
ENDRSUBMIT;

Example 1 – Transferring data between machines

Systems Architecture and AdministrationSAS Global Forum 2011

10

SUMMARY
Just as a bank uses a secure transportation service such as Brinks and not a general courier service to transport
money, we too must ensure that our electronic assets (data and information) are safe while being transmitted.

Although there are several software technologies available to be used within SAS, Secure Shell (SSH) proves to be
one of the most flexible and easy to use solutions that ensures a high level of encryption. The level and strength of
encryption is only dependent on vendor implementation, thus allowing greater flexibility and choice.

So next time you use SAS/CONNECT think about SSH Tunneling technology to ensure that your data and
information are safe.

REFERENCES
SAS Institute Inc. 2011, SAS Online Help and Documentation

SAS Institute Inc. 2011, “Encryption: Comparison”, SAS Knowledge Base, Product Documentation, SAS 9.2
Documentation

SAS Institute Inc. 2011, “Providers of Encryption”, SAS Knowledge Base, Product Documentation, SAS 9.2
Documentation

SAS Institute Inc. 2011, “Usage Note 20612: Installation of the PC spawner in the Windows Vista Enterprise
environment might fail due to User Account Controls”, SAS Knowledge Base, Samples & SAS Notes

Glenn Horton. “Sample 25240: Using Secure Shell (SSH) with SAS Products”, SAS Knowledge Base, Samples &
SAS Notes

Dave Dean, Project Leader, System Engineering Division, Statistics Canada

The OpenBSD project (www.openssh.com)

CONTACT INFORMATION
For information on topics covered in this paper please contact:

Statistics Statistique
Canada Canada

Greg McLean
Project Leader – SAS Technology Centre
System Engineering Division
R.H. Coats Building, 14th Floor, Section Q

Ottawa, Ontario, Canada K1A 0T6
(613) 951-2396 Fax (613) 951-0607
Greg.Mclean@statcan.gc.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Systems Architecture and AdministrationSAS Global Forum 2011

	2011 Table of Contents

