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ABSTRACT  
In many SAS/STAT® modeling procedures, the CONTRAST and ESTIMATE statements enable a variety of custom 
hypothesis tests, but using these statements correctly is often challenging. The new LSMESTIMATE statement, 
available in ten procedures in SAS/STAT 9.22 software, greatly simplifies the use of these statements. The 
LSMESTIMATE statement enables you to side-step parameterization issues and to specify custom tests in terms of 
population quantities of direct interest (the LS-means). The LSMESTIMATE statement also implements a new 
nonpositional syntax for specifying contrasts. This paper discusses these new features and demonstrates them with 
examples from actual user questions to the Statistical Procedures group in SAS Technical Support. 

INTRODUCTION  
The strength of SAS/STAT software for linear models has always been its flexibility, in that it enables you to test what 
you need to. In the past, you might have used the CONTRAST, ESTIMATE, or LSMEANS statements to generate 
custom hypothesis tests as part of a post-fitting analysis. With the release of SAS/STAT® 9.22 software, the 
LSMESTIMATE statement has been added to ten procedures to simplify the task of specifying custom hypotheses. 
Also, additional functionality has been added to the CONTRAST and ESTIMATE statements for several procedures. 
This paper briefly discusses concepts and statements common to a post-fitting analysis. The paper showcases the 
LSMESTIMATE statement in particular; highlighting that statement’s enhanced functionality as well as its ease of 
use. 

INTRODUCTORY EXAMPLE 
Consider a medical experiment that evaluates the response to several treatment regimens. The objective of an 
experiment like this is often more specific than merely determining whether all of the treatments have the same effect 
on the response. You would not spend the time, money, and effort on the study if you thought that was likely! For 
example, you might be concerned with which of several new drugs works best, or you might be interested in how the 
efficacy of these drugs compares to the efficacy of a standard drug.  

Furthermore, in factorial experiments or any designed experiment, significant interactions might be viewed as a 
problem. Interactions, admittedly, complicate the interpretation of results.  

Another challenge is in translating custom tests for hypotheses, such as "The effect of treatment A in group 1 is equal 
to the treatment A effect in group 2," in terms of the model parameters. However, with the advent of SAS/STAT 9.22, 
these are problems of the past.  Many SAS procedures now offer a wealth of tools for easing post-fitting 
comparisons, especially in the presence of these significant interactions. 

Table 1 provides an overview of the post-fitting analysis capabilities that are available in eleven procedures in the 
SAS/STAT 9.22 software. In this table, a check mark () indicates that new statements have been added to the 
procedures. A star (*) indicates previously existing functionality. The combination of a star and a check mark (*) 
indicates that existing statements have been updated. 

               
Procedure 

CONTRAST 
Statement 

ESTIMATE 
Statement 

LSMEANS 
Statement 

LSMESTIMATE 
Statement 

GENMOD * * *  
GLM * * *  

GLIMMIX * * * * 
LOGISTIC *    

MIXED * * *  
continued 
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Procedure 

CONTRAST 
Statement 

ESTIMATE 
Statement 

LSMEANS 
Statement 

LSMESTIMATE 
Statement 

ORTHOREG     
PHREG *    

PLM     
SURVEYLOGISTIC *    

SURVEYPHREG     
SURVEYREG * *   

Table 1. Post-Fitting Statements That Are Available in Linear Modeling Procedures 

Both the CONTRAST and the ESTIMATE statements deal with custom general linear functions  of the model 
parameters . In older procedures, such as PROC GLM and PROC MIXED, you can specify and estimate only one 
such linear function, , with the ESTIMATE statement. In the CONTRAST statement, you can specify multiple 
functions; however, you can test only whether they are all simultaneously zero, 𝐻: 𝐾′𝜷=0.  In contrast (no pun 
intended), the newer implementation of the ESTIMATE statement in PROC LOGISTIC, PROC ORTHOREG, and 
other procedures covers both of these tasks. This implementation also augments the procedures with features for 
multiplicity adjustment, one-sided testing, graphics, and more. 

The LSMEANS statement computes and analyzes LS-means, which are certain particularly informative linear 
combinations of the fixed-effect parameter estimates. Each effect in the LSMEANS statement is computed as   for 
a certain column vector , where  is the vector of fixed-parameter estimates. In this sense, the LSMEANS statement 
covers a subset of the analyses that are provided by the ESTIMATE statement, but it is a very important subset. The 
LS-means essentially generalizes the notion of group averages as analytical tools for nonorthogonal, unbalanced 
data. If you collect data about men and women and you just want to know whether the means are different, you 
compare gender averages. However, if you want to know whether they are different, adjusting for age, height, hair 
color, and so on, you then compare gender LS-means. The LSMEANS statement has all of the same features as the 
ESTIMATE statement for multiplicity adjustment, specialized graphics, and so on. It also has additional capabilities 
for comparing the LS-means in various ways. 

Finally, the LSMESTIMATE statement essentially is a combination of the LSMEANS and ESTIMATE statements. This 
LSMESTIMATE statement gives you a way to obtain custom hypothesis tests that are defined not in terms of the 
fundamental model parameters , but in terms of the LS-means, which are defined as  in the preceding 
paragraph. Thus, the computation  for an LSMESTIMATE statement from the fundamental model parameters  
involves two coefficient matrices,  and . The  matrix defines the LS-means as functions of , and the  matrix 
defines the linear combinations of the LS-means that you are interested in. Once again, the LSMESTIMATE 
statement has the same additional analytical features as the ESTIMATE statement. It also has some features that are 
specific to LS-means. 

A new feature, nonpositional syntax, in the ESTIMATE and LSMESTIMATE statements defines, respectively, how 
linear combinations of parameters and linear combinations LS-means are specified. The CONTRAST and ESTIMATE 
statements in older procedures offered a syntax that relies on you knowing the position of each parameter in an 
ordered listing of them. This syntax uses zeros to skip over those positions that are irrelevant for a particular contrast 
of interest. This alternative, nonpositional syntax is more succinct and clearer for models with many parameters. 

USING CONTRAST OR ESTIMATE STATEMENTS 
How do the ESTIMATE, LSMEANS, and LSMESTIMATE statements and the new nonpositional syntax ease post-
fitting analysis? To answer this question, start by reviewing the following steps. These steps are important to follow 
when you write traditional CONTRAST or ESTIMATE statements in procedures such as GLM and MIXED: 

1. Define the statistical model for the data. 
2. Define the hypothesis of interest in terms of cell means. 
3. Redefine the hypothesis in terms of the model parameters. 
4. Compute the coefficients for the CONTRAST or the ESTIMATE statement. 

In order to use traditional CONTRAST and ESTIMATE statements with their "positional" syntax, you must also 
understand the parameterization and parameter ordering for your model. In order to define your statistical hypothesis 
properly and to relate that hypothesis to your SAS syntax, you need to understand this ordering, as explained in the 
following discussion. 
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Parameterization refers to the coding that is used to define the design variables that are generated by the CLASS 
statement. There are several coding schemes available in SAS; for example, glm (indicator or dummy) coding, effects 
(or deviation from mean) coding, and reference cell coding. The glm coding is the default coding for procedures such 
as the GENMOD, GLM, GLMSELECT, GLIMMIX, LIFEREG, MIXED, and SURVEYPHREG procedures. The effect 
coding is the default coding for the CATMOD, LOGISTIC, and SURVEYLOGISTIC procedures. The reference cell 
coding is the default coding for PHREG and TRANSREG procedures. Some procedures (for example, PROC 
LOGISTIC, PROC GENMOD, PROC GLMSELECT, PROC PHREG, PROC SURVEYLOGISTIC, and PROC 
SURVEYPHREG) allow different parameterizations of the CLASS variables. Note that many procedures (for 
example, PROC GLM, PROC MIXED, PROC GLIMMIX, and PROC LIFEREG) do not allow different 
parameterizations of CLASS variables. The examples in this paper are based on the glm coding of the CLASS 
variables. 

The parameter ordering typically depends on the order in which the variables are specified in the CLASS statement 
and also on the setting of the ORDER= option in the PROC or CLASS statement. It is also helpful to know the order 
of the parameters within effects that have multiple parameters (such as interactions or nested effects). Several 
methods are available for determining and confirming the parameter ordering. Those methods involve examining the 
Class Level Information table, the Parameter Estimates table, or the Least Squares Means table in the fitting 
procedure's displayed results. In addition, the E option in the CONTRAST, ESTIMATE, LSMEANS, or 
LSMESTIMATE statement is useful in confirming the ordering of parameters for specifying  vector of coefficients 
when you define custom hypothesis tests. 

The key to writing successful CONTRAST or ESTIMATE statements with the traditional positional syntax is to use the 
parameter multipliers as coefficients. You must also be careful to order the coefficients so that they match the order 
of the model parameters in the procedure, including the appropriate model parameters. 

In a CONTRAST or ESTIMATE statement, the syntax for testing whether the general linear combination  is equal 
to 0 is based on the way the parameters are assigned to the respective effects in the model parameters. The 
traditional way to define a linear combination of parameters to test a hypothesis is with positional syntax. In the 
positional syntax, you specify the name of each effect, followed by a list of coefficients for the parameters that 
correspond to the effect to be tested. The following data from Kutner (1974, p.98) illustrates a two-way ANOVA model 
and uses the ESTIMATE statement to perform additional custom hypothesis tests: 

title "Two-way ANOVA Model, Kutner (1974, p.98)"; 
data a; 
   input drug disease @; 
   do i=1 to 6; 
      input y @; 
      output; 
   end; 
   datalines; 
1 1 42 44 36 13 19 22 
1 2 33  . 26  . 33 21 
1 3 31 -3  . 25 25 24 
2 1 28  . 23 34 42 13 
2 2  . 34 33 31  . 36 
2 3  3 26 28 32  4 16 
3 1  .  .  1 29  . 19 
3 2  . 11  9  7  1 -6 
3 3 21  1  .  9  3  . 
4 1 24  .  9 22 -2 15 
4 2 27 12 12 -5 16 15 
4 3 22  7 25  5 12  . 
; 

proc glm data=a; 
   class drug disease; 
   model y=drug disease drug*disease; 
   lsmeans drug/pdiff; 
run; 

The previous PROC GLM code generates several hypothesis tests in the default output (not shown). For example, 
the ANOVA table shows the overall significance of the model, the TYPE III SS shows the test for each effect, and the 
PDIFF option in the LSMEANS statement shows the comparison of LS-means. 
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In addition, suppose that you want to test some custom hypothesis tests such as the following: 

• The average of drugs 1 and 2 is equal to the average of drugs 3 and 4. 
• The mean of drug 3 is zero. 
• The mean of drug 1 is the same as the mean of drug 2 for disease 2. 

For these tests, you can use the CONTRAST or the ESTIMATE statement. For example, you can add the following 
statements to the previous PROC GLM code to test the aforementioned hypotheses: 

estimate "Drug pair 1,2 vs drug pair 3,4" 
drug 1  1 -1 -1 /divisor=2; 

estimate "Drug 3 mean" 
intercept 1 drug 0  0  1  0; 

estimate "Drug 1 disease 2 vs drug 2 disease 2" 
drug 1 -1 drug*disease 0 1 0 0 -1; 

It is important to remember the following facts about using positional syntax in a CONTRAST or ESTIMATE 
statement to specify the  vector values: 

• In both the CONTRAST and the ESTIMATE statements, the coefficients of the specified main effect (drug) 
are equally distributed to the respective levels of the higher-ordered effect (drug*disease interaction).  For this 
example, suppose you specify the following ESTIMATE statement:  

estimate "drug 3 mean" intercept 1 drug 0 0 1 0; 

In this case, PROC GLM assumes that the coefficients for the drug*disease term are as follows: 

 0 0 0 0 0 0 0.333333 0.333333 0.3333333 0 0 0 

Therefore, this ESTIMATE statement is equivalent to this statement: 

estimate "drug 3 mean" 
intercept 1 drug 0 0 1 
drug*disease 0 0 0 

0 0 0 
0.333333 0.333333 0.3333333 
0 0 0; 

In addition, if the intercept is specified, it is distributed over all classification effects that are not contained by 
any other specified effect. If an effect is not specified and it does not contain any specified effects, then all of 
its coefficients in  are set to 0. You can override this behavior by specifying coefficients for the higher-order 
effect. 

• Trailing zeros are not necessary. However, leading zeros and intermittent zeros are necessary placeholders 
that cannot be omitted. 

• If too many values are specified for an effect, the extra ones are ignored. If too few are specified, the 
remaining ones are set to 0. 

• It is good practice to use the E option in either the CONTRAST or the ESTIMATE statement in order to do the 
following: 
o examine the coefficients that are assigned to each of the effects and levels 
o verify the defined hypothesis that is being tested 

USING THE LSMESTIMATE STATEMENT 
As mentioned before, the LSMESTIMATE statement is essentially a combination of the LSMEANS and ESTIMATE 
statements. The syntax for the LSMESTIMATE statement is defined as follows: 

LSMESTIMATE fixed-effect <'label'> values <divisor=>  
                 <, <'label'> values <divisor=>> <, ...> 

         < / options> ; 

This syntax follows the same general form as that of the ESTIMATE statement except that it pertains to a single fixed 
effect rather than to the coefficients for all the effects in the model. You name this fixed effect first, before naming the 
(optional) label. You must do this first because, although multiple rows are allowed, they all pertain to combinations of 
the LS-means of the same effect. The coefficients are defined in terms of the LS-means of the specified fixed effect 
rather than directly in terms of the model parameters. 
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For example, you can write the ESTIMATE statements for the two-way ANOVA model in the previous section by 
using the following three LSMESTIMATE statements in the appropriate procedure from Table 1. 

lsmestimate drug "drug pair 1,2 vs drug pair 3,4"  1 1 -1 -1 /divisor=2; 

lsmestimate drug "drug 3 mean"  0 0 1 ; 

lsmestimate drug*disease "drug 1 disease 2 vs drug 2 disease 2" 0 1 0 0 -1; 

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among LS-means. As 
compared to the LSMEANS statement, the LSMESTIMATE statement does not (automatically) produce the LS-
means or their differences. However, you can use the statement to estimate any linear function of the LS-means. 

The LSMESTIMATE statement was first made available in PROC GLIMMIX in SAS 9.1.3. In SAS/STAT 9.22 
software, this statement is enhanced with additional functionality for multiple-comparison adjustments. Moreover, this 
statement is now available in the additional ten procedures shown (along with PROC GLIMMIX) in Table 1. 

SELECTED FEATURES OF THE LSMESTIMATE STATEMENT 
Similar to the ESTIMATE statement, the LSMESTIMATE statement also supports the following features: 

• nonpositional syntax 
• multiple row tests and multiple-comparison adjustments 
• ODS graphics  
• TESTVALUE=, EXP, and ILINK options 

NONPOSITIONAL SYNTAX 
The nonpositional syntax that is available in the new ESTIMATE and LSMESTIMATE statements enables you to do 
the following: 

• ignore the underlying ordering of parameters 
• define directly only the nonzero coefficients that are involved in your hypothesis test  

You can use either traditional positional or the new nonpositional syntax in the LSMESTIMATE statement, and you 
can even mix and match within the same statement. The following two LSMESTIMATE statements contrast using the 
positional and nonpositional syntax to specify the comparison for testing the difference of Drug A versus Drug B in a 
one-way ANOVA model: 

lsmestimate drug "Drug: A vs. B" 1 -1;           /* Positional     */ 

lsmestimate drug "Drug: A vs. B" [1, 1] [-1, 2]; /* Nonpositional  */ 

Each bracketed term in the nonpositional syntax defines a coefficient of , where the first argument in brackets 
defines the coefficient and the second argument defines the level of the effect. If the effect involves continuous 
variables, then the values of continuous variables needed for the construction of  must precede the level indicators 
of the CLASS variables. The ESTIMATE and LSMESTIMATE statements support both the positional and 
nonpositional syntax. You can combine the traditional positional syntax with the nonpositional syntax for different 
effects in the same statement. 

The following three LSMESTIMATE statements use nonpositional syntax. Using the appropriate procedure from 
Table 1, compare these statements with the three previously shown ESTIMATE statements that use the traditional 
positional syntax for the two-way ANOVA model: 

   lsmestimate drug "drug pair 1,2 vs drug pair 3,4" 
               [ 1,1] [ 1,2] 
               [-1,3] [-1,4] / divisor=2; 

   lsmestimate drug "drug 3 mean" 
               [ 1,3]; 

   lsmestimate drug*disease "drug 1 disease 2 vs drug 2 disease 2" 
[ 1,1 2] 
[-1,2 2]; 

In these LSMESTIMATE statements, the first value (typically, 1 or -1) is the coefficient, and the values after the 
comma are the levels of the specified effect. In nonpositional syntax, you do not need to have zeros to occupy 
positions as you do in the positional syntax; this difference makes using the new nonpositional syntax more intuitive. 

Statistics and Data AnalysisSAS Global Forum 2011

 
 



6 

MULTIPLE ROW TESTS FOR JOINT HYPOTHESES AND ADJUSTMENTS FOR MULTIPLE 
COMPARISONS 
If you have more than one LS-means hypothesis to test, you can control the overall error using one of two methods. 
One method is to test all the hypotheses jointly, enabling you to say whether it is likely that they are all simultaneously 
null. As with an overall ANOVA F test, a significant result in this case tells you that something is going on, but it does 
not say what. Multiplicity adjustments, in addition to jointly testing the hypothesis, provide another way to control the 
overall error. The new ESTIMATE and LSMESTIMATE statements support multiple row tests with multiplicity 
adjustments (the ADJUST= option) and joint tests (the JOINT or FTEST option). Multiple comparisons and multiplicity 
adjustments, with many examples of LSMEANS, LSMESTIMATE, and ESTMATE statements, are covered in the 
forthcoming second edition of the book by Westfall et al. (Note: The anticipated publication date for this book is 
summer 2011.) 

To see the joint-test capacity of the LSMESTIMATE statement in action, consider one-way data on the yield of an 
industrial process when the machine is operated by each of nine different people. 

data Quality; 
   do Operator=1 to 9; 
      do i=1 to 4; input Yield @@; output; end; 
      end; 
datalines; 
 5.8  3.9  4.4  2.9 
 6.2  3.4  4.5  3.9 
 3.4  4.0  3.3  3.7 
 6.7  5.2  5.3  5.2 
 6.3  5.7  4.7  6.4 
10.3 10.4  8.6 10.6 
 7.9  8.1 10.0  9.4 
 8.9 10.2  8.4  8.4 
 8.7  8.9 10.0  7.8 
; 

You expect to see a significant difference between operators, because you think the first three operators all do things 
the same way, as do the next two, as do the last four. You can test for this type of discovered nesting by using two 
LSMESTIMATE statements similar to the following: 

proc orthoreg data=Quality; 
   class Operator; 
   model Yield = Operator; 
   lsmestimate Operator "Clustered operators" 

[1,1] [-1,2], [1,1] [-1,3], 
[1,4] [-1,5], 
[1,6] [-1,7], [1,6] [-1,8], [1,6] [-1,9] / joint; 

   lsmestimate Operator "Different clusters" 
[4,1] [4,2] [4,3] [-6,4] [-6,5], 
[4,1] [4,2] [4,3] [-3,6] [-3,7] [-3,8] [-3,9] / joint; 

   ods select Contrasts; 
run; 

The F test is indeed significant. The LSMESTIMATE statement for the clustered operators tests for differences within 
the three hypothesized clusters; the associated p-value is > 0.4. This value indicates that there are no significant 
differences within operator clusters. On the other hand, the p-value for the different clusters, which corresponds to 
differences between the three cluster averages, is highly significant. 

ODS GRAPHICS 
The LSMEANS statement includes the use of full-featured SAS ODS Graphics for depicting LS-means and their 
differences.  ODS Graphics is also supported in both the LSMESTIMATE statement and the new ESTIMATE 
statement, for the two procedures (PROC GENMOD and PROC PHREG) that can perform Bayesian analysis. The 
plots are available from these procedures directly and also from the PLM procedure when you use an item store that 
is created by these procedures. 
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TESTVALUE=, EXP, AND ILINK OPTIONS 
Most linear tests involve hypotheses of no difference, meaning that you are testing whether some linear function of 
the parameters or LS-means is zero. However, sometimes you need to test a quantity against a prespecified nonzero  

value. For example, to test the hypothesis that the difference between the first two LS-means is 50, you can use the 
TESTVALUE= option as shown in this example: 

lsmestimate A "A1 - A2"  1 -1/ testvalue=50; 

For nonnormal data, the EXP and ILINK options give you a way to obtain the quantity of interest on the scale of the 
mean (inverse link).  Results presented in this fashion can be much easier to interpret than data on the link scale. For 
example, the following LOGISTIC procedure returns the odds ratio and log odds ratio for comparing A1 to A2: 

proc logistic; 
class A/param=glm; 
model y=A / link=logit;    
lsmestimate A "odds ratio: A1/A2" 1 -1/ exp;  

run; 

In summary, the syntax in an LSMESTIMATE statement is simpler than that in the corresponding ESTIMATE 
statement. You can simplify multiple-comparison methods by using the LSMESTIMATE statement when the 
comparisons involve a single factor. If the comparison includes more than one factor, there is no inherent advantage 
to using the LSMESTIMATE statement. However, it can be useful to use the statement initially with the E option in 
order to make sure that the ESTIMATE statement is correct. 

EXAMPLES USING THE LSMESTIMATE STATEMENT  
The following examples illustrate different ways you can use the LSMESTIMATE statement to simplify the coding of 
custom hypothesis tests. With simpler models, the savings that are realized through the use of the LSMESTIMATE 
statement might not be that great. With more complicated models, however, this new statement can greatly shorten 
the length of the statement needed to represent the hypothesis and lessen the chances of coding the hypothesis 
incorrectly. 

EXAMPLE 1: SPLIT-PLOT DESIGN WITH CUSTOM HYPOTHESIS TEST USING THE MIXED 
PROCEDURE 
This example represents a balanced split-plot design.  A custom hypothesis of interest in this experiment concerns
whether the average of the first two levels of A is equal to a quarter of the third level. This hypothesis can be 
expressed as follows: 

  (or, equivalently: ) 

The data and the initial analysis, without the custom test, follow: 

data sp; 
input Block A B Y @@; 
datalines; 

1 1 1  56  1 1 2  41 
1 2 1  50  1 2 2  36 
1 3 1  39  1 3 2  35 
2 1 1  30  2 1 2  25 
2 2 1  36  2 2 2  28 
2 3 1  33  2 3 2  30 
3 1 1  32  3 1 2  24 
3 2 1  31  3 2 2  27 
3 3 1  15  3 3 2  19 
4 1 1 30 4 1 2 25 
4 2 1 35 4 2 2 30 
4 3 1 17 4 3 2 18 
; 

proc mixed data=sp; 
   class A B Block; 
   model Y = A B A*B; 
   random intercept A / subject=Block; 
   lsmeans A; 
run; 
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The results from the LSMEANS statement from the PROC MIXED program show the following: 
 

 

 

 

 

 

 

The estimated difference that you are interested in testing is 32.875 + 34.125 - 0.5(25.570)=54.125. However, you 
cannot easily calculate the standard error and, therefore, the significance of this estimated difference, because of 
correlation between the LS-means. 

A naïve first attempt to use an ESTIMATE statement to test this hypothesis test might be as follows: 

estimate "A1 + A2 vs  0.5A3"  a 1 1 -0.5/E; 

However, this statement returns a nonestimable result because this hypothesis also should include a term for the 
intercept when the test is expressed in terms of the model parameters. If you express this test in terms of the 
LSMEANs by using the LSMESTIMATE statement, then this syntax yields a valid result for this test.  This next 
LSMESTIMATE statement uses both the positional and nonpositional syntax: 

lsmestimate A "positional A1 + A2 vs 0.5A3"  1 1 -0.5, 
"nonpositional A1 + A2 vs 0.5A3" 
[1, 1] [1,2] [-0.5,3]; 

This statement generates the following results: 

Least Squares Means Estimates 

Effect 
Label Estimate 

Standard 
Error DF t Value Pr > |t| 

A positional A1 + A2 vs 0.5A3 54.1250 6.8105 6 7.95 0.0002 

A nonpositional A1 + A2 vs 0.5A3 54.1250 6.8105 6 7.95 0.0002 

As expected, the two versions of the test that use the different syntax yield the same result. 

Adding the E option to the LSMESTIMATE statement shows the coefficients that are necessary to generate this test 
result with the ESTIMATE statement. 

EXAMPLE 2: THREE-WAY FACTORIAL DESIGN WITH SIGNIFICANT INTERACTIONS 
The following example demonstrates a three-way factorial design with significant interaction effects. It also provides 
guidance on how to proceed with some comparisons of interest. The objective of this study is to determine the effect 
of three training programs on exercise tolerance, measured as minutes until fatigue, in running a marathon.  There 
are three factors in the study: the gender of the study participant, the training program that is followed, and the terrain 
type that is used under the training program. 

In general, a full-factorial model with three factors includes the three main effects, all two-way interactions of the main 
effects, and the three-way interaction of the three main effects.  All of these effects can make for a lengthy model, 
one that can be especially difficult to work with in postprocessing and creating custom hypothesis tests. 

The data for this example is simulated using the following DATA step: 

data test; 
call streaminit(6123451); 
do gender = 1 to 2; 

do program =1 to 3; 
do terrain = 1 to 3; 

do rep=1 to ceil(rand('uniform')*3)+3; 
y=165 + 3*gender + program - terrain  

+ gender*program - gender*terrain  
 

Least Squares Means 

Effect 
A Estimate 

Standard 
Error DF t Value Pr > |t| 

A 1 32.8750 4.5403 6 7.24 0.0004 

A 2 34.1250 4.5403 6 7.52 0.0003 

A 3 25.7500 4.5403 6 5.67 0.0013 
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+ program*terrain - 2*gender*program*terrain  
+ rand('normal'); 

output; 
end; 

end; 
end; 

end; 
run; 

The simulation code creates data with two levels for gender, three levels for program, and three levels for terrain 
type. You can use the following code to estimate the full-factorial model: 

proc mixed data=test namelen=25; 
class gender program terrain; 
model y=gender|program|terrain;  

run; 

The results from the MODEL statement show in this procedure are as follows: 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

gender 1 75 427.69 <.0001 

program 2 75 62.57 <.0001 

gender*program 2 75 42.48 <.0001 

terrain 2 75 963.72 <.0001 

gender*terrain 2 75 144.30 <.0001 

program*terrain 4 75 32.88 <.0001 

gender*program*
terrain 

4 75 5.25 0.0009 

Running this full-factorial model produces results that are significant for all of the effects in the model (not a surprise, 
considering that the data are simulated that way).  A hypothesis of interest to the study is to compare gender results 
across levels of the exercise program. One specific case of interest is to compare the results across the genders for 
the first level of the training program and the first terrain type. A CONTRAST statement for that comparison requires 
coefficients on the main effects and two-way interactions, as well as on the three-way interaction effect: 

contrast "diff GPT111 - GPT211" 
gender 1 -1  
gender*program 1 0 0 -1 0 0 
gender*terrain 1 0 0 -1 0 0  
gender*program*terrain 1 0 0 0 0 0 0 0 0 -1;  

The results from the CONTRAST statement in the MIXED procedure are as follows: 

Contrasts 
Label Num 

DF 
Den 
DF F Value Pr > F 

diff GPT111 - GPT211 1 75 2.04 0.1578 
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If you re-express this test as a function of only the LS-means, then you only need coefficients for the comparisons of 
the LS-means. You do not need to determine the coefficients for the lower-ordered interaction terms as well. The 
LSMESTIMATE statement for this hypothesis test, using both the positional and nonpositional syntax, is as follows: 

lsmestimate gender*program*terrain 
"Positional     GPT111 - GPT211" 1 0 0 0 0 0 0 0 0 -1, 
"Nonpositional GPT111 - GPT211" [1, 1 1 1] [-1, 2 1 1];  

With the need for all of the place-holding zeros, the placement of the coefficients for the LS-means in the positional 
syntax can be difficult. The nonpositional syntax removes that difficulty, and the compactness of the syntax makes 
the statement much easier to interpret and work with. 

The following table shows the results of this LSMESTIMATE statement: 

Least Squares Means Estimates 

Effect 
Label Estimate 

Standard 
Error DF t Value Pr > |t| 

gender*program*terrain Positional     GPT111 - GPT211 -0.9832 0.6891 75 -1.43 0.1578 

gender*program*terrain Nonpositional GPT111 - GPT211 -0.9832 0.6891 75 -1.43 0.1578 

Both sets of results from the CONTRAST and LSMESTIMATE statements in this example indicate that there is no 
significant difference between gender for the first level of the training program and the first terrain type. 

EXAMPLE 3: USING THE SLICE OPTION AND THE SLICE STATEMENT FOR MULTIPLE 
COMPARISONS 
Typically, when the values of your response depend on multiple classification factors jointly, you look for simpler 
models that explain that joint behavior. One familiar way of doing this is to model main effects and interactions of 
various orders, hoping to find that higher-order interactions are all insignificant. Another way is exemplified by the 
contrast that is illustrated in the previous example. That case looks for differences due to one factor (Gender) while 
holding other factors (Program and Terrain) fixed.  In effect, that example sliced the three-way 
Gender*Program*Terrain interaction by Program and Terrain, considering only the Gender differences within one 
slice. Another term for the sliced Gender differences is the simple effects of Gender (Winer 1971). 

To perform this analysis easily, use the SLICE= option in the LSMEANS statement or the new SLICE statement that 
is available in some procedures. For example, with the previous data and model, consider the following statement: 

lsmeans gender*program*terrain / slice=program*terrain; 

This statement results in 36 three-way LS-means as well as a table of nine Gender tests, one for each combination of 
Program and Terrain: 

Tests of Effect Slices 

Effect 
program terrain 

Num 
DF 

Den 
DF F Value Pr > F 

gender*program*terrain 1 1 1 75 2.04 0.1578 

gender*program*terrain 1 2 1 75 13.21 0.0005 

gender*program*terrain 1 3 1 75 68.07 <.0001 

gender*program*terrain 2 1 1 75 0.44 0.5077 

gender*program*terrain 2 2 1 75 40.18 <.0001 

gender*program*terrain 2 3 1 75 192.70 <.0001 

                                                                                                                                             continued 
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Tests of Effect Slices 

Effect 
program terrain 

Num 
DF 

Den 
DF F Value Pr > F 

gender*program*terrain 3 1 1 75 2.24 0.1387 

gender*program*terrain 3 2 1 75 129.16 <.0001 

gender*program*terrain 3 3 1 75 378.51 <.0001 

The p-value in the first row (0.1578) matches the one from the LSMESTIMATE statement in the previous example. 
The p-value in the second row (0.0005) indicates that there is a significant difference between gender for the first 
level of the training program and the second terrain type. 

EXAMPLE 4: REPEATED-MEASURES DESIGN WITH ADJUSTED COMPARISONS OF THE SIMPLE 
EFFECTS WITHIN A SLICE 
Several procedures in SAS/STAT 9.22 software offer the SLICEDIFF= and ADJUST= options for producing the 
adjusted comparisons of the simple effects within a slice. (In order to perform a similar analysis in previous releases, 
you had to save all comparisons to a SAS data set, retain only those comparisons of interest in a subsequent DATA 
step, and then use the MULTTEST procedure to obtain the comparisons.) 
The following example illustrates how you can use the SLICEDIFF= and ADJUST= options together. First, simulate 
some data to work with. The following DATA step simulates data from an experiment on 20 subjects (ID). Suppose 
that the subjects were exposed to one of three treatments (TRT) and observed over two time (TIME) points: 

data test;  
   call streaminit(1451345); 
   do id=1 to 20; 
      rid=rand('normal'); 
      trt=ceil(rand('uniform')*3);  
      do time=1 to 2;  
         y=trt + trt*time + rand('normal') + rid; 
      output; 
   end; end; 
run;  

You can analyze this data using the following MIXED procedure: 
proc mixed data=test;  
   class id trt time;  
   model y=trt time trt*time;  
   repeated time / subject=id(trt) type=cs;  
run; 

The results from this MIXED procedure show the following: 

Type 3 Tests of Fixed Effects 

 Effect Num DF Den DF F Value Pr > F 

trt 2 17 56.45 <.0001 

time 1 17 26.15 <.0001 

trt*time 2 17 6.75 0.0070 
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Given that the TRT*TIME interaction is significant, you might want to explore differences in the levels of that 
interaction using the LSMEANS statement. Specifically, you can explore treatment differences at each of the two time 
points by adding the LSMEANS statement with the SLICE= option.  

proc mixed data=test; 
class id trt time; 
model y=trt time trt*time;  
repeated time / subject=id(trt) type=cs; 
 
lsmeans trt*time / slice=time; 
ods select slices; 

run; 

The result from the LSMEANS statement with the SLICE= option in this procedure shows the following: 

Tests of Effect Slices 

Effect time 
Num 
DF 

Den 
DF F Value Pr > F 

trt*time 1 2 17 23.35 <.0001 

trt*time 2 2 17 54.26 <.0001 

The result of the SLICE= option gives you two F tests for treatment differences, at time point 1 and time point 2.  
Since these F tests are both significant, the next logical step is to explore the pairwise differences of the treatments 
within each of the time points. To do this in PROC MIXED, you need to write ESTIMATE or LSMESTIMATE 
statements. However, PROC GLIMMIX, which can also fit this model, has a newer form of the LSMEANS statement 
that makes this task easier. 

The new SLICEDIFF= option can take the place of several LSMESTIMATE statements, as shown in this example: 

proc glimmix data=test; 
class id trt time;  
model y = trt time trt*time; 
random time / subject=id(trt) type=cs rside; 
lsmeans trt*time/slice=time slicediff=time adjust=bon; 
ods select slicediffs; 

run; 

The LSMEANS statement here gives you Bonferroni-adjusted comparisons of the levels of TRT within each level of 
TIME. The SLICEDIFF= option requests simple effects differences. In this case, you get all pairwise TRT differences. 
However, if comparisons with a control are of interest, you can use the SLICEDIFFTYPE= option to specify which 
levels of the effects are the controls. The ODS graphic DIFFPLOT, available in the LSMEANS statement through the 
PLOT=DIFF option, is useful in interpreting these differences. 

The following results from the SLICEDIFF= option in the LSMEANS statement from the PROC GLIMMIX program 
shows the pairwise comparisons among TRT for each level of TIME. It also provides adjusted p-values for multiple 
comparisons. 

Simple Effect Comparisons of trt*time Least Squares Means by time 

Simple 
Effect 
Level trt _trt Estimate 

Standard 
Error DF t Value Pr > |t| Adj P 

time 1 1 2 -0.7087 0.6569 17 -1.08 0.2957 0.8872 
time 1 1 3 -4.0820 0.6747 17 -6.05 <.0001 <.0001 
time 1 2 3 -3.3733 0.5964 17 -5.66 <.0001 <.0001 
time 2 1 2 -3.0236 0.6569 17 -4.60 0.0003 0.0008 
time 2 1 3 -6.9096 0.6747 17 -10.24 <.0001 <.0001 
time 2 2 3 -3.8860 0.5964 17 -6.52 <.0001 <.0001 

The first row of the table indicates that at Time 1, Trt 1 is 0.7087 below Trt 2 in terms of the mean of y. This difference 
is clearly not significant with the adjusted p-value that is equal to 0.8872. 
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EXAMPLE 5: MULTIPLE COMPARISONS FOR A NONPARAMETRIC MODEL 
To explore new possibilities for multiple comparisons for a nonparametric model, a graduate student in agronomy 
decides to conduct an experiment to verify the amount of fertilizer that affects various species’ growth rates. In this 
experiment, there are different nonlinear relationships and different forms of the relationship, not just different 
parameters, across the species. 
This experiment is conducted using different amounts of fertilizer on each of 100 plants of different species and 
recording the size of their flowers. The following data set and code demonstrates the statistical analysis that is 
conducted by the graduate student. This code is similar to the methods described in Tobias and Cai (2010). This 
example uses the new EFFECT statement in PROC ORTHOREG in conjunction with the plotting and advanced 
multiple-comparison methods to determine the precise region of interest for a complicated nonparametric model. 

ods graphics on; 

data Flowers; 
input Species Size @@; 
Fertilizer = _n_; 
datalines; 

1 -.020  1 0.199  2 -1.36   1 -.026  2 -.397  1 0.065  2 -.861  1 0.251 
1 0.253  2 -.460  2 0.195  2 -.108  1 0.379  1 0.971  1 0.712  2 0.811 
2 0.574  2 0.755  1 0.316  2 0.961  2 1.088  2 0.607  2 0.959  1 0.653 
1 0.629  2 1.237  2 0.734  2 0.299  2 1.002  2 1.201  1 1.520  1 1.105 
1 1.329  1 1.580  2 1.098  1 1.613  2 1.052  2 1.108  2 1.257  2 2.005 
2 1.726  2 1.179  2 1.338  1 1.707  2 2.105  2 1.828  2 1.368  1 2.252 
1 1.984  2 1.867  1 2.771  1 2.052  2 1.522  2 2.200  1 2.562  1 2.517 
1 2.769  1 2.534  2 1.969  1 2.460  1 2.873  1 2.678  1 3.135  2 1.705 
1 2.893  1 3.023  1 3.050  2 2.273  2 2.549  1 2.836  2 2.375  2 1.841 
1 3.727  1 3.806  1 3.269  1 3.533  1 2.948  2 1.954  2 2.326  2 2.017 
1 3.744  2 2.431  2 2.040  1 3.995  2 1.996  2 2.028  2 2.321  2 2.479 
2 2.337  1 4.516  2 2.326  2 2.144  2 2.474  2 2.221  1 4.867  2 2.453 
1 5.253  2 3.024  2 2.403  1 5.498 
; 

title 'Flower Species Fertilizer Effects'; 

proc orthoreg data=Flowers; 
   class Species; 
   effect SmoothF=spline(Fertilizer); 
   model Size=Species|SmoothF; 
   effectplot / obs; 
   test Species|SmoothF; 
   store FlowerModel; 
run; 

The EFFECTPLOT statement prints the following summary plot of the data and the nonparametric fit: 
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The two curves are obviously different. This difference is corroborated by the significance of the SmoothF*Species 
effect in the table of Type 3 tests shown here: 

Type III Tests of Model Effects 

                                            
Effect Num DF 

Den 
DF F Value Pr > F 

Species 1 86 13.30 0.0005 
SmoothF 6 86 290.42 <.0001 

SmoothF*Species 6 86 30.47 <.0001 

However, there seems to be an interval of fertilizer amounts where the difference between the species’ growth rates 
is insignificant. The subsequent PROC PLM run (shown below), which estimates multiplicity-corrected species 
differences over a range of fertilizer amounts, focuses on this region. 

%macro GroupDiff; 
%do x=0 %to 75 %by 5; 

"Diff at Fertilizer=&x" Species 1 -1 Species*SmoothF [1,1 &x] [-1,2 &x], 
%end; 
"Diff at Fertilizer=80" Species 1 -1 Species*SmoothF [1,1 80] [-1,2 80] 

%mend; 

proc plm restore=FlowerModel; 
estimate %GroupDiff / adjust=simulate seed=1 stepdown; 
filter adjp > 0.05; 
ods select Estimates; 

run; 

This code results in the following table: 

Estimates 
Adjustment for Multiplicity: Holm-Simulated 

Label Estimate 
Standard 

Error DF t Value Pr > |t| Adj P 
Diff at Fertilizer=10 0.3778 0.1540 86 2.45 0.0162 0.0545 
Diff at Fertilizer=15 0.05822 0.1481 86 0.39 0.6952 0.9101 
Diff at Fertilizer=20 -0.02602 0.1243 86 -0.21 0.8346 0.9565 
Diff at Fertilizer=25 0.02014 0.1312 86 0.15 0.8783 0.9565 
Diff at Fertilizer=30 0.1023 0.1378 86 0.74 0.4600 0.7418 
Diff at Fertilizer=35 0.1924 0.1236 86 1.56 0.1231 0.2925 

The graduate student determines that the difference between the two species is insignificant when the fertilizer levels 
are between 10 and 35 units. Therefore, he concludes that as long as you use that moderate amount of the fertilizer, 
you can apparently ignore the difference between species. 

EXAMPLE 6: RUNNING WITH THE NEW PLM PROCEDURE 
As is evident in Example 4, with the lack of a SLICEDIFF= option in the MIXED procedure's LSMEANS statement, 
the march of progress in SAS/STAT software sometimes collides with the commitment that SAS has to upward 
compatibility. This progression surpasses older forms of some statements in more mature procedures. The PLM 
procedure, new in SAS/STAT 9.22 software, gives older procedures (for example PROC GLM and PROC MIXED) a 
new lease on life. PROC PLM enables you to run additional post-fitting analyses using the most up-to-date linear 
modeling facilities with the stored fitted model. The following procedures support the STORE statement and, 
therefore, they can take advantage of PROC PLM for post-fitting analysis  

• PROC GENMOD 
• PROC GLIMMIX 
• PROC GLM 
• PROC LOGISTIC 
• PROC MIXED 

 
 

Statistics and Data AnalysisSAS Global Forum 2011

 
 



15 

• PROC ORTHOREG 
• PROC PHREG 
• PROC SURVEYLOGISTIC 
• PROC SURVEYPHREG 
• PROC SURVEYREG.  

Note: See Tobias and Cai (2010) for more details. 

The following example uses PROC GLM to fit the model and store the results. Because the LSMESTIMATE 
statement is not available in PROC GLM, the example then uses the PLM procedure with the LSMESTIMATE 
statement. 

In this example, the data set contains the test scores on phonics for second graders in a few US school districts. The 
factors are Gender, School, and Semesters. Semesters specifies the number of semesters that the student has been 
in the school district at the time of measurements. 

data school2; 
input school :$10. reps @; 
do i=1 to reps; 

input gender $ semesters phonics3 @; 
output; 

end; 
datalines; 

Cottonwood 43        F 4 67 F 4 55 F 4  . 
F 4 41 F 6 38 F 6 49 F 6 51 F 6 51 F 6 55 F 6 62 F 6 40 
F 6 41 F 6 45 F 6 44 F 6 41 F 6 61 F 6 50 F 6 33 M 4 63 
M 4 56 M 4 41 M 4 32 M 6 47 M 6 52 M 6 10 M 6 47 M 6 55 
M 6 31 M 6 40 M 6 58 M 6 48 M 6 47 M 6 54 M 6  . M 6  . 
M 6 44 M 6 53 M 6 50 M 6 32 M 6 42 M 6 45 M 8 46 M 8 51 
Dogwood    49        F 4 50 
F 4 57 F 4 53 F 6 58 F 6 58 F 6 65 F 6 61 F 6 67 F 6 74 
F 6 39 F 6 64 F 6 68 F 6 70 F 6 67 F 6 36 F 6  . F 6 62 
F 6  . F 6 63 F 6 71 F 6 78 F 6 77 F 6 64 F 6 54 F 6 57 
F 8 30 M 4 63 M 4 54 M 4 52 M 4 71 M 6 45 M 6  0 M 6 35 
M 6 47 M 6 48 M 6  . M 6 57 M 6 39 M 6 52 M 6 42 M 6 42 
M 6 43 M 6 32 M 6 56 M 8 56 M 8 39 M 8  . M 8 61 M 8  0 
Maple      31 
F 4 53 F 6 64 F 6 25 F 6 45 F 6 76 F 6 64 F 6 52 
F 6 68 F 6 65 F 6 64 F 6 49 F 6 72 F 6 57 F 8 56 M 4  . 
M 4 18 M 6 53 M 6 60 M 6 65 M 6 60 M 6 59 M 6 59 M 6  . 
M 6 59 M 6 53 M 6 64 M 6 53 M 6 55 M 6 64 M 6 65 M 8 50 
Pine       67        F 4 65 F 4 38 F 4  . 
F 4 58 F 4  . F 4 61 F 4 54 F 6 69 F 6 64 F 6 68 F 6 41 
F 6 66 F 6 57 F 6 60 F 6 48 F 6 60 F 6 52 F 6 62 F 6 68 
F 6 58 F 6 69 F 6 62 F 6 67 F 6 59 F 8 45 M 4 65 M 4 49 
M 4 50 M 4 56 M 4 46 M 4 72 M 4 72 M 4 55 M 4 49 M 6 64 
M 6 48 M 6 60 M 6 63 M 6 53 M 6 60 M 6 66 M 6 65 M 6 55 
M 6 65 M 6 52 M 6 46 M 6 57 M 6 55 M 6 42 M 6 54 M 6 44 
M 6 69 M 6 45 M 6 58 M 6 56 M 6 63 M 6 71 M 6 48 M 6 74 
M 6 58 M 6 62 M 8 54 M 8 39 M 8 49 M 8  . M 8 62 M 8 53 
; 
run; 

proc glm data=school2 namelen=30; 
class gender semesters school; 
model phonics3=gender|semesters|school; 
store glmresults; 

run; 

 

 

 

 

Statistics and Data AnalysisSAS Global Forum 2011

 
 



16 

The STORE statement creates an item store that stores the model fitting information from PROC GLM. Then, the 
PLM procedure uses the LSMESTIMATE statement to estimate the differences between two groups. 

proc plm source=glmresults; 
lsmestimate gender*semesters*school 

"positional 6 semesters girls: Cottonwood vs. Maple" 
0 0 0 0 1 0 -1 0, 
"nonpositional 6 semesters girls: Cottonwood vs. Maple" 
[1, 1 2 1][-1, 1 2 3]; 

run; 

The results from the LSMESTIMATE statement from the PROC PLM program show the following: 

Least Squares Means Estimates 
                         

Effect Label Estimate 
Standard 

Error DF t Value Pr > |t| 
gender*semesters 

*school 
positional 6 semesters girls: 

Cottonwood vs. Maple -11.2024 4.2451 155 -2.64 0.0092 

gender*semesters 
*school 

nonpositional 6 semesters girls: 
Cottonwood vs. Maple -11.2024 4.2451 155 -2.64 0.0092 

The result of the LSMESTIMATE statement indicates there is a significant difference between the girls who attended 
six semesters in the Cottonwood school district and the girls who attended six semesters in the Maple school district. 

EXAMPLE 7: A TWO-FACTOR LOGISTIC MODEL WITH INTERACTION USING GLM (INDICATOR) 
CODING 
Consider this fictitious study in which a group of statisticians with either a master’s (MS) degree or a doctoral (PhD) 
degree participate in one of three games (blackjack, poker, or slots). The result of playing the games (winner or loser) 
is measured. The following DATA step and LOGISTIC procedure enable you to model the probability of losing and to 
determine whether there are differences due to the type of game, the education level, or an interaction between them. 
In addition, this example estimates two odds—the odds of a statistician with a master's degree losing at blackjack and 
the odds of the statistician losing at slots. The example then illustrates how the CONTRAST, LSMESTIMATE, and 
SLICE statements can be used to estimate the ratio of the two odds. 

data jackpot; 
input degree $ game :$9. response $ count @@; 
datalines; 

MS   blackjack  winner 78  MS   blackjack loser 28 
MS   poker      winner 101 MS   poker     loser 11 
MS   slots      winner 68  MS   slots     loser 46 
PhD  blackjack  winner 40  PhD  blackjack loser 95 
PhD  poker      winner 54  PhD  poker     loser 5 
PhD  slots      winner 34  PhD  slots     loser 6 
; 
run; 
proc logistic data=jackpot; 

freq count; 
class degree game / param=glm; 
model response(event= "loser") = degree game degree*game; 
estimate 'blackjack master' int 1 degree 1 game 1 degree*game 1 / ilink exp; 
estimate 'slots master' int 1 degree 1 game 0 0 1  

degree*game 0 0 1 / ilink exp; 
contrast 'blackjack v slots master' game 1 0 -1 

degree*game 1 0 -1 0 0 0 /estimate=exp; 
lsmestimate degree*game 'blackjack v slots master' 1 0 -1, 

'nonpos blackjack v slots master' 
[1,1 1] [-1, 1 3]/exp cl; 

run; 

 

 

 

 

Statistics and Data AnalysisSAS Global Forum 2011

 
 



17 

The following table provides a partial listing of the PROC LOGISTIC results for the previous program code: 

Type 3 Analysis of Effects 

                                         
Effect DF 

Wald 
Chi-

Square Pr > ChiSq 
degree 1 0.2312 0.6306 
game 2 52.4352 <.0001 

degree*game 2 36.7575 <.0001 

Notice that the TYPE 3 Analysis of Effects results indicate a significant effect for game and degree*game interaction 
(p-value <0.0001). It also indicates that the main effect of degree is not significant (p-value 0.6306). 

The result of the first ESTIMATE statement, shown in the following table, indicates that the probability of an MS 
statistician being a loser at blackjack is 0.2642 and that the odds of losing are 0.2642/(1-0.2642)=0.3591. It is the 
ILINK option that provides the mean (probability) estimate and that estimate (-1.0245) is the log odds; therefore,            
exp(-1.0245)=.03591. The expectation is only 0.3591 losers for every winner, or 2.7850 (1/0.3591) winners for every 
loser. 

Estimate 

                                                                               
Label Estimate 

Standard 
Error z Value Pr > |z| Mean 

Standard 
Error of 
Mean Exponentiated 

blackjack master -1.0245 0.2203 -4.65 <.0001 0.2642 0.04282 0.3590 

The result of the second ESTIMATE statement, shown below, indicates that the probability of an MS statistician being 
a loser at slots is 0.4035, yielding the odds of losing at 0.4035/(1-0.4035)=0.6764. The expectation here is 0.6764 
losers for every winner, or 1.4783 winners for every loser. Note that the ratio of odds is 0.3951/0.6764 ~= 0.5307, 
which is found by the CONTRAST and LSMESTIMATE statements. 

 

 

 

 
 

The CONTRAST and LSMESTIMATE statements both estimate the odds ratio. As shown in the exponentiated 
estimate in the following tables, an MS statistician is 0.5307 times more likely to lose at blackjack than at slots. These 
results indicate that for those statisticians with a master’s degree, the probability of being a loser is significantly 
different between blackjack and slots. 

Contrast Test Results 

                                           
Contrast DF 

Wald 
Chi-Square Pr > ChiSq 

blackjack v slots master 1 4.7246 0.0297 
 

Contrast Estimation and Testing Results by Row 
                                     

Contrast Type Row Estimate 
Standard 

Error Alpha 
Confidence 

Limits 
Wald 

Chi-Square Pr > ChiSq 

blackjack v slots master EXP 1 0.5307 0.1547 0.05 0.2997 0.9396 4.7246 0.0297 
continued 

 

Estimate 

                  
Label Estimate 

Standard 
Error z Value Pr > |z| Mean 

Standard 
Error of 
Mean Exponentiated 

slots master -0.3909 0.1909 -2.05 0.0406 0.4035 0.04595 0.6765 
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Least Squares Means Estimates 

Effect Label Estimate 
Standard 

Error 
z 

Value Pr > |z| Alpha Lower Upper 
Exponentiated 

Estimate Lower Upper 

degree*
game 

blackjack v slots 
master -0.6336 0.2915 -2.17 0.0297 0.05 -1.2050 -0.06228 0.5307 0.2997 0.9396 

degree*
game 

non-pos blackjack 
v slots master -0.6336 0.2915 -2.17 0.0297 0.05 -1.2050 -0.06228 0.5307 0.2997 0.9396 

The new SLICE statement in PROC LOGISTIC makes the comparison easier to program. When you have 
classification variables in your model, PROC LOGISTIC allows the SLICE statement only if you also specify the 
PARAM=GLM option. The following example demonstrates the use of the SLICE statement: 

proc logistic data=jackpot; 
freq count; 
class degree game / param=glm; 
model response(event="loser")=degree game degree*game; 
slice degree*game/sliceby=degree diff exp cl; 

run; 

The following results show how the games compare to one another, for each level of educational degree. In addition 
to the game comparisons for the MS group, the results provide the game comparisons for the PhD group. 

Chi-Square Test for degree*game Least 
Squares Means Slice 

Slice 
Num 
DF Chi-Square Pr > ChiSq 

degree MS 2 24.60 <.0001 
 

 
 

 
 
 
 
 
 
 

 
 

 

Chi-Square Test for degree*game Least 
Squares Means Slice 

Slice 
Num 
DF Chi-Square Pr > ChiSq 

degree PhD 2 61.76 <.0001 
 

Simple Differences of degree*game Least Squares Means 

Slice game _game Estimate 
Standard 

Error 
z  

Value Pr > |z| Alpha Lower Upper 
Exponentiated   

Estimate Lower Upper 
degree 

PhD 
black 
jack 

poker 3.2445 0.5040 6.44 <.0001 0.05 2.2567 4.2324 25.6498 9.5511 68.8830 

degree 
PhD 

black 
jack 

slots 2.5996 0.4813 5.40 <.0001 0.05 1.6564 3.5428 13.4583 5.2402 34.5649 

degree 
PhD poker slots -0.6449 0.6439 -1.00 0.3165 0.05 -1.9069 0.6171 0.5247 0.1485 1.8535 

Simple Differences of degree*game Least Squares Means 

Slice game _game Estimate 
Standard 

Error 
z 

Value Pr > |z| Alpha Lower Upper 
Exponentiated 

Estimate Lower Upper 

degree 
MS 

black 
jack poker 1.1927 0.3865 3.09 0.0020 0.05 0.4353 1.9502 3.2960 1.5454 7.0297 

degree 
MS 

black 
jack slots -0.6336 0.2915 -2.17 0.0297 0.05 -1.2050 -0.06228 0.5307 0.2997 0.9396 

degree 
MS poker slots -1.8264 0.3705 -4.93 <.0001 0.05 -2.5525 -1.1002 0.1610 0.07789 0.3328 
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For the statisticians with a master’s degree, the results indicate that the log odds of losing differ significantly within 
each pair of games.  The odds of losing at blackjack are 3.296 times the odds of losing at poker. The odds of being a 
loser for poker are 0.1610 of the odds for slots. For the statisticians with a PhD, the log odds of losing at blackjack 
differ significantly from the log odds of losing at either poker or slots  

CONCLUSION 
This paper describes several of the new post-fitting analysis statements and options that are available in SAS/STAT 
9.22 software. The paper also provides examples to demonstrate methods and techniques that you can use to test 
custom hypotheses using the ESTIMATE or LSMESTIMATE statements. The LSMESTIMATE statement combines 
important and convenient features of both the LSMEANS and ESTIMATE statements. These features enable you to 
specify coefficients in a more straightforward and intuitive way, in terms of the LS-means rather than the model 
parameters. 

For additional examples of how to write CONTRAST, ESTIMATE, or LSMESTIMATE statements, see SAS Note 
24447, "Examples of writing proper CONTRAST, ESTIMATE, and LSMESTIMATE statements." (SAS Institute Inc. 
2005). This note is a tutorial that provides several examples that will help you in writing these statements properly. 
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