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ABSTRACT 
 
We present nine methods to compute an adjusted relative risk (RR). These methods evolved over the past 25 years 
(1985–2010) via SAS/STAT® procedures: FREQ, GENMOD, LOGISTIC, and PHREG. We also compare the strengths 
and limitations of these methods, using an observational cohort study for illustration. 
 
 

INTRODUCTION 
 
The relative risk (RR) is a common measure of the effect of treatment or exposure on a dichotomous outcome in cohort 
studies. Researchers are increasingly using observational studies to estimate the effect of treatment on outcomes. 
However, unlike randomized controlled trials, treated subjects in non-randomized studies often differ systematically 
from untreated subjects. The effect of treatment on outcomes cannot be compared directly between groups. Therefore, 
statistical methods must be used to adjust for systematic differences when estimating the effect of treatment on 
outcomes. In the present paper, we illustrate 9 methods to compute adjusted relative risks which have been developed 
in a quarter of a century via 4 different SAS/Stat® procedures: FREQ, GENMOD, LOGISTIC, and PHREG. We will also 
compare the strengths and limitations of these methods based on an observational cohort study using data from the 
Registry of Canadian Stroke Network. 
 

Study Cohort 
We conducted a study to investigate the impact of follow-up at a secondary prevention clinic (SPC) on 1-year mortality 
in stroke patients. The study cohort was taken from the Registry of Canadian Stroke Network (RCSN), which includes 
patients seen at all 11 stroke centers in Ontario, Canada between July 2003 and March 2006. Data concerning the date 
of stroke onset and hospital arrival, stroke type, comorbidities, stroke severity, and outcomes at discharge were 
abstracted from each patient’s chart by trained nurses using custom RCSN data entry software. The risk of 1-year death 
following stroke onset was determined through linkages to a provincial administrative database. The study cohort 
consisted of 9074 ischemic or transient ischemic attack (TIA) patients who were alive at discharge. Of these, 4036 
patients were referred to a secondary prevention clinic follow-up (SPC=1), and 5038 were not (SPC=0). Patients with 
SPC were significantly different from those without SPC in terms of their demographic and clinical characteristics (Table 
1, P-values <0.05 highlighted in red). 
 

Crude RR using Proc Freq 
The crude RR provides a measure of the overall association between the risk factor and the outcome, e.g., SPC and 
1-year mortality in the present study. It can be obtained easily from Proc Freq using RelRisk option. 
 

Proc Freq data=StudyCohort; 

Tables SPC*Death_1year / RelRisk; 

Run; 

 
The 1-year mortality rates in SPC patients and non-SPC patients were 6.5% and 14.4%, respectively. The crude RR is 
0.454 (95% CI: 0.397-0.519), suggesting the 1-year mortality rate for SPC patients was 54.6% lower than for non-SPC 
patients. However, due to the differences in baseline characteristic (Table 1), we must run multivariate analyses to 
adjust the RR for the impact of other potential factors that may be related to SPC follow-up. 
 

Adjusted RR using Proc Freq – Stratified Mantel-Haenszel 
We can use a stratified Mantel-Haenszel Chi-square statistic to control for the other categorical factors, for example, 
ambulance transportation and hospital admission. This adjusted RR may identify the role of the risk factor of interest 
(SPC) after the risk from other factors(s) has been statistically removed (Greenland & Robins 1985). Here is 
Mantel-Haenszel test: 
 

Proc Freq data= StudyCohort; 

 Tables Ambulance*Admission*SPC*Death_1year / RelRisk; 

Run; 
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Table 1. Baseline comparisons 
 

Variable Value No-SPC SPC P-value 

Sample size n 5038 4036  

Male n (%) 2568 (51.0%) 2171 (53.8%) 0.0076 

Lives with others n (%) 3547 (70.4%) 2953 (73.2%) 0.0037 

Urban residence n (%) 4403 (87.4%) 3755 (93.0%) 0.0000 

Neighborhood income quintile 1 n (%) 1246 (24.7%) 788 (19.5%) 0.0000 

Neighborhood income quintile 2 n (%) 1076 (21.4%) 803 (19.9%) 0.0877 

Neighborhood income quintile 3 n (%) 958 (19.0%) 792 (19.6%) 0.4658 

Neighborhood income quintile 4 n (%) 856 (17.0%) 724 (17.9%) 0.2368 

Neighborhood income quintile 5 n (%) 902 (17.9%) 929 (23.0%) 0.0000 

Presenting to ER from home n (%) 3635 (72.2%) 3233 (80.1%) 0.0000 

Transport by ambulance n (%) 3176 (63.0%) 2006 (49.7%) 0.0000 

Ischemic n (%) 3468 (68.8%) 2572 (63.7%) 0.0000 

Weakness stroke symptom n (%) 3760 (74.6%) 2784 (69.0%) 0.0000 

Stroke classification - TASC n (%) 367 (7.3%) 165 (4.1%) 0.0000 

Emergency consultation n (%) 2257 (44.8%) 2031 (50.3%) 0.0000 

tPA treatment n (%) 376 (7.5%) 301 (7.5%) 0.9922 

Preadmission independence n (%) 3854 (76.5%) 3588 (88.9%) 0.0000 

Charlson score >=2 n (%) 1689 (33.5%) 1098 (27.2%) 0.0000 

Admitted to hospital n (%) 3662 (72.7%) 2102 (52.1%) 0.0000 

Deficit at discharge n (%) 3263 (64.8%) 2322 (57.5%) 0.0000 

Discharge to home n (%) 2732 (54.2%) 3071 (76.1%) 0.0000 

Modified Rankin score 3~5 n (%) 2186 (43.4%) 975 (24.2%) 0.0000 

Age (Years) Mean±SD 72.24±13.69 69.09±13.65 0.0000 

Stroke severity measured by  
Canadian Neurological Score 

Mean±SD 8.91±2.76 9.77±2.27 0.0000 

Length of stay (Days)  Mean±SD 11.42±22.72 6.3±14.87 0.0000 

Death in 1-year n (%) 726 (14.4%) 264 (6.5%) 0.0000 

SD=standard deviation 
 

The Mantel-Haenszel adjusted RR is 0.517 (95% CI: 0.451-0.591), suggesting that after controlling for ambulance 
transport to the stroke centre and hospital admission, the 1-year mortality rate for SPC patients was 48.3% lower than 
for non-SPC patients. Stratification is attractive when statistical control of a few categorical covariates is required. 
However, it can be difficult to implement in practice when there are many confounding covariates, especially if some of 
the confounders are continuous.  
 

Adjusted RR using Proc GenMod – Log-Binomial regression Model 
When we need to adjust for many covariates, including continuous covariates, we can use Log-Binomial regression 
(McNutt et al. 2003; Wacholder 1986), which is implemented in the GenMod procedure. Here is the SAS program using 
Log-Binomial regression to adjust for other covariates: 
 

Proc GenMod data=StudyCohort descending; 

 Class SPC/param=ref ref=first; 

 Model Death_1year=SPC Var_1- Var_n / Dist=bin Link=log; 

 Estimate 'RR SPC vs. Non-SPC' SPC 1/exp; 

Run; 

 
Here Var_1 – Var_n include 24 covariates besides SPC, such as gender, age, ambulance transportation, admission, 
etc. However, the program did not run successfully and produced the following error message. 
 

WARNING: The specified model did not converge. 
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ERROR: The mean parameter is either invalid or at a limit of its range for some 

observations. 

 
The probability of an outcome must fall within the bounds [0, 1]. However, the Log link function in Log-Binomial models 
restricts the probabilities of an outcome to be greater than or equal to zero, that is, to fall within the bounds [0, ∞). Due 
to this mismatch between the bounds of the model and the allowable outcome, in practice, the Log-Binomial model will 
routinely fail to converge and will not provide the parameter estimates (Localio et al. 2007). The failure of convergence 
in the Log-Binomial regression may also indicate that the data do not support the model (Tian & Liu 2006). 
 
We found that if 15 covariates are included in the model instead of desired 24, the model does converge. The adjusted 
RR is 0.561 (95% CI: 0.490-0.642, with StdErr=0.0389). 
 

Adjusted RR using Proc GenMod – Log-Binomial regression Model with negative intercept 
When all predictors are zero or at their reference levels in the multivariate Log-Binomial regression model, the intercept 
estimates log(p)<0 as 0<p<1. So it makes sense to start its estimation in the negative value. It was found that starting 
value of - 4 for the intercept has worked well in practice (Deddens et al. 2003). 

 
Proc GenMod data=StudyCohort descending; 

 Class SPC/param=ref ref=first; 

 Model Death_1year=SPC Var_1- Var_n /Dist=bin Link=log intercept=-4; 

 Estimate 'RR SPC vs. Non-SPC' SPC 1/exp; 

Run; 

 
The adjusted RR from the Log-Binomial regression Model with negative intercept is 0.806 (95% CI: 0.672-0.968), with 
StdErr = 0.0751. However, the following SAS warning messages suggests that the convergence problem has not been 
completely solved by the negative intercept given and the model fit is still questionable.  
 

WARNING: The relative Hessian convergence criterion of 0.126294346 is greater than 

the limit of 0.0001. The convergence is questionable. 

 

WARNING: The procedure is continuing but the validity of the model fit is 

questionable. 

 

Adjusted RR using Proc GenMod – Poisson regression model 
In contrast to the Log-Binomial regression model, the Poisson regression model, using all 24 covariates, has no 
difficulty with convergence (McNutt et al. 2003). Poisson distribution would be expected to be a good approximation to 
the binomial distribution when the outcome is low and the sample size is large. Here is the Poisson regression using 
Proc GenMod: 
 

Proc GenMod data=StudyCohort descending; 

 Class SPC/param=ref ref=first; 

 Model death_1year=SPC Var_1- Var_n / Dist=poisson Link=log; 

 Estimate 'RR SPC vs. Non-SPC' SPC 1 /exp; 

Run; 

 
The adjusted RR from the Poisson regression model is 0.777 (95% CI: 0.667-0.905), with StdErr = 0.0607. However, 
one limitation in the Poisson approximation is that  the estimated probabilities from the Poisson model may be greater 
than 1, which is invalid  (Deddens & Petersen 2004). 
 

Adjusted RR using Proc GenMod – Modified Poisson regression model 
Poisson regression without robust error variances may result in a conservative CI (i.e., wider CI). A “modified Poisson” 
method has been proposed to estimate the RR using a robust error variance (Zou 2004). This method leads to the 
robust error variance estimation and produces 95% CIs with the correct coverage. Using SAS, the robust error 
variances can be obtained by using the repeated statement and the subject identifier (here PatientID), even though 
there is only one observation per subject. Here is the SAS program (Spiegelman & Hertzmark 2005). 
 

Proc GenMod data=StudyCohort descending; 

 Class PatientID SPC/param=ref ref=first; 

 Model Death_1year=SPC Var_1-Var_n / Dist=poisson Link=log; 

 Repeated subject=PatientID / type=Ind; 

 Estimate 'RR SPC vs. Non-SPC' SPC 1 /exp; 

Run; 

 
The RR from the modified Poisson regression is 0.777 (95% CI: 0.675-0.894), with StdErr=0.0555, which is smaller 
than the StdErr (0.0607) from simple Poisson regression. However, this method may fail when outcomes are common, 
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for example,  the point estimate for risk and the upper CI bounds of the expected probability may exceed 1 because the 
log link does not constrain expected probabilities (Localio et al. 2007). 
 

Adjusted RR using Proc Logistic – OR-to-RR formula  
We may also obtain the adjusted RR from the adjusted odds ratio (OR) using the simple relationship (Zhang & Yu 
1998): 
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 where PC and PT are the unadjusted risks in the control and treat groups, respectively. 
 
CIs for the RR are estimated by substituting the upper and lower CIs for the OR from the multivariate logistic regression 
model (Daly 1998). In the present study, the following SAS code was used: 
 

Proc Logistic data=StudyCohort descending; 

 Class SPC/param=ref ref=first; 

 Model Death_1year=SPC Var_1-Var_n /rl lackfit; 

Run; 

 
Adjusted OR=0.731 (95% CI: 0.618-0.866) 
Pc=0.144 
Adjusted RR=0.761 (95% CI: 0.654-0.883) 

 
This RR is biased away from the null, suggesting a stronger association. However, if the incidence of an outcome of 
interest is common in the study population (say, >10%, Figure 1), the adjusted OR derived from the logistic regression 
can no longer approximate the RR (Zhang & Yu 1998). When the outcome is common, the RR estimated using logistic 
regression will be more extreme (farther from 1.0) than the RR for the same data (Altman et al. 1998; Deeks 1998). In 
addition, the proposed CIs for the RR will be too narrow because this approach fails to account for variability in the 
baseline risk (Localio et al. 2007; McNutt et al. 2003). 
 

 
 
Figure 1. The relationship between relative risk and odds ratios by incidence of the outcome 
(Cited from Zhang & Yu 1998) 

 

Adjusted RR using Proc Logistic – Propensity-score matching 
Propensity-score matching is frequently used in the medical literature to estimate the effect of treatments and 
exposures on health outcomes (Austin 2008). The propensity score is defined as a subject’s probability of receiving the 
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treatment or the probability of exposure, conditional on his/her observed baseline characteristics. It is usually estimated 
using a logistic regression model (Austin et al. 2010). Once the propensity score has been estimated for each subject, 
treated and untreated subjects are matched on the propensity score. The most commonly-used method is to form pairs 
with similar propensity scores. The next step is to use the standardized difference to examine the balance in measure 
baseline variables between treated and untreated subjects. If the balance is acceptable, we then estimate the effect of 
treatment on the outcome via the appropriate statistical tests (Austin 2007).  
 
Austin and his colleagues illustrate the detailed SAS coding to obtain the RR using propensity-score matching method 
(Austin et al. 2010). In the present study, 3,114 matched pairs of patients were identified (total n=6,228, less than the 
original sample size). Figures 2a and 2b show the similarity between SPC and non-SPC patients before (Figure 2a) and 
after (Figure 2b) propensity-score matching. 
 

 
 

Figure 2a. Density distribution of propensity scores – Original cohort 
 

 
 

Figure 2b. Density distribution of propensity scores – Propensity-score matched cohort 
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In the present study, there were 32 matched pairs in which both subjects died within one year of the stroke, 2598 
matched pairs in which neither subject died within one year of the stroke, 291 matched pairs in which the Non-SPC 
patient died and the SPC patient did not die, and 193 matched pairs in which the SPC patient died and the Non-SPC 
patient did not die. According to the method proposed by Agresti and Min to estimate the RR and its confidence interval 
for matched data (Agresti & Min 2004), the RR of 1-year mortality for SPC patients compared to Non-SPC patients was 
0.697, and the 95%CI was 0.594-0.817. 
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Adjusted RR using Proc Logistic – Marginal Probability and Bootstrapping 
Austin introduced a new method for deriving the adjusted RR from a logistic regression model (Austin 2010b). This 
method involves determining the probability of the outcome if each patient in the cohort was treated, and again if each 
patient was untreated. These probabilities are then averaged across the study cohort to determine the average 
probability of the outcome in the population if all patients were treated, and if they were untreated. 
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 Y=1 denoting outcome success (e.g., dead), Y=0 denoting outcome failure (e.g., alive) 
 T=1 denoting treatment (SPC), T=0 denoting control (Non-SPC) 
 X1 to Xk denote k confounding covariates 

  denotes the log-odds ratio, e denotes the odds ratio 
 
We can estimate the probability of the outcome if a given patient was treated, and if the same patient was untreated. 
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We then compute the mean probability ( 1TP ) of success in the cohort if all patients were treated, and the mean 

probability ( 0TP ) of success in the cohort if all patients were untreated. These are referred to as the marginal 

probabilities of success for treated and untreated patients. The adjusted RR is estimated as
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Use of marginal probabilities allows one to compare outcomes between two populations whose only difference is the 

exposure. Because all patients contribute to both 1TP  and 0TP there are no systematic differences in baseline 
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characteristics between the two populations.  
 
The solution to the multivariate logistic regression model of the study cohort is: 
 
 Log (p/(1-p)) = -3.4767–0.3128*SPC+0.1516*Male +…-0.00329*LOS 
 
PT=1 and P T=0 can be computed using the following SAS program: 
 

Data PT_PC; 

 Set StudyCohort; 

 Ln_PT=-3.4767 - 0.3128*SPC + 0.1516*Male + ...-0.00329*LOS; 

 Ln_PC=-3.4767              + 0.1516*Male + ...-0.00329*LOS; 

 PT=exp(Ln_PT)/(1+exp(Ln_PT)); 

 PC=exp(Ln_PC)/(1+exp(Ln_PC)); 

Run; 

 
However, typing these SAS codes is tedious and not efficient. We show an easy way to compute PT=1 and P T=0. First, 
we generate a population cohort which includes both the treated cohort and the control cohort. 
 

Data Population; 

 Set StudyCohort (in=a) 

     StudyCohort (in=b); 

 If a then SPC=1; 

 If b then SPC=0; 

Run; 

 
We then run logistic regression using the score option. 
 

Proc Logistic data=StudyCohort descending; 

 Class SPC/param=ref ref=first;  

 Model Death_1year=SPC Var_1-Var_n/rl;  

   Score data=Population out=Pred_risk;  

Run; 

 
We then compute the mean probability of death for each patient in the population cohort – once for the patients as if 
they are all untreated (SPC=0), and again for the patients as if they are all treated (SPC=1). The ratio of these two mean 
probabilities is the estimated RR. 

 
Proc Means data=Pred_risk nway; 

 Class SPC; 

 Var Prob; 

 Output out=pop_risk mean=pop_risk; 

Run; 

 

Proc Transpose data=pop_risk out=pop_risk prefix=SPC_; 

 Id SPC; 

 Var pop_risk 

Run; 

 

Data pop_risk; 

 Set pop_risk; 

 Adjusted_RR=SPC_1/SPC_0; 

Run; 

 

Proc Print data=pop_risk; 

 Var Adjusted_RR; 

Run; 

 
The confidence interval of the RR can be estimated using the bootstrap method (Efron & Tibshirani 1993). A bootstrap 
sample is a random sample drawn with replacement from the original sample such that the random sample has the 
same size as the original sample. Constructing nonparametric bootstrap 95% CIs requires drawing a large number of 
bootstrap samples (say 1000 bootstrap samples) and estimating the quantity of interest in each of the bootstrap 
samples. The endpoints of the nonparametric bootstrap 95% CIs would be the 2.5th and 97.5th percentiles of that 
quantity across the bootstrap samples. 
 
Applying the method of Austin (Austin 2010b), we got an adjusted RR of 0.789 if all patients were referred to SPC 
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compared with the case where all patients were not referred to SPC (95% CI: 0.690-0.889). Thus, SPC was associated 
with a 21.1% relative decrease (95% CI: 11.1%-31.0%) in the risk of 1-year mortality. 
 

Adjusted RR using Proc Phreg – Time-to-event 
Statistically, survival models for time-to-event outcomes are more powerful than logistic models for testing the impact of 
treatment for event outcomes. Austin described a method to derive the RR of an event occurring within a specific 
duration of follow-up using an adjusted survival model (Austin 2010a). The method allows for the estimation of 
measures of treatment effect that may be more clinically meaningful than the adjusted hazard ratio that is obtained 
directly from the Cox proportional hazards regression model.  
 
The SAS program is similar to that in last section above (see Adjusted RR using Proc Logistic – Marginal Probability 
and Bootstrapping). The adjusted RR from survival models is 0.769 (95% CI: 0.671-0.865).  
 

/* Dataset population generated above */ 

 

Proc Phreg data=StudyCohort descending; 

 Model SurvivalTime_1y*Death_1year(0)=SPC Var_1-Var_n/rl;  

   Baseline out=Pred_risk  

                 covariates=Population  

      survival=survival/nomean;  

Run; 

 

Data Pred_risk; 

 Set Pred_risk; 

 Event_risk=1-survival; 

 Where SurvivalTime_1y=365; 

Run; 

 

/* RR calculation omitted (See SAS codes above) */ 

 
 

CONCLUSION 
 
The crude and adjusted RRs of SPC are summarized in Figure 3. Obviously, the crude RR is further away from 1 than 
the adjusted ones. Thus, the impact of SPC is over-estimated by the crude rate, which suggests that the risk-adjustment 
is necessary. According to the whole study cohort, the point estimations of the adjusted RRs using Poisson regression 
(0.777), modified Poisson regression (0.777), Logistic regression (0.789) and Cox proportional hazards model (0.769) 
are quite close to one another. These adjusted RRs indicated that the ischemic stroke or TIA patients referred to SPCs 
had greater survival than those without a referral to a SPC. According to the Propensity-score matching cohort, the 
adjusted RR is 0.697, which suggests even more positive impact of the SPC on patient survival. 
 
In this article, we describe 9 methods to derive adjusted RRs which were developed in the past 25 years, from 1985 to 
2010, and illustrate the SAS program codes to estimate the adjusted RR accordingly. Table 2 shows their strengths and 
limitations. In general, the data structure per se may lead to the method that should be used to estimate the adjusted 
RR.  
 
If there is no convergence problem, we can just use a Log-Binomial model to get the adjusted RR. However, if there is 
a convergence problem, we should apply Modified Poisson regression instead. Petersen and Deddens compared both 
Log-Binomial model and Modified Poisson regression and found (1) for very high prevalence and moderate sample size, 
the Modified Poisson method yields less biased estimate of the prevalence ratios than the Log-Binomial method; (2) 
However, for moderate prevalence and moderate sample size, the Log-Binomial method yields slightly less biased 
estimate than the Modified Poisson method; (3) In nearly all cases, the Log-Binomial method yields slightly higher 
power and smaller standard errors than the Modified Poisson method (Petersen & Deddens 2008). 
 
If computing time is not an issue and both Log-Binomial and Modified Poisson regression models are questionable, 
then we can obtain the adjusted RR using a Logistic regression model or Cox proportional hazards regression model. 
Using these two models, we are able to get not only  the RR, but also the other meaningful measures of treatment effect, 
such as the absolute risk reduction, the RR reduction and the number needed to treat (Austin 2010a; Austin 2010b).  
 

Statistics and Data AnalysisSAS Global Forum 2011

 
 



 9 

 
 
Figure 3. Forest Plot - Comparison between RR computing methods 

 
 
Table 2. Comparison between different RR computing methods 
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