Paper 357-2011

JMP[®] 9 and Interactive Statistical Discovery

John Sall, SAS Institute Inc., Cary, NC, USA

ABSTRACT

JMP 9 represents a major new revision of statistical discovery software from SAS[®] for engineers, scientists, and business analysts.

INTRODUCTION

Though there are many improvements throughout all the components in the JMP system, most of the excitement is focused on a few special features:

- · Better scripting and a plugin system to make using scripts easy
- Improved presentation graphics
- · More powerful interfaces to Excel, R, and SPSS as well as SAS
- A JMP Pro version that adds more data mining fits
- A new look on Windows

EXTENDING JMP THROUGH SCRIPTING

Suppose that you need to do an analysis of hyperspectral data. Our eyes and most of our cameras see in only three colors, but hyperspectral cameras can see in many colors, or wavelengths, including infrared and ultraviolet. Even the Landsat satellites send back images in seven wavelengths. Using the extra wavelengths helps discriminate land cover. Let's analyze an extreme example, Aviris data from NASA, which has 240 wavelengths. You can download some public Aviris data from a NASA website containing a number of 614-by-512 pixel images in 240 wavelengths. The script to do this is not hard, using some new features. Here is the housekeeping code to choose a directory and get the names of the rfl files.

The first command, NamesDefaultToHere(1), says that all the names in this script will be kept in the local environment so that different scripts won't interfere with each other. This is one of the most important enhancements for JMP 9.

Now we sequence through all the files we found. Each one is brought in as one large binary chunk, a 'blob'—binary large object, using a new option in JMP 9. We figure out how many lines are in the image.

Next we standardize the data, taking care not to divide by zero for constant columns, and calculate the Correlation matrix. The Correlation function is new, and it is very fast, using multithreading.

```
stdv = vstd(rawData); stdv += stdv==0; // don't divide by zero
stdData = (rawData-J(n,1,1)*vmean(rawData)):/(J(n,1,1)*stdv); //standardize
rawData = 0;
corr = Correlation(stdData);
```

Next, we calculate the eigen decomposition of the correlation matrix and use the eigenvectors to score the first four principal components, with the scores reshaped back to the dimensions of the image.

```
{m,e} = eigen(corr); show(m[1::10,0]);
pclv = shape(stdData*e[0,1],nLines,nsample)`;
pc2v = shape(stdData*e[0,2],nLines,nsample)`;
pc3v = shape(stdData*e[0,3],nLines,nsample)`;
pc4v = shape(stdData*e[0,4],nLines,nsample)`;
```

Now we scale the results so that we can colorize by values from 0 to 1.

```
pcls = (.5+pclv/(2*max(pclv))):*(pclv>0)+(.5-pclv/(2*min(pclv))):*(pclv<0);
pc2s = (.5+pc2v/(2*max(pc2v))):*(pc2v>0)+(.5-pc2v/(2*min(pc2v))):*(pc2v<0);
pc3s = (.5+pc3v/(2*max(pc3v))):*(pc3v>0)+(.5-pc3v/(2*min(pc3v))):*(pc3v<0);
pc4s = (.5+pc4v/(2*max(pc4v))):*(pc4v>0)+(.5-pc4v/(2*min(pc4v))):*(pc4v<0);
stdData = u = v = 0; // free memory
```

Now we convert to the principal images using default heatmap colorization: blue for low, to gray for medium, to red for high. Image objects and functions are new in JMP 9.

```
imagepc1 = NewImage(HeatColor(pc1s));
imagepc2 = NewImage(HeatColor(pc2s));
imagepc3 = NewImage(HeatColor(pc3s));
imagepc4 = NewImage(HeatColor(pc4s));
```

The images are saved on disk.

```
imagepc1<<SaveImage(outDir||rflFiles[iFile]||"_PC1.jpg");
imagepc2<<SaveImage(outDir||rflFiles[iFile]||"_PC2.jpg");
imagepc3<<SaveImage(outDir||rflFiles[iFile]||"_PC3.jpg");
imagepc4<<SaveImage(outDir||rflFiles[iFile]||"_PC4.jpg");</pre>
```

In addition to the principal images, we also create images of the eigenvector loadings so that we can make a legend across the top showing which wavelengths are contributing to each principal image.

```
imageEig1 = NewImage(DirectProduct(HeatColor(e[0,1]`/2+.5),J(12,2,1)));
imageEig2 = NewImage(DirectProduct(HeatColor(e[0,2]`/2+.5),J(12,2,1)));
imageEig3 = NewImage(DirectProduct(HeatColor(e[0,3]`/2+.5),J(12,2,1)));
imageEig4 = NewImage(DirectProduct(HeatColor(e[0,4]`/2+.5),J(12,2,1)));
```

Now we arrange the images into a presentation and show it:

```
NewWindow(rflFiles[iFile]||" PCA",
LineupBox(ncol(2),spacing(3),
imageEig1,imageEig2,
imagepc1,imagepc2,
imageEig3,imageEig4,
imagepc3,imagepc4));
```

This is a loop, which we need to close with a parenthesis.

);

If you run this script, you will get a window for each hyperspectral 'rfl' file, looking like the images shown in Figure 1.

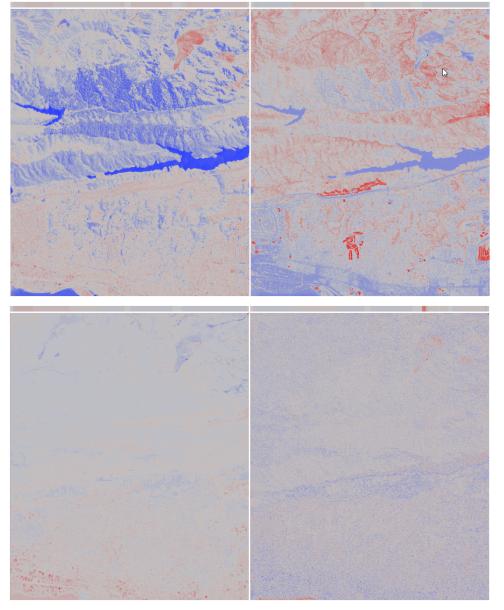


Figure 1. Images Created from Principal Components Computed from .rfl Hyperspectral Data

Notice that the first principal image concentrates on general intensity (the loading legend shows reddish values across the spectrum). The second principal image compares red wavelengths and blue (the legend loads positively in the lower middle wavelengths and negatively on the higher ones). The third principal image concentrates on infrared (legend positive at the low wavelengths). The fouth principal image loads in a very narrow band in the blue range of the spectrum, and the image looks rougher than the others. Each image emphasizes different features in the scene.

Considering that this is a 240 column by 314,368 row problem, it is amazing that it only takes about 30 seconds on my 8-core laptop to do this and everything else in this script per image.

Now consider that you want to enable this script to be easy to use for yourself. You install a menu item to invoke it.

Also, you want it easy to install for many users. JMP 9 now supports 'add-ins' which zip together a script with some information about how to install it in the menus. This add-in file can now be put on a website. Any user can download it and drag it into JMP, and it automatically installs with a menu item to invoke it.

Add-Ins	View	Window	Help				
R Ad	R Add-Ins						
R De	R Demo Add-Ins						
Rea	Read in rfl images						
Map	Image	s	•				

EXPLORING DATA

Exploring data is JMP's special talent.

COLOR JMP DATA TABLE CELLS

One of the graphs in JMP is a cellplot, sometimes called a heatmap as shown on the left in Figure 2, which shows the data with colored rectangles. With JMP 9, the spreadsheet itself can be colorized, either by value across a column or individually per cell.

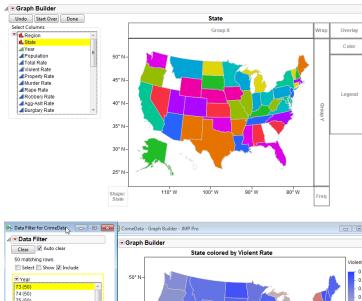

name	age	sex height weight		name	age	sex	height	weight	mean weight by age
		چ ک	1	KATIE	12		59	95	99.000
KATIE LOUISE			2		12		61	123	99.000
JANE			3		12		55	74	99.000
JACLYN			4	JACLYN	12		66	145	99,000
			5	LILLIE	12		52	64	99.000
JAMES			6	ТІМ	12		60	84	99.000
ROBERT			7	JAMES	12		61	128	99.000
BARBARA			8	ROBERT	12	М	51	79	99.000
SUSAN			9	BARBARA	13	F	60	112	94,714
JOHN			10	ALICE	13	F	61	107	94.714
MICHAEL			11	SUSAN	13	F	56	67	94.714
DAVID			12	JOHN	13	М	65	98	94.714
JUDY ELIZABETH			13	JOE	13	М	63	105	94.714
LESLIE			14	MICHAEL	13	М	58	95	94.714
CAROL			15	DAVID	13	М	59	79	94.714
PATTY FREDERICK			16	JUDY	14	F	61	81	100.833
ALFRED			17	ELIZABETH	14	F	62	91	100.833
HENRY			18	LESLIE	14	F	65	142	100.833
LEWIS EDWARD			19	CAROL	14	F	63	84	100.833
CHRIS			20	PATTY	14	F	62	85	100.833
JEFFREY			21	FREDERICK	14	М	63	93	100.833
MARY AMY			22	ALFRED	14	М	64	99	100.833
ROBERT			23	HENRY	14	М	65	119	100.833
WILLIAM			24	LEWIS	14	М	64	92	100.833
CLAY MARK			25	EDWARD	14	М	68	112	100.833
DANNY			26	CHRIS	14	М	64	99	100.833
MARTHA			27	JEFFREY	14	М	69	113	100.833
MARION			28	MARY	15	F	62	92	108.286
LINDA			29	AMY	15	F	64	112	108.286
KIRK			30	ROBERT	15	М	67	128	108.286
LAWRENCE			31	WILLIAM	15	М	65	111	108.286

Figure 2. Color using a Cell Plot (left) and JMP Data Table Cells (right)

FEATURES IN GRAPH BUILDER

Graph Builder has many new skills. In the Graph Builder example on crime data (Figure 3 and Figure 4), I can click on a column name 'State' which identifies U.S. States, drag it to the new Shape drop zone, and it brings up a map and sets the graph coordinates to latitude by longitude. Graph Builder has looked through all the maps it has to find out which supports the values in the column.

Then I drag the column name 'Violent Rate' to the Color drop zone and the states are colorized, with red for high and blue for low.

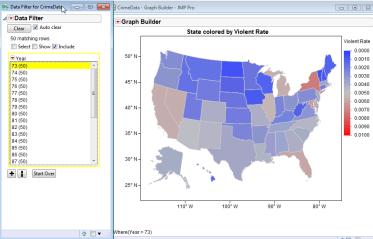


Figure 3. Color Map Data in Graph Builder by Crime Rates

Here is the crime picture for 1991, the height of the 'crack' epidemic, then in 1999 when violent crime had calmed down. This can be played like a movie, letting you watch violent-crime rate patterns both geographically and across time.

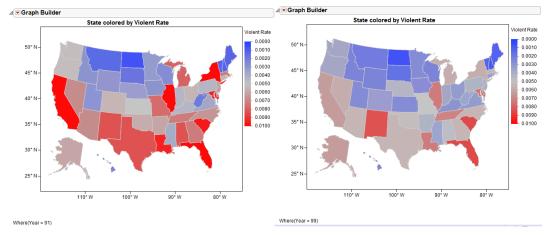
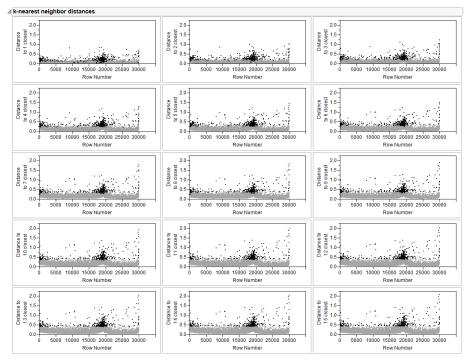



Figure 4. Look at Changing Crime Rates over Time

EXPLORING MULTIVARIATE DATA

Suppose you need to characterize the multivariate distribution of several variables, in this case 30,000 rows of FCS data. The KMeans platform has many features for doing this. The data may be noisy, so as a first step you find the distance of each point to the kth nearest neighbor, as shown in Figure 5. Selecting the 900 or so points that are far from the 15th nearest neighbor can be done by dragging a rectangle in the 15th plot below. Notice that in JMP 9 the points that are not selected are faded, where in earlier versions of JMP the selected points were bigger. The fade selection mode is much better for when there are many points and you need to spot where the selected points are.

Figure 5. Nearest Neighbor Plots

Once these points are selected, you can see where they are in the space, using the 3D scatterplot, and the scatterplot matrix.

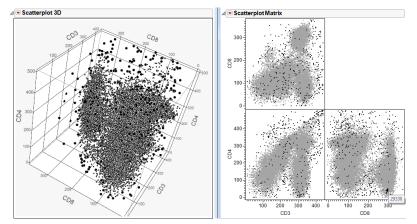
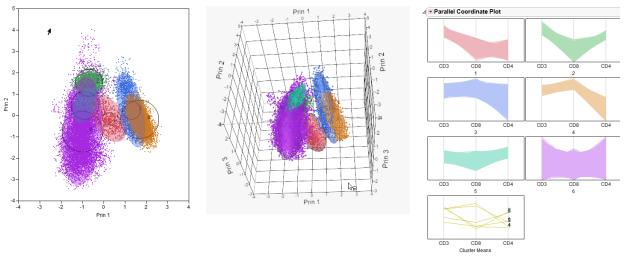



Figure 6. Noisy Points Showing in 3D Plot and Scatterplot Matrix

Now that we have concentrated the sample to points that are near other points, it is ready to find the structure of the distribution, using normal mixtures. JMP 9 has a much faster Normal Mixtures facility. There are a variety of ways to see the resulting mixture. There is the principal component score plot (left-hand plot in Figure 7) with shaded ellipses showing the normal contours and with circles indicating the portions in each cluster. The same idea can be done in 3D with semi-transparent ellipsoids (middle plot in Figure 7).

Parallel coordinates plots show the structure of each cluster, assigning points to the closest cluster in the Mahalanobis sense (right-hand plot in Figure 7).

Figure 7. PCA Score Plot (left), 3D Plot with Ellipsoids (middle), Parallel Coordinate Plot (right)

Also, there is a feature to output the scatterplot matrix with ellipsoids projected into each component pair's space. Here we faded the points by changing the transparency setting.

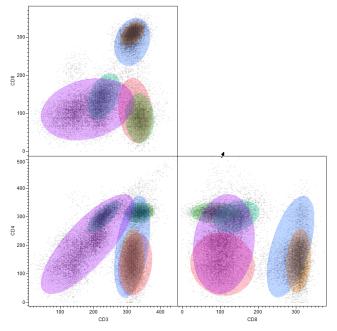
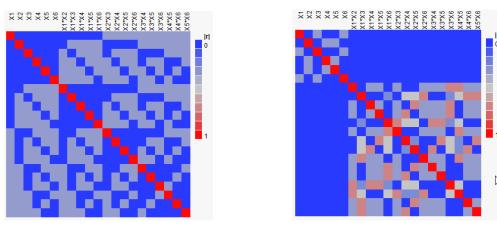



Figure 8. Scatterplot Matrix of Normal Mixture Clusters using Transparency Features

ALIAS-OPTIMAL EXPERIMENTAL DESIGN

JMP has a tradition of strong support for experimental design. Suppose that you have to make a screening experiment for six factors in 12 runs. The plain d-optimal design is efficient for the main effects, but if there is a big two-factor interaction lurking that is not estimable here, it will contaminate the main effects estimates due to the large number of 1/3 and -1/3 correlations confounding main effects with two-factor interactions (left picture in Figure 9). But if I change to an 'alias optimal' criterion, all these will be cleaned up—to zero in this situation, as seen in the all-zero (all-blue) section in the upper right and lower left (right picture in Figure 9).

The alias-optimal design is trading some efficiency in the main effects with robustness to two-factor interactions. This is not always a trade you will want to make, but if you suspect strong two-factor interactions, but don't have the runs to make them estimable, this kind of design is worth considering.

MODELING

The Concrete Slump Test data, contributed to the UCI Machine Learning lab, is a very large-scale response surface experiment with three responses, 7 factors, and 103 runs. When expanded to all the quadratic terms, the model has 36 parameters for each response. To validate the predictive ability of fits, I created validation and test sets, identified by a Validation column in the data table. Using the Stepwise personality, if you fit all the terms for the first response (Slump), you get an Rsquare of 0.79 for the training data. However, the Rsquare for the validation data is very terrible (-1.415)—i.e. the validation data is fit far worse than just a simple mean (left-hand report in Figure 10). If you clear the terms and then click Go to step in terms until the crossvalidation Rsquare is maximized, then the resulting model validates much better with a validation Rsquare of 0.38. All these cross validation features are new to JMP 9.

									RSquare	RMSE											RSquare	RMSE
SSE	DFE	RMSE		RSquare Adj	Ср	р	AICc		alidation			SSE	DFE	RMSE	RSquare	RSquare Adj	Cp	р	AICc	BIC		Validation
1403.1247		5.5229259	0.7940	0.6373	36	36	303.4735	628.613	-1.415	10.66509	228	8.9563	67	5.8449574	0.6640	0.5938	23.041079	15	546.064	576.2022	0.3888	365885
⊿ Current E	Estimat	es							\sim		⊿ Cu	rrent	Estimat	es							\checkmark	
LockEntere	d Parame	ter			Estimate	nDF	SS	"F Ratio"	"Prob>F"		Loc	kEntere	d Parame	ter			Estimate	nDF	SS	"F Ratio"	"Prob>F"	
J	Intercep	t			-1533.7907	1	0	0.000	1		1	1	Intercep	t			-354.27088	1	0	0.000	1	
	Cement				0.44508705	8	580.8067	2.380	0.0309			1	Cement				0.07444718	3	555.1947	5.417	0.00214	
	Slag				0.65997917		678.0405	2.779	0.01354			1	Slag				0.0678975	5	1097.075	6.422	6.25e-5	
	Fly ash				0.43233725			2.332	0.03414			V	Fly ash				0.10284375	2	143.8339	2.105	0.12982	
	Water				1.80457186	8	510.1638	2.091	0.05618			V	Water				0.60503766	4	792.265	5.798	0.00046	
	SP				2.39753315		138.463	0.567	0.7989			1	SP				0.90774862	2	206.755	3.026	0.05519	
	Coarse	Aggr			0.59524008			2.143	0.05046			1	Coarse	Aggr			0.13099398	2	215.2303	3.150	0.04926	
	Fine Agg				0.5938577		537.1101	2.201	0.04475			1	Fine Ag	gr			0.13205391	1	64.43526	1.886	0.17422	
		1-229.894)*(0.03796629		55.39926	1.816	0.18437				(Cemen	t-229.894)*(Cement-22	9.894)	0	1	8.922592	0.258	0.613	
		t-229.894)*(0.11483328		60.74711	1.992	0.16491			1	(Cemen	(-229.894)*(Slag-77.973	38)	-0.0007732	1	524.1694	15.343	0.00021	
		.9738)*(Sla			0.08591237		65.45108	2.146	0.14977			V	(Slag-71	.9738)*(Slag	-77.9738)		-0.0014563	1	694.9113	20.341	2.68e-5	
		1-229.894)*(0.07748005		54.98588	1.803	0.18598				(Cemen	t-229.894)*(I	Fly ash-149	.015)	0	1	12.01915	0.348	0.55704	
		.9738)*(Fly			0.1171556		60.2541	1.975	0.1666			1	(Slag-71	7.9738)*(Fly a	ash-149.01	5)	-0.0003485	1	72.86743	2.133	0.14884	
		-149.015)*(F			0.0386775		52.09633	1.708	0.19775				(Fly ash	-149.015)*(F	ly ash-149.0	015)	0	1	38.47533	1.128	0.292	
		1-229.894)*(0.25697904		61.77071	2.025	0.16147				(Cemen	t-229.894)*(Water-197.1	168)	0	1	23.56243	0.686	0.41035	
		.9738)*(Wa			0.38829935			2.218	0.14321			1	(Slag-71	7.9738)*(Wat	er-197.168))	0.00200571	1	321.9582	9.424	0.00309	
		149.015)*(\			0.26057479			1.986	0.16547				(Fly ash	-149.015)*(V	/ater-197.1	68)	0	1	0.036998	0.001	0.97404	
		97.168)*(W			0.41366541	1	01.10412	2.024	0.16159			V	(Water-1	197.168)*(Wa	ater-197.16	B)	-0.0086204	1	492.3669	14.412	0.00032	
		t-229.894)*(1)	0.31183423		55.52712	1.820	0.18387			1	(Cemen	t-229.894)*(SP-8.53981)	0.00517808	1	48.12945	1.409	0.23945	
		.9738)*(SP			0.45112675		56.82853	1.863	0.17891				(Slag-71	7.9738)*(SP-	8.53981)		0	1	38.00015	1.114	0.29502	
		149.015)*(8			0.31519215		51.26471	1.681	0.2013				(Fly ash	-149.015)*(S	P-8.53981)		0	1	3.775202	0.109	0.74229	
		97.168)*(SI			0.985527	1		1.780	0.18873					197.168)*(SF			0	1	38.26307	1.122	0.29334	
		1981)*(SP-8			0.59565572		48.5381	1.591	0.2135				(SP-8.5)	3981)*(SP-8.	53981)		0	1	6.348772	0.184	0.66972	
		1-229.894)*(0.09818998		58.39278	1.914	0.17316				(Cemen	t-229.894)*(Coarse Agg	r-883.979)	0	1	6.634793	0.192	0.6628	
		.9738)*(Co			0.14778863	1	63.48324	2.081	0.15589					7.9738)*(Coa			0	1	3.899897	0.113	0.73822	N
		149.015)*(0			0.09982857	1	57.5688	1.887	0.17616					-149.015)*(C			0	1	44.04305	1.295	0.25927	43
		97.168)*(C			0.32366626	1	61.68809	2.022	0.16174			1	(Water-1	197.168)*(Co	arse Aggr-8	383.979)	-0.0012516	1	128.0872	3.749	0.05705	
	(SP-8 5)	(081)*(Coar	RR-100A 92	3 979)	0 39121749	1	55 10365	1 807	0 18552		000	1	(OD 0 5)	00434/0000	A A A A A A A A A A A A A A A A A A A	070)	•		24 02742	0.000	0.00406	

Figure 10. Stepwise Example of Cross Validation

In order to fit all the responses in one click on the Go button, I hold down the control key to broadcast that Go. Then I can control-click the Run Model button to run all the resulting models in the Standard Least Squares platform. The fits are assembled in the new Fit Group, allowing different models to support a single combined Profiler to explore the response surface across all the factors and responses (see Figure 11). In earlier versions of JMP, this would have involved many more steps and saving lots of prediction formulas as data table columns, and the result would not have included confidence intervals.

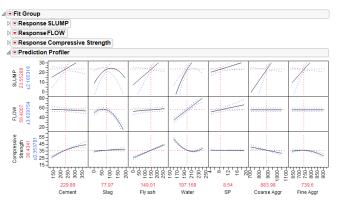


Figure 11. Profiler for Concrete Slump Test Data

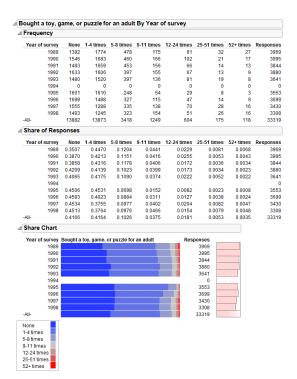
SURVEY ANALYSIS

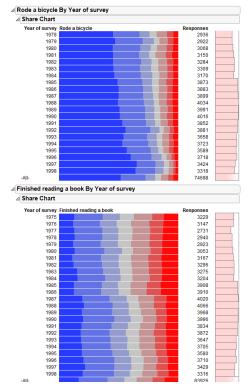
To see JMP at work analyzing surveys, I went to the website of a very large survey on Civic Engagement in America (<u>http://www.bowlingalone.com/data.htm</u>), the 'Bowling Alone' data. A convenient form of the data is in an SPSS save file. You can now easily download that and open it in JMP, and it preserves all the value labels.

File Edit Tables Rows Cols DO			ols Add-Ins View Wi	ndow Help			
📴 🔁 🧉 🗶 🔛 🎉 🔛 🤮 🛃	> > Bi	#\$ \$#	% I H H 🗄 🕮 🛛	8			
DDB master 34 (1975-1998) 👂 🗸	• a		t to a classical concert reg last 12 months)	Went clothes shopping (freg last 12 months)	Went to a club meeting (freg last 12 months)	Had a cold (freq last 12 months)	Worked on a collection (stamps, coins, rocks, etc.) (freg last 12 months)
lotes Year of survey 💌							rocks, etc.) (freq last 12 months)
	1	•	•	•	•	•	
	2	•	None	5-8 times	12-24 times	9-11 times	Nor
	3	•	None	5-8 times	None	1-4 times	25-51 time
Columns (389/0)	4	•	None	1-4 times	None	1-4 times	25-51 time
Year of survey \star 🔹 🔺	5	•	None	9-11 times	1-4 times	1-4 times	Nor
Respondent number *	6	•	1-4 times	5-8 times	12-24 times	1-4 times	5-8 time
Weight for sample adjustme 🗉	7	•	None	5-8 times	12-24 times	None	Nor
Attended amateur or college	8		None	9-11 times	25-51 times	1-4 times	Nor
Bought a toy, game, or puzzle	9		None	5-8 times	None	1-4 times	Nor
Used an automatic teller ma	10		None	9-11 times	None	1-4 times	9-11 time
Went to a bar or tavern (freq I							
Bought a book (freq last 12 r	11	:	9-11 times	1-4 times	52+ times	1-4 times	Nor
Rode a bicycle (freq last 12 r	12		None	1-4 times	1-4 times	None	5-8 time
Finished reading a book (fre	13	•	None	9-11 times	12-24 times	1-4 times	Nor
Went bowling (freq last 12 m	14	•	None	1-4 times	None	None	Nor
Went out to breakfast at a re:	15	•	None	1-4 times	None	1-4 times	Nor
Bought a movie on video cas	16	•	None	9-11 times	5-8 times	1-4 times	Ner
Went camping (freq last 12 r	17		None	1-4 times	1-4 times	1-4 times	Nor
Sent a greeting card in hono	18			12-24 times	None		Ner
Sent a greeting card on a ho	19		None	25-51 times	9-11 times	1-4 times	Nor
Sent a greeting card on no s	20						
Played cards (freq last 12 m			None	9-11 times	12-24 times	5-8 times	Non
Gambled in a casino (freq la	21	•	None	12-24 times	1-4 times	1-4 times	1-4 time
Attended church or other play Attended a class or seminar	22	•	None	1-4 times	None	None	Nor
Went to a classical concert (I	23	•	None	5-8 times	52+ times	1-4 times	Nor
Went to a classical concert () Went clothes shopping (freq	24	•	1-4 times	5-8 times	25-51 times	1-4 times	1-4 time
Went to a club meeting (freq	25	•	•	•		•	
Had a cold (freq last 12 mon	26	•	None	5-8 times	None	1-4 times	Nor
Worked on a collection (stan	27						
Worked on a community proj	28		None	5-8 times	None	1-4 times	Nen
Cooked outdoors (freg last 1	29		None	5-8 times	25-51 times	1-4 times	1-4 time
Worked on a crafts project (n			None		52+ times	1-4 times	1-4 time
Gave or attended a dinner pa	30			1-4 times			
Went out to dinner at a restar	31		5-8 times	5-8 times	12-24 times	None	Nor
Entertained people in my ho	32	•	None	12-24 times	None	None	9-11 time
Contributed to an environme	33	•	None	12-24 times	1-4 times	None	25-51 time
Went to an exercise class (fr	34	•	1-4 times	1-4 times	None	1-4 times	Nor
Did exercises at home (not a	35	•	None	5-8 times	1-4 times	1-4 times	Nor
Gave 'the finger' to someone	36	•	None	9-11 times	None	None	Nor
Went fishing (freg last 12 mc *	37	•	None	5-8 times	52+ times	1-4 times	Nor
	38		None	12-24 times	None	None	52+ time
Rows	39		None	52+ times	None	9-11 times	Nor
1 rows 84,989	40		None	25-51 times	5-8 times	9-11 unles None	12-24 time
elected 0		:					
xcluded 0	41		5-8 times	12-24 times	25-51 times	None	52+ time
idden 0 abelled 0	42	•	12-24 times	1-4 times	52+ times	1-4 times	52+ time

Figure 12. Partial Listing of the Bowling Alone Data

Notice that I opted to use the long names, which are very descriptive. However, these long names have a common phrase "(freq last 12 months)" repeated that will distort the compactness of the results (see Figure 12). It is easy to change them. I select all 104 variables for these frequency value and bring up the Search dialog to change them, clicking 'Replace All'. While all these columns are still highlighted, I can click the analysis type and change them to Ordinal so that their values will be charted with an ordinal theme. Also I check the column properties to verify the value labels from SPSS (see Figure 13).


Figure 13. Search Dialog (left), Change Modeling Type (middle), Assign Value Labels (right).


Now I invoke the Categorical platform and click Separate Responses for the selected 104 columns, and then Year of Survey for my X grouping column.

Select Columns	Response Roles		Acti			
Affyear of survey affyear affyear	Separate Responses Aligned Responses Repeated Measures Rater Agreement Multiple Response Multiple Response by ID Multiple Delimited Indicator Group Response Frequencies					
-IWent camping	Cast Selected Columns into Roles					
allSent a greeting card in h_versary, birthday, etc.) rouping Option Combinations Unique occurrences within ID (Christmas, Mother's Day	holiday	Year of survey lional				
(Christmas, Mother's Day		tional numeric				
	Freq	tional numeric				
	ID 00	tional				

Figure 14. Categorical Analysis Launch Dialog

The default report is to show the frequency tables and response rate tables. To make the result more compact, I can uncheck the Frequencies and Share of Responses and Legend to get only the Share Charts, as shown by the right-hand charts in Figure 15. On the right, you see the change over time in two of the variables, riding a bicycle and reading a whole book. There are 102 more like this.

Figure 15. Frequency Table and Share Charts from Categorical Platform

Now I want to see how the response 'Finished reading a book' breaks down by region, sex, and educational level. To find these columns among the 389 columns in the table, I use the new search control in the column selection list. Then I select 'Each Individually' to get a separate breakdown for each of the three X variables.

ategorical responses in different situations			
elect Columns	Response Roles		Action
level of educ	Separate Responses		ОК
Level of education completed	Aligned Responses Separate	e Responses(Finished reading a bc	Cancel
	Repeated Measures		
	Rater Agreement		Remove
	Multiple Response	Recall	
	Multiple Response by ID		Help
	Multiple Delimited		Theip
	Indicator Group		
	Response Frequencies		
	Cast Selected Columns into Roles		
	L Sex of r	of interview espondent completed	
ouping Option Each Individually (h.	optional		
Unique occurre Combinations	Sample Size optional n	umeric	
Both	Freq optional n	umeric	
	ID optional		
	By optional		
	For multiple Grouping Columns, c	hoose Grouping	
	option		

Figure 16. Categorical Launch Window Specifying Grouping Variables and Grouping Option

To the resulting analysis, I make similar option selections to get just the charts, and now I see which regions, which genders, and which educational levels are associated with more frequent reading (Figure 17).

Finished read			
Share Chart			
Region of			
interview	Finished reading a book	Response	
New England		464	
Mid Atlantic		1336	
E North Central		1563	0
W North Central		679	1
S Atlantic		1403	
E South Central		533	
W South Centra	al second se	832	9
Mountain		451	
Pacific		1128	6
-All-		8392	6
Finished read	ing a book By Sex of respondent		
Share Chart			
Share Chart	t		
Sex of			
Sex of respondent Fir	nished reading a book	Responses	
Sex of respondent Fir Male		38323	
Sex of respondent Fir Male Female		38323 45603	
Sex of respondent Fir Male		38323	
Sex of respondent Fir Male Female -All-		38323 45603 83926	
Sex of respondent Fir Male Female -All-	nished reading a book	38323 45603 83926	
Sex of respondent Fir Male Female -All- Finished read	nished reading a book	38323 45603 83926	
Sex of respondent Fir Male Female -All- Finished read	nished reading a book	38323 45603 83926	1565
Sex of respondent Fir Male Female -All- Finished read Share Chart Level of educat	ing a book By Level of education	38323 45603 83926 completed	15es 2726
Sex of respondent Fir Male Female -All- Finished read Share Chart Level of educat completed	ing a book By Level of education	38323 45603 83926 completed	
Sex of respondent Fin Male Female -All- Finished read Share Chart Level of educat completed Elem School	nished reading a book	38323 45603 83926 completed	2726
Sex of respondent Fir Male Female -All- Finished read Share Chart Level of educat completed Elem School Att High School	nished reading a book	38323 45603 83926 completed Respon	2726 5719
Sex of respondent Fir Male Female -All- Finished read Share Chart Level of educat completed Elem School Att High School Grad High Scho	nished reading a book	38323 45603 s3926 completed	2726 5719 9302
Sex of respondent Fir Male Female -All- Share Chart Level of educati Completed Elem School Att High School Grad High School Att College	ing a book By Level of education ing a book By Level of education ing a book By Level of education ing a book By Level of education	39323 45603 83926 completed	2726 5719 9302 2284

Figure 17. Share Charts from Categorical Analysis Results

EXCEL MODELING

When you estimate models in JMP, the Profiler is a great way to explore the response surface. But what if your model is a set of business calculations in an Excel spreadsheet? Moving all those calculations to JMP data table formulas is too laborious to be practical in most cases. With JMP 9, you can profile a model that is still in Excel. Here is a financial model for the Airbus 380 in Excel. Note that additional command items have been added for JMP. With the 'Edit/New Model' button, I can specify which cells are dependent responses, and which cells correspond to inputs that I want to profile against (Figure 18).

) - (* -			Ŷ					Airbus Mod	del.xlsx - Micro	osoft Excel				
ie	Home	Insert	Page Layout	Formulas	Data	Review	View	Developer	JMP	SAS Team	n				
5		it.dua													
/	JMP	110 111													
ence		Graph Distrib													
		Builder	Mod												
		er to JMP		ile in JMP											
	L12	• (*		9+(L10*L11											
Α	BC	DE	F	G	Н	1	J	K	L	M	N	0	P		
			<u> </u>	/aluatio	n Analy	<u>sis for</u>	<u>the Air</u>	bus A3	<u>380</u>						
		The yellow cell			s) into the c	discounted	cash flow (DCF) mod	el. The blu	e cells are					
	are	the results (or	utput) from th	e model.											
	K	sumptions as	- 6 2000				D'	D-4- A	mptions (
	Key As	Price per Pl		in millions				k-free Rate			Treasury yield	(* 0)		- Define Model	
		Number of Pla		In minions	•			Asset Beta		To-year 03	rreasury yield	(p. 0)		Er Delille Model	
		Operating Ma		-				k Premium						Model: ArBus	v + -
		Operating wa	Igin 23.070	_				count Rate	_	- K MA	CC if all equit				
	C	al Assumption	6 2000				Dist		12.076	- NE - 11/0	cc ii ali equit	'		Inputs	
	Genera		ate 2.0%				Dogulto fr	om the M	odel					Price Per Plane	Input Name: Choose Price Per Plane
			ate 2.0%	-			Results II		\$4.259					Number of Planes	Input Name: Choose Price Per Plane
		Tax	30.070	-			Δfter	-tax IRR =						Operating Margin Capital Expenditures	Cell: Choose F9
	Require	ed Investmen	t as of 2000	(smillions)				-tax IRR =						Working Capital	
		ch & Developm					# planes so							Risk-free Rate Risk Premium	Initial Value: 3
		pital Expenditu					Constraint			Max = 48 p	lanes/vear			hisk Fremium	Minimum Value: 2
		Working Car									,				Maximum Value: 3
														1	Maximum Value: 3
														+ -	Apply
				2001	2002	2003	2004	2005	2006	2007	2008	2009		1 <u>+</u> -	
		ed Investmen													
		search & Deve		\$1,100							\$440	\$0		Outputs	
		pital Expenditu	re	\$0				\$50			\$0	\$0		After-tax IRR	Output Name: Choose After-tax IBB
	Wo	orking Capital		\$0				\$200			\$0	\$0		# planes sold by 2019 Net Present Value	Output Name: Choose After-tax IRR
	c			\$1,100	\$2,600	\$2,850	\$2,850	\$1,570	\$930	\$660	\$440	\$0		THOSE I READER VOIDE	Cell: Choose L16
		ative Investm search and Dv		\$1,100	\$3,300	\$5,500	\$7,700	\$9,020	\$9,900	\$10,560	\$11,000	\$11,000			
		search and Dvi pital Expenditu		\$1,100	\$3,300	\$5,500	\$7,700	\$9,020	\$9,900	\$10,560	\$11,000	\$11,000 \$1,000			
		pital Experiditu orking Capital	162	\$0 \$0	\$250	\$450		\$950		\$1,000	\$1,000	\$1,000			
		onning capital		30	\$150	3450	3750	2320	\$1,000	31,000	\$1,000	\$1,000			
	Cash F	lows (b)													
		venue							\$3.460	\$10.615	\$14 400	\$14,688		+ -	Apply
		Number of Pl	anes						12		48	48			
		1P Copyright										14			OK Cancel

Figure 18. Excel Spreadsheet with Formulas and Define Model Dialog for JMP

When I click Run Model, it connects the model with JMP and JMP repeatedly has Excel re-evaluate the model under many different factors settings, resulting in the Profiler in Figure 19. You can drag the current values around to see how the other profile traces are affected. This gives you a great view of how changes in any variable would affect all the responses.

You can even bring up a simulator to explore distributions of the responses with respect to random distributions in one or more factors.

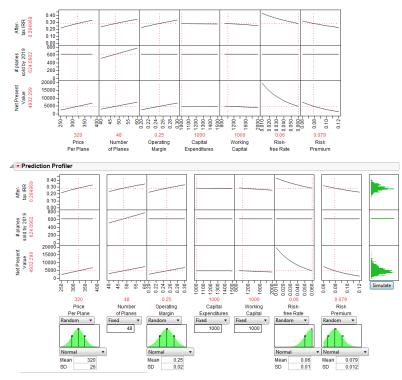


Figure 19. Profiler Display and Simulator Using Excel Formula

DATA MINING

In JMP Pro, Version 9, the Partition platform, which creates decision trees, includes new crossvalidation features—the splitting stops when the validation measures of fit stop improving the fit.

In addition, there are two new measures implemented. In bootstrap forest,

- a number of decision trees are built based on different bootstrap samples
- · candidate set columns are selected randomly

These features usually perform better than a straight decision tree. For example, lets use several methods to fit the Wisconsin breast cancer data from the UCI repository (Figure 20 and Figure 21).

٩			Clump	Cell Size	Cell Shape	Marginal	Single Epithelial		Bland	Normal		
h		ID	Thickness	Uniformity	Uniformity	Adhesion	Cell Size	Bare Nuclei	Chromatin	Nucleoli	Mitoses	Class
4	1	1000025	5	1	1	1	2	1	3	1	1	2
	2	1002945	5	4	4	5	7	10	3	2	1	2
•	3	1015425	3	1	1	1	2	2	3	1	1	2
•	4	1016277	6	8	8	1	3	4	3	7	1	2
	5	1017023	4	1	1	3	2	1	3	1	1	2
	6	1017122	8	10	10	8	7	10	9	7	1	4
	7	1018099	1	1	1	1	2	10	3	1	1	2
•	8	1018561	2	1	2	1	2	1	3	1	1	2
•	9	1033078	2	1	1	1	2	1	1	1	5	2
	10	1033078	4	2	1	1	2	1	2	1	1	2
	11	1035283	1	1	1	1	1	1	3	1	1	2
•	12	1036172	2	1	1	1	2	1	2	1	1	2
•	13	1041801	5	3	3	3	2	3	4	4	1	4
	14	1043999	1	1	1	1	2	3	3	1	1	2
•	15	1044572	8	7	5	10	7	9	5	5	4	4
	16	1047630	7	4	6	4	6	1	4	3	1	4

Figure 20. Partial Listing of Wisconsin Breast Cancer Data

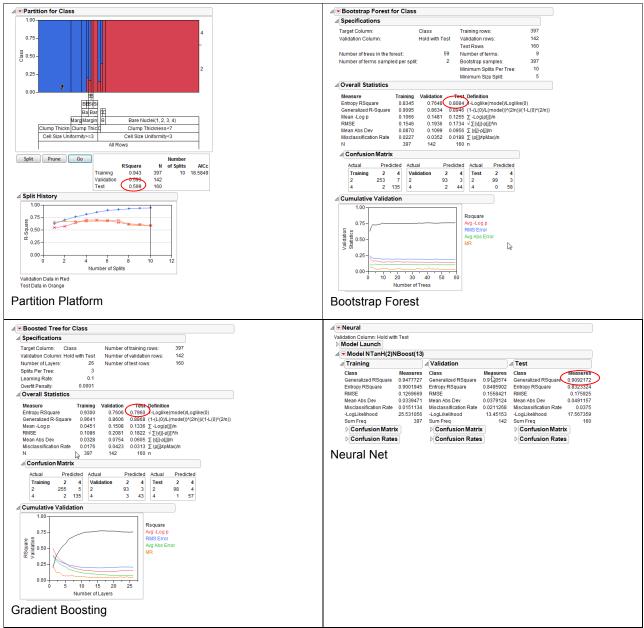


Figure 21. Several Methods of Wisconsin Breast Cancer Data

The best performing method differs for different data sets, and even for how you randomly choose the training, validation, and test sets, and differs each time due to randomness in the methods. But, usually Neural Net is the best and a single decision tree is the worst. Table 1 summarizes the fitting results as reflected by R Square values.

Method	Test RSquare (entropy)
Decision Tree	0.599
Bootstrap Forest	0.808
Gradient Boosting	0.796
New Neural Net	0.909

Table 1. Summary of Fitting Results

CONCLUSION

JMP 9 has many new features, and only a few of them are described in this paper. With renewed features in scripting, we expect JMP to be a good implementation language for many new applications. In addition to JMP's traditional user base of engineers and scientists, we expect other researchers and analysts to discover JMP, both as a standalone application, and as a front-end and explorer part of the SAS system.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

John Sall SAS Institute Inc. SAS Campus Drive Cary, NC 27513 (919) 677-8000 john.sall@jmp.com www.jmp.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.