

1

Paper 255-2011

Building Provider Panels: An Application for the Hash of Hashes
Judy Loren, Health Dialog, Portland, ME

Richard A. DeVenezia, Independent Consultant, Remsen, NY

ABSTRACT
Did you know that an element of a hash table can be another hash table? How cool is that? Kind of like a
multidimensional array on steroids. You don’t need to know in advance how many elements you will have nor how
deep they will nest. Furthermore, you can do this without a single macro variable!

The “hash of hashes” technique provides one solution to a classic challenge in healthcare: how to process claims
data to determine which provider within a given specialty is most likely overseeing a patient’s care. The algorithm
requires examining an unpredictable amount of information and making decisions at defined breakpoints.

This paper will demonstrate the code for a “hash of hashes” solution and compare it to two other approaches: the
double DOW and SQL. Along the way we’ll make use of some features of hash tables that are new in 9.2. If you
love hash tables, you’ll flip for the hash of hashes!

INTRODUCTION
Analysts in the health care field often need to infer from only healthcare claims (also called administrative data)
which provider (doctor, nurse practitioner, physician assistant, etc.) has been taking charge of a patient’s care. The
attribution of patient to provider drives activities such as outreach (sending a message about a patient’s activities or
apparent needs to a provider) and assessment (calculating rates of specific care over all the patients attributed to a
provider, also called the provider’s panel). Attribution can be limited to finding a patient’s Primary Care Provider
(PCP), or it can be extended to finding the overseeing provider within each specialty (cardiology, neurology,
oncology, etc.)

Most analysts use some variation of the approach described here. This has been simplified for illustration purposes.
As we will see, other techniques can handle the simplified version with greater efficiency. The demonstration of the
Hash of Hashes (HoH) approach is presented as the basis for solving more complex rulesets found in messy real
world problems.

Here is the simplified ruleset for attributing a patient to one provider within a specialty. For each patient:

1) Select claims from the most recent 18 months.

2) Select only those claims that have procedure codes indicating the provider saw the patient for a face-to-face
evaluation and management visit in an outpatient setting.

3) Count the number of visits to each individual provider.

4) Note the date of the most recent visit to each individual provider.

5) Within each specialty, select the provider with the largest number of visits (frequency).

a. If two providers of the same specialty have the same, largest number of visits, select the provider with the
most recent visit.

b. If multiple providers share the same, largest number of visits and the most recent visit date, choose the one
with the maximum value of provider_id (an arbitrary rule for guaranteeing only one provider per specialty).

SAS offers several techniques to encode this logic. This paper presents three of them:

 SQL – Structured Query Language, set-based statements and logic familiar to many people

 DOW – Do loop of Whitlock, or the Dorfman-Whitlock loop, explained completely in other papers (e.g., Dorfman,
2002 and Dorfman, 2009) and outlined here

 HoH – Hash of hashes, used in other languages and posted to SAS-L in May 2004.

SAMPLE INPUT DATA
Consider a set of healthcare claims displayed in Table 1 with the following key fields; Patient_id, Service_date,
Provider_id and Specialty. For illustration purposes, we show a single patient (ID 00004) who had multiple visits to

Programming: Beyond the BasicsSAS Global Forum 2011

2

healthcare providers in 2010. This patient consulted with two different chiropractors (specialty = 35): five
consultations with provider 124688 and one with 003663. The patient also had several visits to General Practitioners
(specialty = GP): two visits with 075224 and two with 097323.

Patient_id Service_date Provider_id Specialty
00004 01/10/2010 124688 35

00004 02/23/2010 124688 35

00004 05/02/2010 075224 GP

00004 06/16/2010 124688 35

00004 07/26/2010 003663 35

00004 07/27/2010 097323 GP

00004 08/29/2010 097323 GP

00004 09/05/2010 124688 35

00004 10/20/2010 075224 GP

00004 12/01/2010 124688 35

Table 1. Sample Input Data

The data file is sorted by Patient_id and then by Service_date. Before starting to write any code, we can manually
apply the desired logic to this patient and come up with the following results:

This patient’s chiropractor is 124688 by virtue of a frequency count of 5. The patient visited two general practitioners,
and each had two visits. The date-based tie-breaker rule is invoked and 075224 wins attribution by virtue of having
the patient’s most recent visit on 10/20/2010.

One patient’s data would be inadequate to test code fully, but it will serve to illustrate each coding approach.

DESIRED OUTPUT
Another piece of information you need before developing your code is the specification for the output. What
information will be required, and in what format? Let’s assume the following data structure will meet the user’s
needs:

Patient_id Specialty Attributed_provider Last_service_date Visit_count
00004 GP 075224 10/20/2010 2

00004 35 124688 12/1/2010 5

Table 2. Desired output

SQL
SQL allows for processing data in a set1 based manner. In SQL, rows of a table are members of set and have no
inherent ordering. Each member of a set has a collection of associated values which correspond to the columns of a
table. A collection of rows are grouped together using the GROUP BY clause.

PROC SQL contains a feature not commonly seen in other products (e.g., Oracle, DB2); the ability of the SELECT
statement to use an aggregate (or summary) function on a variable and have the result automatically merged with
each contributing detail record. That feature is leveraged several times in the SQL code to accomplish patient-
provider attribution.

The set-based nature of SQL requires that sequential business logic be coded as nested sub-queries. In terms of the
sample data we will have an innermost query evaluating the highest frequency, wrapped by a middle query focused
on visit date, which is wrapped by a query about provider for a final tie breaking evaluation.. Adding more

1 As in a mathematical set that is a collection of distinct objects.

Programming: Beyond the BasicsSAS Global Forum 2011

3

requirements to the problems, such as choosing randomly, or selecting based on the order in which the claims
appear, would pose more of a challenge.

libname mylib '/mydata/SGF_2011';

proc sql;
create table mylib.attrib as

select patient_id
 , specialty
 , provider_id as attrib_prv
 , Visit_count as attrib_count
 , last_date as attrib_dt
from
(select * from

(select * from

(select specialty length=2 format=$2.
 ,patient_id
 ,provider_id
 ,count(*) as visit_count format=4.
 ,max(service_date) as last_date
 format=yymmdd10.
from mylib.sample
group by patient_id, provider_id, specialty)

group by patient_id, specialty
having visit_count = max (visit_count))

group by patient_id, specialty
having last_date = max(last_date))

group by patient_id, specialty
having provider_id = max(provider_id)

This section defines a
summary of the claims
data by patient, provider
and specialty, creating a
count of visits and
calculating the latest
date of any visit of that
patient to that provider.

This section looks at the
summary defined above
and keeps only the
records where the count
of visits is equal to the
maximum count of visits
of that patient to any
provider in that specialty.

This section reviews the
set of records with the
maximum count of visits
and keeps only the
records where the last
visit date to that provider
is equal to the last visit
date of that patient to
any provider of that
specialty.

This forces the choice of
only one provider within
a specialty. It operates
on a set defined to
contain only the
providers with the
maximum number of
visits and the latest visit
date within each
specialty. If there are
two providers who meet
those criteria, this one
chooses the larger value
of provider identifier.

;
quit;

Programming: Beyond the BasicsSAS Global Forum 2011

4

DOW
In a paper written for the 2002 SESUG conference called “The Magnificent DO,” Paul Dorfman (crediting Ian Whitlock
as the originator) defined a particular use of the DO Loop Structure as a DOW-loop. This technique generally applies
to a situation in which the incoming data are sorted and grouped by an identifier (such as, in our case, the patient_id,
specialty and provider_id) and the goal is to process all the records within an identifier and perform some action (such
as compare with previously seen providers, or output) when you encounter the last record in the by-group. The
general case of the DOW-loop looks like this (from Paul Dorfman’s paper):

data ... ;
 <stuff done before break-event> ;
 do <Index Specs> until (Break-Event) ;
 set A ;
 <stuff done for each record> ;
 end ;
 <stuff done after break-event... > ;
run ;

Exploiting the DOW-loop for attribution of patients to providers requires the claims data to be sorted by patient_id,
specialty and provider_id. Note that the question of efficiency/performance is addressed later in the paper.

The code that will accomplish attribution via the DOW-loop contains multiple DO loops because tracking variables
must be initialized and checks accomplished at different break points.

The first loop repeats for all the records within a given patient. Prior to processing each specialty, the date of
attribution and count of visits for that specialty are initialized.

The second loop executes for all the records within a given specialty. Before we start each new provider, we have to
initialize the counters that we will use to record the number of visits and latest date for that provider.

The third, innermost loop is where we examine all the claims from a given provider. We count them and figure out
the latest visit date. After we have seen all the records for that provider, we compare the visit count and latest date to
what we have seen before for providers within that specialty. If this provider has more visits, or an equal number of
visits but a later visit date, than the best provider we have seen before for this specialty, we update the information
about the best provider and then loop back up to examine the next provider.

After we have seen all the records for a given specialty, we know who the best provider is, and we simply output the
record.

If there are more records (another specialty) for this same patient_id, we go through the specialty loop again.

If there are no more records for this patient, we reach the normal end of the data step. There is no automatic output
at this point because we have an explicit output statement at the end of each specialty. As long as there are more
records in the incoming dataset, the data step code will be executed again from the top.

libname mylib '/mydata/SGF_2011';
data mylib.attrib_dow;
 do until (last.patient_id);

attrib_dt = .;
attrib_count = .;
do until (last.specialty);
 vis_count = 0;
 last_date = .;

do until (last.provider_id);
 length specialty $ 2;
 set mylib.claims;
 by patient_id specialty provider_id;
 vis_count + 1;
 if service_date > last_date then
 last_date = service_date;
end;

* First loop *;

*Second loop *;

* Third loop*;

Programming: Beyond the BasicsSAS Global Forum 2011

5

 if vis_count > attrib_count then do;
 attrib_count = vis_count;
 attrib_prv = provider_id;
 attrib_dt = last_date;
 end;
 else
 if vis_count = attrib_count and last_date > attrib_dt then do;
 attrib_prv = provider_id;
 attrib_dt = last_date;
 end;
 else
 if vis_count = attrib_count and last_date = attrib_dt and
 provider_id > attrib_prv then do;
 attrib_prv = provider_id;
 end;
end;

output;
end;

*one attrib record
per patient_id
specialty;

run;

HOH: HASH OF HASHES
If you have not used hash tables to join data before, you should read Jason Secosky and Janice Bloom’s paper
“Getting Started with the DATA Step Hash Object.” In that paper, they offer a succinct description of the hash object:

“The hash object is an in-memory lookup table accessible from the DATA step. A hash object is
loaded with records and is only available from the DATA step that creates it. A hash record
consists of two parts: a key part and a data part. The key part consists of one or more character
and numeric values. The data part consists of zero or more character and numeric values.

Once a hash object is loaded with records, a lookup occurs by passing a key to the hash
object's FIND method. If a record with the particular key is found, the data part of the record is
copied into DATA step variables. In addition to being able to add and find records, there are
methods to replace records, remove records, and output records to a data set.”

In addition to hash tables, the code below makes use of hash iterator objects. Secosky and Bloom have a paper on
this topic as well, “Getting Started with the DATA Step Hash Iterator”. Quoting from that paper:

“The hash iterator works with a hash object and allows another means to access values in the
hash object without using a key lookup. Methods are used with the hash iterator to point to an
item in the hash object based upon location, not value.”

Armed with those definitions, we will proceed with the code.

The next technique exploits hash tables and hash iterators in an unusual way. As described above, a hash record
consists of a key part and a data part. In the following code, records in the hash object specialties consist of a key
part plus a reference to another hash object and reference to an iterator. Each record in specialties refers to a hash
table providers, which will be loaded for each patient with the claims for a particular specialty, and to an iterator
providersIterator, which will be used to look at each record in the providers hash table for that specialty
sequentially to select the appropriate provider for that patient within that specialty. When the work for a particular
patient is finished, the hash objects will be cleared of records in preparation for the next patient’s data.

The code includes some elements that are available only in SAS 9.2; these are noted. The technique itself does
work in SAS 9.1 but the efficiency aspects must be handled more manually. A schematic model that might help you
think about the hash table relationships is presented in Figure 1. The colors in the figure correspond to the highlights
in the code below. Note: The figure is not intended to represent how the hash objects or iterators are actually
implemented.

Programming: Beyond the BasicsSAS Global Forum 2011

6

libname mylib '/mydata/SGF_2011';
data mylib.attrib(keep=patient_id specialty attrib_prv attrib_dt attrib_count);

 length specialty $ 2 provider_id $ 15;
 declare hash specialties ();
 specialties.defineKey ('specialty');
 specialties.defineData ('specialty', 'providers',
 'providersIterator');
 specialties.defineDone ();

 declare hiter specialtiesIterator('specialties');
 declare hash providers;
 declare hiter providersIterator;
 do until (endOfDataset);

do until (last.patient_id);
 set mylib.claims end = endOfDataset;
 by patient_id;

 if specialties.find() ne 0 then do;

 providers = _new_ hash (ordered:'a');
 providers.defineKey ('provider_id');
 providers.defineData ('provider_id', 'specialty',
 'rcnt_dt', 'count');
 providers.defineDone ();

 providersIterator = _new_ hiter('providers');
 specialties.add();
 end;
 if providers.find() = 0 then do;
 count = count + 1;
 rcnt_dt = max(rcnt_dt, service_date);
 end;
 else do;
 count = 1;
 rcnt_dt = service_date;
 end;

 providers.replace ();

end;

* Now we need code to walk the HoH table and select the appropriate provider for each of
the hash table entries (one hash table per specialty) *;

do while(specialtiesIterator.next() = 0);

 if providers.num_items > 0 then do;
 max = 0;

* hash of hashes;

* data element providers is an
anonymous hash object and
providersIterator an anonymous
hash iterator;

* anonymous hash: no key or data
defined yet;
* anonymous hash iterator;
* loop over entire dataset*;

* When SET is executed the
variable 'specialty' receives a value
from mylib.claims;

* FIND() is used to check whether
a providers hash already exists
for this specialty;

* create a hash for the providers of
this specialty;

* insert an element whose data are
the references to the hash and its
iterator;
* Retrieve from the hash table the
count and most recent date for this
provider_id. If this provider_id has
been seen before then increment
count and update host variable
rcnt_dt *;
* If this provider has not been seen
before, start the count at 1 and
initialize the rcnt_dt to the
service_date of this claim*;

*update the data elements of the
specialty’s anonymous hash;

* end do until last.patient_id;

* Each data element in specialties
contains a reference to a hash
containing providers of a specialty.
NEXT() points to each record of
specialties in succession and
updates the host variables
providers and providersIterator;

*If there are any provider records
in this table, proceed with the logic
to select one *;

Programming: Beyond the BasicsSAS Global Forum 2011

7

 do while (providersIterator.next() = 0);
 if count > max then do;
 attrib_prv = provider_id;
 attrib_dt = rcnt_dt;
 attrib_count = count;
 max = count;
 end;
 else if count = max then do;
 if rcnt_dt > attrib_dt then do;
 attrib_prv = provider_id;
 attrib_dt = rcnt_dt;
 attrib_count = count;
 end;
 else if rcnt_dt = attrib_dt then do;
 if provider_id > attrib_prv
 then attrib_prv = provider_id;
 end;
 end;
 end;
 OUTPUT;
 providers.clear();

*The clear() method is not available in 9.1—it was introduced in 9.2 For 9.1, clear the

table manually as instructed in Secosky Iterator paper.*;
 end;

end;

end;

*attribution by highest frequency;

* attribution by date based tie
breaker;

* same count, same last date, take
max prv_id *;

*one record per patient_id per
specialty *;

* Remove the rows from the hash
table for this specialty, but do not
delete the structure.

* END if providers.num_items > 0;

* END do while (specialties.next()
> 0);

* END do until endofDataset *;

run;

Figure 1. Schematic model of Hash of Hashes

Programming: Beyond the BasicsSAS Global Forum 2011

8

PERFORMANCE COMPARISON
While it’s interesting to explore a variety of techniques for implementing logic, sooner or later someone will ask,
“Which one is best?” Almost any definition of “best” would include fastest execution time. Table 3 compares CPU
and real execution times for the three techniques above on a Red Hat Linux server running 32-bit SAS 9.2

Technique Obs IN Obs OUT CPU Time Real time
SQL 2,777,502 1,192,711 11.93 seconds 9.27 seconds

DOW 2,777,502 1,192,711 4.29 seconds 4.56 seconds

HoH 2,777,502 1,192,711 18.73 seconds 18.85 seconds

Table 3. Execution times

Of the three techniques, DOW has the fastest execution time. However, that approach depends on having the
incoming data sorted by patient_id, specialty and provider_id. Doing that sort on the test data used here took 26.1
seconds (real time). This might be too much of a burden for a one-time analysis, but repeated use of data after the
sort would justify the investment.

SQL performs well on unsorted data, but it has limitations in terms of the information it can return in that time. For
example, if we have to keep track of which rule was required for each attribution, the SQL would be more complex
and take longer to run.

The HoH technique took the longest to run. It also depends on having the data sorted, but it’s more flexible in that it
can handle any sort order within patient_id.

ADDING COMPLEXITY
What if the rules for determining the appropriate provider within a specialty are more complicated? How would that
affect each of the techniques?

Consider the following enhancement: If a patient has seen only one provider of a certain specialty in the last 12
months (not the last 18 months), and the patient has seen that provider at least twice in the last 12 months, choose
that provider, regardless of what happened prior to the most recent 12 months. Otherwise, continue with the ruleset
described initially.

This requirement obviously complicates the code because now instead of simply relying on filtering the incoming
dataset on date, the code itself has to consider the date range to differentiate between last 12 months and last 18
months. It also multiplies the sets required in the SQL approach because instead of just choosing all the providers
that meet certain criteria at each step and continuing to narrow one original set, the choice now depends on
comparing elements in multiple sets.

Another requirement that would change the comparison among the techniques in both coding ease and performance
would be keeping track of which rule resulted in the attribution. Is this provider a 12-month lone provider? Or a tie-
breaker for whom there is another provider of equal claim to the attribution?

It is beyond the scope of this paper to accomplish these and other enhancements. They are presented to put the
performance comparisons in context. The Hash of Hashes is complicated to code, but it may be just the solution to a
particular set of requirements and data configuration.

CONCLUSION
The purpose of this paper was to put into the body of user group papers the Hash of Hashes technique. The
particular problem chosen for the illustration is fairly common among analysts in the healthcare field. The simplified
ruleset can be implemented a number of ways. SQL is compact, elegant, and more efficient in solving the simplified
problem, and it doesn’t require the incoming data in a particular sorted order. The DOW technique is blazingly fast if
the data are already sorted in patient_id, specialty, provider_id order. The addition of requirements can change the
relative performance. This doesn’t invalidate any of the techniques; it only speaks to the need to have multiple tools
at your fingertips when you are faced with complex programming tasks. Techniques added in SAS 9.2, such as the
.clear() method, improve the efficiency of both runtime and coding time for the Hash of Hashes approach.

Programming: Beyond the BasicsSAS Global Forum 2011

9

REFERENCES
 Chakravarthy, Venky . 2003. “The DOW (not that DOW!!!) and the LOCF in Clinical Trials .” Proceedings of the

SAS Users Group International 2003 Conference. Seattle, WA: SAS Institute. Available at
http://www2.sas.com/proceedings/sugi28/Proceed.pdf

 Dorfman, Paul. 2002. “The Magnificent DO.” Proceedings of the SouthEast SAS Users Group 2002 Conference.
Savannah, GA: SESUG. Available at http://www.lexjansen.com

 Dorfman, Paul and Vyverman, Koen . 2009. “The DOW-Loop Unrolled .” Proceedings of the SAS Global Forum
2009 Conference. Washington, DC: SAS Institute. Available at
http://support.sas.com/resources/papers/proceedings09/TOC.html

 DeVenezia, Richard A.. “SAS Code Samples.” Data Processing, hash-6. January 7, 2011. Available at
http://www.devenezia.com/downloads/sas/samples/.

 Secosky, Jason and Bloom, Janice. “Getting Started with the DATA Step Hash Object.” Proceedings of the
Pacific Northwest SAS Users Group 2006 Conference. Seaside, OR: PNWSUG. Available at
http://www.lexjansen.com/pnwsug/2006/Secosky-PNWSUG06.pdf.

 Secosky, Jason and Bloom, Janice. “Getting Started with the DATA Step Hash Iterator. SAS Institute. Available
at http://support.sas.com/rnd/base/datastep/dot/iterator-getting-started.pdf (accessed February 5, 2011)

ACKNOWLEDGMENTS

RECOMMENDED READING
 Paul Dorfman has a number of papers on the hash object which will be helpful to any user trying to

learn more about it.

 Loren, Judy. 2008. “How Do I Love Hash Tables? Let Me Count the Ways!” Proceedings of the
SAS Global Forum 2008 conference. San Antonio, TX: SAS Institute. Available at
http://www2.sas.com/proceedings/forum2008/029-2008.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:
Judy Loren
Health Dialog
2 Monument Square
Portland, ME 04101
jloren@healthdialog.com

Richard A. DeVenezia
Independent Consultant
9949 East Steuben Road
Remsen, NY 13438
rdevenezia@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Programming: Beyond the BasicsSAS Global Forum 2011

	2011 Table of Contents

