
1

Paper 280-2011

New Light through Old Windows:
Delivering Real Time Information with Windows 7 Desktop Gadgets

David Shannon, Amadeus Software, Oxford, UK

ABSTRACT
In this paper the author demonstrates how to deliver SAS® information directly to the information consumer’s desktop
with Microsoft Windows 7 Desktop Gadgets.

Displaying headline analytics from continually updating data, such as an active marketing campaign, or simply the
status of your SAS server are just two possibilities for exploiting the Gadget feature.

From Windows 7, Gadgets are an integral component in the operating system presentation. Real time (or near real
time) information can be delivered by integrating a SAS session via web services or the SAS Integration
Technologies product.

This paper presents the steps for integrating SAS and Windows Gadgets. Worked examples, with source code, are
demonstrated along with options for deployment. Finally, the pros and cons of delivering information this way are
considered.

Those attending this paper are not expected to have experience of creating Desktop Gadgets, however an
appreciation of web pages, object orientated programming and the SAS Integration Technologies product will be
useful to take the most from this paper.

INTRODUCTION
This paper examines a method of delivering short summaries of information directly to user desktops with Microsoft
Windows Desktop Gadgets, referred to as Gadgets throughout this paper.

The paper begins by understanding what Gadgets are and how they work. The discussion then describes how to
integrate Gadgets with SAS by using Microsoft Jscript to call a web service or SAS Integration Technologies.

Connections to SAS are made from a Gadget to submit PROC steps, retrieving data and displaying the results.
Practical examples are provided to illustrate this.

The information displayed in Gadgets is intended to be top line summary data. Basic design principals are presented
and references are drawn to existing well designed Gadgets and published design guidelines by Microsoft
Corporation.

Finally, the paper positions the use of Gadgets for real time reporting against other Business Intelligence reporting
tools.

WHAT ARE DESKTOP GADGETS AND HOW DO THEY WORK?
Gadgets are lightweight applications which are presented as translucent windows that float on the PC desktop. They
are constructed from standard HTML, cascading style sheets and web scripting languages. In other words they are
built in the same way as a web page is constructed.

Gadgets have an object model which intentionally exposes a limited range functions. To integrate with external
services, Jscript is used which enables Windows installed or bespoke COM classes (deployed with the Gadget) to
connect with a SAS session or server.

To create a basic Gadget, a minimum of two files are required:

1. GADGET.XML: This is an XML manifest about the Gadget with information such as how it will be displayed,
which HTML file is displayed, who created the gadget, etc. The file is short and easy to create by modifying
an existing example. The reader is directed to the documented from Microsoft, see Reference 1 for full
details.

2. NAME.HTML: This is the page that is the physical presentation on the users on the desktop.

It is very easy to find examples of existing Gadgets and replicate their functionality by browsing the gadgets which
exist on your Windows 7 installation. The source of gadgets on your PC is found in the following locations:

 C:\Program Files\Windows Sidebar\Gadgets (Windows Supplied Gadgets)

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

2

 C:\Program Files\Windows Sidebar\Shared (Gadgets Shared Gadgets)

 C:\Users\User-ID\AppData\Local\Microsoft\Windows Sidebar\Gadgets (User Added Gadgets)

Figure 1, below, is an image of the Weather Gadget that is provided with Windows 7. It connects to a service that
provides current and future weather data for a configurable location:

Figure 1: The Weather Gadget on a Windows 7 Desktop

There are three elements that together provide both a visual and textual summary. The information presented is
without great detail, yet is sufficient to be informative. These design principles are appropriate for Gadget displays
and can be summarised as being highly visual with minimal headline text information. Microsoft proposes quite
detailed requirements about the construction of Gadgets. These can be found within the URL described in
reference 1 of this paper.

INTEGRATING SAS WITH DESKTOP GADGETS

The implementation options for serving data from SAS are considered here. The following methods either expose
SAS functionality through an API or publish data in a static structure:

1. SAS Integration Technologies’ Integration Object Model (IOM): The IOM provides several objects for
creating and exploiting SAS sessions, stored processes and more from a custom client. See reference 4 of this
paper for documentation of the IOM.

The IOM is specifically designed for clients that need to integrate with SAS servers. Indeed it is how SAS
Institute’s own clients such as Enterprise Guide, Data Integration Studio and alike, communicate with the
metadata and application servers. The advantages of this technology are a well defined and highly functional
API and the author fully expected this technology to be the ideal solution.

In the event, there were issues referencing multiple DLL’s from a Gadget. Creating connections to SAS servers
and facilitating calls to stored processes etc. cannot be performed directly in the Gadget object model. A custom
class (DLL) must be written to do this. If that class references further external classes the Gadget has no
mechanism to locate the additional DLL files and errors are returned. This is exactly what happens because the
SAS Object Manager and IOM Type Libraries are external DLL’s. It may be possible, however, to overcome this
limitation by instantiating the IOM through a technique called Reflection.

There were now two drawbacks to this technology choice. Firstly, the implementation effort has increased as (to
the authors mind at least) programming .NET using reflection is relatively cumbersome for this solution.
Secondly, the emphasis on managing the server requests and outputs is placed in the Gadget rather than the
server.

2. RSS Feeds: SAS can be used to create and populate an RSS documents. For those reading this paper with
only a Base SAS license, you can easily publish data to an RSS feed on a web server. This can be achieved
with the data step or more tightly by via the libname statement, its XML engine and an XML MAP. A SAS Batch
job can be scheduled to run at frequent intervals and so updating the RSS contents. Within a Gadget the script
XMLHttpRequest object can be used to consume the XML document.

This disadvantage of this route is that RSS feeds are updated periodically and the Gadget is independently
updated of the RSS feed. The Gadget therefore has less control over the refresh rate and a reasonable amount
of client implementation will be required to parse the returned XML for presentation in a pleasing visual style.

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

3

3. SAS BI Web Services: From SAS 9.2 creating and publishing a web service is astonishingly simple given a
Stored Process on a SAS Business Intelligence server. Guidance for this process can be found within
Reference 2 and is illustrated below.

A web service will execute upon being called, therefore returning results in real time. Most processing overhead
takes place on the server, rather than the Gadget. The call to a web service can be parameterised and results
streamed to the client in XML format. Web services are not be appropriate for large volumes of data as
streaming large amounts of XML can cause sluggish responses. This model therefore suits Gadgets well.

SAS BI Web Services were selected as the best option for providing data to desktop gadgets. Figure 2 summarises
the flow of communications and data between the Gadget and the SAS Server:

S
A

S
 Foundation

S
AS

 S
tored Process

S
A

S B
I W

eb S
ervice

H
TM

L, Jscript, C
S

S

C
O

M
 Interop w

ith .N
ET

Figure 2: Communication flow between Desktop Gadget and SAS Code

The following list of tasks are the road map to implementing a Gadget that will consume information through a SAS BI
Web Service, ultimately it is a SAS program that generates the information returned:

1. Write the SAS program that creates the output you wish to render in your Gadget;
2. Register your program as a SAS Stored Process;
3. Deploy your stored process as a web service;
4. Write a class in .NET (or other language) to consume the web service;
5. Write a Gadget that calls the class and renders the information received from the stored process;
6. Package and deploy.

This may appear like a lot of work, however some steps are simply a few mouse clicks. As with any project, spending
a little time to plan what you want to achieve, before writing your code will be more conducive to a successful and
timely outcome.

The steps above are best illustrated through the use of an example which, for the most part, makes up the remainder
of this paper.

CREATING A GADGET TO QUERY SAS METADATA SERVER STATUS
The purpose of this Gadget is to display the SAS metadata server status obtained from PROC METAOPERATE and
the number of active client sessions, calculated by a reading the current metadata server log file. Appendix A
presents the SAS code used to query the server status and create one of the two return values.

Firstly, a design to present the information was required.

Figure 3 is a mock-up constructed in a HTML editor and is based closely on the Weather Gadget discussed earlier:

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

4

Figure 3: SAS Metadata Server Status Mock-Up

The information displayed is both visual and textual, offering high level summary information. The three elements are
displayed within HTML DIV elements, therefore some rudimentary knowledge of HTML mark-up is assumed for this
design. Appendix A presents the HTML, CSS and Jscript for the Gadget.

REGISTERING A SAS STORED PROCESS AND DEPLOYING AS A SAS BI WEB SERVICE
A stored process must be registered and configured before being deployed as a web service. The following figures
illustrate the key properties of the stored process to ensure successful use as a web service.

Figure 4: General Properties

The stored process is located in the shared area. The
keyword “XMLA Web Service” is added respecting the
documentation that describes this requirement, see
Reference 2.

Figure 5: Execution Properties

Results must be streamed back to the client. Data is
streamed via the _WEBOUT libref and an XML engine.
Constants are returned by macro variables.

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

5

Figure 6: Parameter Properties

The names of parameters must match macro variable
names used in the SAS code.

Figure 7: Authorization Properties

Finally, consider the security of the stored process (and
web service when created). We allowed non-SAS users
to access the web service.

Now the SAS Stored Process is ready for use, it is deployed as a web service. This is completed from within the SAS
Management Console as shown in Figure 8 below. Note for good housekeeping, the stored processes associated
with Gadgets are organised into a specific metadata folder.

Figure 8: Deploying the Stored Process as a SAS BI Web Service

Selecting this option invokes a wizard that takes us through the following steps:

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

6

Figure 9: The Case Sensitive Web Service Name

The name of the web service is case sensitive, to avoid
problems consuming the web service , it is
recommended to use lower case names (unlike this
screenshot!)

Figure 10: Adjusting the namespace URI

The namespace is modified to match the company
domain. This allows the web service to be uniquely
identified. It does not affect the address used to access
the service.

Figure 11: The Web Service URL

Once the remaining steps are completed, the address of
the web service is displayed. Be certain to copy or make
a note, as it is the only place it is displayed.

The service can now be tested by suffixing ?wsdl onto
the address in a web browser. The Web Service
Description Language (WSDL) is displayed in the form of
XML.

PROGRAMMING A DESKTOP GADGET TO CONSUME A WEB SERVICE
Now that the server side requirements are in place, attention is turned to writing the Gadget to display the
information.

A Visual Studio 2008 project was created, and to this the following items were added:

1. A reference must be added to the web service WSDL.
Developers in Visual Studio 2008 should be careful to
add a Web Service rather than simply a Service (the
latter is the default). Figure 12 illustrates adding a Web
Reference.

2. A class was then written containing two functions, one
to query each of the output parameters from the web
service. The following snippet shows how to instantiate
an object that talks to the web service. This is followed
by a function that returns the status string generated by
PROC METAOPERATE (note that error trapping has
been removed for clarity):

Figure 12: Adding the Web Service Reference

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

7

 // Declare s the web service object that will run the STP
 avsas923.Server_Status s;

 // Method exposed to Jscript and allows interop with SAS
 public String Status()
 {
 s = new Amadeus.avsas923.Server_Status();
 avsas923.server_StatusResponseServer_StatusResult rc = s.server_Status();
 return rc.Parameters.Status.Value.ToString();
 }

Appendix C contains full code from the class.

3. The openly available Gadget.Interop .NET project was downloaded and added to the project. It contains a single
class and JavaScript file. This allows a .NET class to be used as a COM object from within a Gadgets’ Jscript
function. A full discussion of this project and its location for download can be found in Reference 3.

4. The final task is to implement the Jscript functions that render information within the Gadget. Appendix B
contains the contents of the HTML needed to implement a basic Gadget. The following snippet describes how
the connection from the Gadget, via .NET, and a web service is made to SAS:

//Create an object and initialize the GadgetBuilder to allow .NET to be called via
//COM
var builder = new GadgetBuilder();
builder.Initialize();

//Create an object (SSS) from the Amadeus.ServerStatus .NET class that exposes the
//web service
var SSS =
builder.LoadType(System.Gadget.path+\\bin\\SSS.dll","Amadeus.ServerStatus");

The object SSS can now be used to call those methods. The following snippet, also from Appendix B shows
how the contents of the oConnections DIV element are updated with the number of SAS client connections:

var connections = document.getElementById("oConnections");
 connections.innerHTML=SSS.Connections();

DEPLOYMENT
Gadgets are made up of a series of files in a folder structure.

For the SAS Server Status (SSS) Gadget the files are shown
in Figure 13. The Visual Studio project maps to a folder
structure on disk.

Deploying is as simple as zipping the folder structure into a
zip file and changing the file extension from “.zip” to
“.gadget”. (see the highlighted file in Figure 14 below).

Installation is completed by opening the .gadget file and
following the prompts.

With the Gadget installed users can add and remove the
Gadget in the usual way; i.e. from the Desktop Gadgets item
from the Control Panel.

Domain administrators can control distribution and usage
through automated software delivery technologies.

Figure 13: Gadget files from Visual Studio

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

8

Figure 14: Folder Structure with the zipped Gadget file highlighted

Figures 15 and 16 illustrate the same Gadget, initially when connected to a server with eight current connections to
the server and again when the laptop is disconnected from the network. When connected to the network, this status
would also indicate a problem the server.

Figure 15: The Gadget when connected

Figure 16: The Gadget with the Windows 7 laptop

disconnected from the network

REAL TIME OR NEAR REAL TIME?

By now you have hopefully got an idea of the technical options and a thorough understanding of the steps required to
implement a Gadget via SAS BI Web Services. However, we set out to deliver information in real time.

What does real time mean? Does it mean an instantaneous update, or is there an acceptable interval between
updates from the operational data system? These answers vary between environments. In practice the rate at which
the operational data source is updated and the refresh rate of the Gadget dictate what real time actually is. In this
Gadget the refresh interval was defined as 60 seconds. Purists may argue this is near real time, rather than real time
itself, where a server side event would trigger the update within a Gadget.

ALTERNATIVE METHODS FOR REAL TIME REPORTING
The latest release of SAS Add-In for Microsoft Office supports the monitoring of SAS reports and BI Dashboards
within Microsoft Outlook gadget pane. Outlook is a commonly used e-mail client and a natural consideration for those
whose function relies on much of their time being spent around their inbox.

As suggested above, architectures for true real time reporting would require an event based trigger from the source
system itself, rather than the Gadget polling a server periodically. Most enterprise software vendors support such
technologies. SAS Integration Technologies supports message queuing which could be an ideal method of
consuming operational system event based triggers.

CONCLUSIONS
This paper has described how Windows Desktop Gadgets are appropriate for display high level summary information
in a visual form.

The technology options for serving up real time information from SAS to Desktop Gadgets was explored. From RSS
feeds, SAS Integration Technologies and SAS BI Web Services, the latter was selected. Web services place the
emphasis of processing on the server and can be called from any client that consumes web services.

SAS BI Web Services are implemented using SAS Stored Processes, hence can use the power of the SAS
programming language to access data, pass-through to operational systems, perform analyses etc.

A Gadget was implemented using a Visual Studio created class to consume a SAS BI Web Service. From within the
gadgets HTML file, Jscript was used to instantiate the class and call the web service. The HTML object model was
then used render graphics and text within the gadgets display.

Consideration was given to the meaning of real time. It was discussed that this solution may be considered as near
real time. A genuine real time solution would require an event based trigger to refresh the Gadget. SAS Software

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

9

supports this technology and it may be appropriate to explore such solutions. Gadgets are typically configured to
refresh every few seconds or minutes.

REFERENCES
The following documentation has been referenced in this paper:

1. Microsoft Corporation. 2010. Introduction to the Gadget Platform. Available at:
http://msdn.microsoft.com/en-us/library/dd370867(v=VS.85).aspx

2. SAS Institute Inc., 2009. SAS® 9.2 BI Web Services Developer’s Guide. Cary, NC: SAS Institute Inc.

3. Lee, Wei-Meng. 2008. Professional Windows Vista Gadgets Programming. Indianapolis, IN: Wiley
Publishing Inc.

4. SAS Institute Inc. 2009. SAS® 9.2 Integration Technologies: Windows Client Developer’s Guide. Cary, NC:

SAS Institute Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: David Shannon
Enterprise: Amadeus Software Ltd.
Address: Mulberry House, 9 Church Green
City, State ZIP: Witney, Oxfordshire, OX28 4AZ
Work Phone: +44 (0)1993 848010
Fax: +44 (0)1993 778628
E-mail: david.shannon@amadeus.co.uk
Web: www.amadeus.co.uk

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX A: PARTIAL SAS STORED PROCESS
proc metaoperate server="localhost"
 user="sasadm@saspw"
 pw="-a-pwencoded-password-"
 port=8561
 action=status
 out=work.status;

run;

data _null_;
set status(where=(upcase(attribute)="STATUS"));
 call symputx('status',value);
run;

APPENDIX B: SAS METADATA SERVER STATUS GADGET HTML, CSS & JSCRIPT
<html><head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="/js/GadgetInterop.js"></script>
 <style type="text/css">
 body
 {
 margin: 0; width: 130px; height: 67px; font-family: Tahoma;
 font-size: 12px; background-repeat: no-repeat;
 }

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

10

 #oMain
 {
 width: 130px; height: 67px;
 }
 #oConnections
 {
 position: absolute; font-size: 14pt; font-weight: bold;
 text-align: left; top: 7px; left: 91px;
 }
 #oServer
 {
 position: absolute; float: left; height: 20px; width: 61px;
 margin-top: 70px; text-align: right; vertical-align: bottom;
 top: -30px; left: 62px;
 }
 #oIcon
 {
 position: absolute; top: 8px; left: 8px; width: 48px; height: 48px;
 }
 </style>
 <script type="text/jscript">

 var asyncCallback = null;

 //This function invokes a background call to the DLL that calls the web service
 function getStatus(callback)
 {
 // Save a reference to the callback function
 asyncCallback = callback;

 // Call Function Asynchronously
 window.setTimeout("asyncGetStatus();", 1);
 }

 //This runs on a separate thread and actually does the work
 function asyncGetStatus()
 {
 var builder = new GadgetBuilder();
 builder.Initialize();
 var SSS = builder.LoadType(System.Gadget.path +
 "\\bin\\SSS.dll","Amadeus.ServerStatus");
 try
 {
 var connections = document.getElementById("oConnections");
 switch(SSS.Connections())
 {
 case -1:
 connections.innerHTML="--";
 break;
 case -2:
 connections.innerHTML="--";
 break;
 default:
 connections.innerHTML=SSS.Connections();
 }
 }
 catch(e)
 {
 connections.innerHTML="--";
 }

 try
 {

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

11

 switch (SSS.Status())
 {
 case "Running":
document.getElementById("oIcon").style.backgroundImage="url(images/ok.png)";
 break;
 case "Paused":
document.getElementById("oIcon").style.backgroundImage="url(images/query.png)";
 break;
 default:
document.getElementById("oIcon").style.backgroundImage="url(images/error.png)";
 }
 }
 catch(err)
 {
document.getElementById("oIcon").style.backgroundImage="url(images/error.png)";
 }
 }

 function getStatusCallBack(result)
 {
 //When the aynchronous call finishes code execution lands here.
 //This could be used to receive results of calculations etc.
 }

 function initiateRefreshes()
 {
 getStatus(getStatusCallBack);
 }

 function init()
 {
 //Set the background image
 document.getElementById("oIcon").style.backgroundImage="url(images/unknown.png)";
 //Perform initial load
 getStatus(getStatusCallBack);
 //Then refresh every 60s
 window.setInterval(initiateRefreshes,60000);
 }
 </script>
</head>
<body onload="init()">
 <g:background id="imgBackground" src="url(images/10.png)"> </g:background>
 <div id="oMain" >
 <div id="oIcon"></div>
 <div id="oConnections">--</div>
 <div id="oServer" >AVSAS923</div>
 </div>
</body>
</html>

APPENDIX C: SERVER STATUS C# .NET
The following code is the contents of the SSS.cs (C# class). The Visual Studio project must also reference:

1. The Gadget.Interop project available from Codeproject.com
2. A Web Reference (not a service reference) must be added which points to the SAS BI Web Service. This

takes the object name avsas923 below.

namespace Amadeus
{
 [ComVisible(true)]
 public class ServerStatus : IDisposable
 {
 // Declare s the web service object that will run the STP

Reporting and Information VisualizationSAS Global Forum 2011

New Light through Old Windows: Delivering Real Time Information with Windows 7 Desktop Gadgets, continued

12

 avsas923.Server_Status s;

 // Method exposed to JScript and allows interop with SAS
 public String Status()
 {
 try
 {
 s = new Amadeus.avsas923.Server_Status();
 avsas923.server_StatusResponseServer_StatusResult rc =
s.server_Status();
 return rc.Parameters.Status.Value.ToString();
 }
 // Likely to catch here when the server is off-line, bad credentials etc.
 catch (System.Web.Services.Protocols.SoapException soapEx)
 {
 if (soapEx.Detail.InnerXml.Contains("paused") == true)
 {
 return "Paused";
 }
 else
 {
 return "Error";
 }
 }
 // Will catch here in all other situations
 catch (Exception e)
 {
 return "Cannot connect to server";
 }
 }

 // Method exposed to JScript and allows interop with SAS
 public int Connections()
 {
 try
 {
 s = new Amadeus.avsas923.Server_Status();
 avsas923.server_StatusResponseServer_StatusResult rc =
s.server_Status();
 return rc.Parameters.Connections.Value;
 }
 // Likely to catch here when the server is off-line, bad credentials etc.
 catch (System.Web.Services.Protocols.SoapException soapEx)
 {
 return -1;
 }
 // Will catch here in all other situations
 catch (Exception e)
 {
 return -2;
 }
 }

 public void Dispose()
 {
 //---do nothing---
 }
 }
}

Reporting and Information VisualizationSAS Global Forum 2011

	2011 Table of Contents

