
1

Paper 207-2011

Plate of Spaghetti Anyone?
Techniques for Learning Existing SAS® Programs

Tricia Aanderud, Independent Consultant, Raleigh, NC, USA

ABSTRACT
When starting a new job or project, a programmer may receive existing programs that need modifications. Often the
code’s original intent has morphed over the years and many other programmers have made minor changes to it.
There may be little documentation to explain the code, the job setup, or even how to run it.

INTRODUCTION
To understand existing programs, you need to learn the environment or structure, learn the code, and learn the data.
This paper walks you through the steps for collecting and evaluating the needed information. While aimed at larger
jobs, this process can be applied to smaller ones as well. Once you have collected and understood this information, it
will be easier to make modifications and even improvements to the program.

LEARN THE STRUCTURE
Prepare yourself to learn the code by first learning about its supporting environment. Use a spreadsheet application
to organize your information. The first sheet contains the basics about the program; the second sheet contains
information about the environment, and the third sheet contains information about the code. After being completed,
this spreadsheet will be your reference guide to the code.

GATHER THE BASIC INFORMATION
You should collect some basic information about the code, such as program name, purpose, and location. The
Overview tab is a good location to keep any other general notes that may be valuable later, such as people who may
have helpful input along with their contact information. Figure 1 has an example Overview tab for a fictitious customer
service job.

Figure 1. Job Organization - Overview Tab

Planning and SupportSAS Global Forum 2011

Maintaining and Improving Existing SAS© Programs continued

2

DOCUMENT THE ENVIRONMENT
For the environment, you need an idea of the job scope, where it runs and where all its pieces are located. This
sheet contains detailed information about file locations, supporting file locations, and any information about what is
needed to run the job. Eventually you will have this information memorized, but in the beginning a reference helps.
Figure 2 shows one way to organize this information. The way you layout this information may vary considerably
depending on the job and its scope.

Figure 2. Job Organization - Environment tab

DIAGRAM THE ENVIRONMENT
If there are many elements, having a picture helps you better understand the relationships. You can categorize the
environment by data, code, and outputs. The following diagram is a simplified example of how you can layout the
information. Keep in mind; this does not have to be a formal drawing. Even a simple hand drawing that you keep near
your monitor may be the only quick reference you need.

CODE OUTPUTDATA

PROGRAMS
(CA_SRV_445)
-Batch Jobs
-Stored Processes
-Macros
-Formats
-UtilitiesORACLE

-Customer Accounts
-Inventory

SYBASE
-Customer Contacts
-Trouble Tickets

MS Access
(Shared Drive)
-Return Parts

SAS Dataset
-Historical order data

SAS_BI_RPTS
(BI_SRV_NUM_3)
-Fact Tables
-Cust_Serv_Data
-MFG_Data
-RMAs

Warehouse_SAS1
(SPOCK)
-Source Data

--Internal Use--

Archive
(CA_SRV_766)
-Reports
-Formats
-Programs

Warehouse_SAS2
(KIRK)
-Inventory

Warehouse_SAS3
(SCOTTY)
-Customer Contacts
-Customer Accounts
-Legal Requirements

WEB_SERVER
(Customer_Web)
-Trouble Tickets
-RMAs

Figure 3. Example of Job Diagram

Planning and SupportSAS Global Forum 2011

Maintaining and Improving Existing SAS© Programs continued

3

LEARN THE CODE
After you have the environment, you can start reviewing the code structure to understand how it works. You need to
go through the code initially with the goal of gathering some key information about the job itself. Thereafter you will
be learning the code flow and structure.

Gathering Key Information

The first time through the code look for information about the job setup and other clues about how the code works. If
the code has had many hands helping it along, there is most likely a variety of approaches. During this phase,
search for the key information, as suggested in the following table.

Information Purpose Suggested Search Words

What libraries are used Where data is access and stored libname

Sources How data is accessed or stored filename

Options Finding a hidden option can save you hours of
troubleshooting later

options, ods

Macros library Is there a central macro storage area or some
macros used in your job that you cannot modify

sasautos, mstored

Included code It’s helpful to know if the code takes a detour. %include

Macro code Repetitive code created in the job; some
programmers depend heavily on macros

%macro, %mend

Formats Is there a central storage area and are you able to
make changes

fmtsearch; proc format;
value

Using SAS to Help

If you treat the code as raw data, you can use SAS to import the code into a dataset. Then, you can parse each line
to find keywords related to the code flow. Use ODS to write the output to an XLS file that you can copy into your
spreadsheet. The code to import and classify the SAS program is in Appendix A. In Figure 4, you see how the code
looks after it is categorized and how color the helps guide your eyes. Now, you can then take advantage of
spreadsheet features, such as auto filter and search to learn the code.

Figure 4. Code after reading into spreadsheet application

Planning and SupportSAS Global Forum 2011

Maintaining and Improving Existing SAS© Programs continued

4

You can also use the data to build reports about your code. Figure 5 shows a sample report from the dataset that
details the Files, Libraries, and other information you need in your first walkthrough.

Figure 5. Example of Job Overview Report

Tips for Walking the Code

It’s easy to get distracted at this point as the code is probably not written the way you think it should be. Also if the
code has survived for several years, it may not follow a logical flow or have a consistent style.

• If you use a spreadsheet for the code analysis, add a column to the right where you can place your notes or
your own explanation of what the code is doing

• Start from the end and work your way back through the code. The advantage of starting at the end is that
you are less distracted by the coding techniques because you are focused on determining how the output
was created.

• Use a separate sheet to make notes of changes you want to implement. You need to prevent yourself from
rewriting the code before you have learned it. You can also highlight the code in the spreadsheet so you can
return to it later.

Common Items Checklist

As you read the code flow, use the following checklist as a guideline to search for useful information:

• Can you identify a programming style? Did the programmer prefer data steps or PROC SQL?

• Are there comments to explain what is happening and why? Are they accurate?

• Is a lot of macro coding used or maybe none at all?

• What datasets are used as source and which are created as a result? What datasets are used repeatedly?
Which datasets are kept? Can you determine why some are saved over others?

• What variables do you see most often?

• Can you determine any unique variables (look for the BY statement in PROC SORT)?

• Can you determine the requirements based on the logic (IF/THEN/ELSE statements)?

Planning and SupportSAS Global Forum 2011

Maintaining and Improving Existing SAS© Programs continued

5

LEARN THE DATA
After you have determined the code flow, learning the data is the next step. Using the code as a reference, it’s useful
to determine which variables are used most often. If you review the BY statements and Join statements you
determine the unique variables. Otherwise, scanning the code you can begin to divide the variables into three groups,
as follows:

• Primary - used often in the program

• Secondary - used less often but referenced

• Tertiary – rarely or never used

Taking a Data Deep Dive

When you need help understanding the datasets size and variables, use the SAS dictionary views. The following
example shows a way to use a dictionary to determine the dataset size, variables, and change dates. This code uses
the SASUSER library and some common datasets to help you understand how it works. In Figure 6, the code result is
shown. The CARS dataset has 428 observations and a total of 15 variables: 5 character and 10 numeric.

proc sql;
select libname, memname, crdate, modate, nlobs, nvar, num_character, num_numeric

from sashelp.vtable
where libname = UPCASE(‘SASHELP’);

quit;

Figure 6. Data Dictionary Example

Down to the Data Details

After you have listed the main datasets and determined the primary variables, you are ready to learn what the data
contains. The basic SAS procedures can help with this task. PROC MEANS can help you discover the data
population and PROC FREQ can you help you understand the common values in variables. The following provides
examples using data from the SASHELP library.

Analysis with Proc Means

Using the _numeric_ variable reference, you can review
all the numeric dataset variables at once with PROC
MEANS. You can quickly determine any missing values.

In this example, Cylinders has 2 records missing. This
could affect your results, so it is worth further
investigation.

Code Example
proc means data=sashelp.cars

n nmiss;
var _numeric_;
run;

Planning and SupportSAS Global Forum 2011

Maintaining and Improving Existing SAS© Programs continued

6

Analysis with Proc Freq

Using the same dataset, only this time use PROC FREQ
and the _character_ variable reference to see all
character variables at once.

In this example, you can see the values for Origin and
DriveTrain. You learn that the Origin is evenly spread but
not all continents are represented. Also DriveTrain has
front wheel drive the majority of the models. When
reviewing the code, you can understand what the filters
and logic are doing with these variables.

Code Example
proc freq data=sasuser.cars;
table _character_ /missing;
run;

READ THE LOGS
A final step would be to review the job logs. You may read the code without realizing that it is riddled with errors and
warnings that are preventing it from processing correctly. If you are changing the code, you may find additional
maintenance is needed before you can make any improvements. There are several past papers that contain
techniques and code to help you auto check log files.

CONCLUSION
Most likely, you are being asked to learn the code so you can make changes or correct any issues. The quicker you
are able to understand the environment, code, and datasets, the quicker you will be able to get to the real work.

REFERENCES
• Cody, R. 2007. Learning SAS by Example: A Programmer’s Guide. Cary, NC. SAS Press.

• Cody, R. Paper 57-27. Data Cleaning 101. SUGI 27.
Available at http://www2.sas.com/proceedings/sugi27/p057-27.pdf.

• Dilorio, F and Abolafia, J. Paper 237-29. Dictionary Tables and Views: Essential Tools for Serious
Applications, SUGI 29. Available at http://www2.sas.com/proceedings/sugi29/237-29.pdf.

• Droogendyk, H and Fecht, M. Paper 106-31. SAS® to Publishable Excel � Seamlessly – Using ODS, XML,
and Other Tricks, SUGI 31. Available at http://www2.sas.com/proceedings/sugi31/106-31.pdf.

• Hadden, L. Paper 142-31. Advanced PROC REPORT: Traffic Lighting - Controlling Cell Attributes With Your
Data, SUGI 31. Available at http://www2.sas.com/proceedings/sugi31/142-31.pdf.

• Mitchell, R. Paper 63-27. Fast and Easy Ways to Annoy a Statistician. SUGI 27.
Available at http://www2.sas.com/proceedings/sugi27/p256-27.pdf.

• Stojanovic, M. Paper CC-037. SAS ® Log Summarizer – Finding What’s Most Important in the SAS ® Logs.
SESUG 2008. Available at http://analytics.ncsu.edu/sesug/2008/CC-037.pdf.

• Winn, Jr., T. Paper 258-29. Guidelines for Coding of SAS© Programs. SUGI 29.
Available at http://www2.sas.com/proceedings/sugi29/258-29.pdf.

ACKNOWLEDGMENTS
Thanks to Jon Barry, Robert Bishop, Angela Hall, Jennifer Johnston, Tom Mabie, and Dipesh Patel for discussion of
thoughts, running sample code, proofreading the paper, and also just encouraging me to write this paper.

Are the other
continents
relevant?

Planning and SupportSAS Global Forum 2011

Maintaining and Improving Existing SAS© Programs continued

7

RECOMMENDED READING
These books are not specifically about SAS, but the ideas can be applied to your code and verification practices.

• Feathers, Michael. 2004. Working Effectively with Legacy Code. New Jersey. Prentice Hall.

• Martin, Robert. 2008. Clean Code, A Handbook of Agile Software Craftsmanship. New Jersey. Prentice Hall.

• McConnell, Steve. 2004. Code Complete: A Practical Handbook of Software Construction. Bellevue, WA.
Microsoft Press.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Tricia Aanderud

tricia.aanderud@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX A. CODE SAMPLE
/*===*/
/* Purpose: Imports and categorizes code */
/* Inputs: SAS files */
/* Outputs: SAS Dataset, Excel files */
/* Tested with SAS 9.1.3 and 9.2 */
/*===*/
/*Usage Notes: */
/* This file is setup to run in a Windows-based directory structure */
/* */
/* To use the code as is, do the following: */
/* 1 - Create this following directories from the root directory level: */
/* C:\temp\code */
/* C:\temp\code\output */
/* 2 - Copy your code to the c:\temp\code subdirectory */
/* */
/* Note: To use alternate paths, modify the filename and output_path vars */
/*===*/

options error=1 nocenter;

/*Load all files in the directory into one dataset*/
filename inCode "c:\temp\code*.sas";

/*Path for the EXCEL output */
%let output_path=c:\temp\code\output\;

/*Optional: Storage area for the code as a dataset */
libname sdata "&OUTPUT_PATH";

/*___*/
/*Loads each file, captures filename, & creates a dataset */

data sdata.CODE (drop=newline);
attrib Type format=$15. label='Code Analysis'

Number format=8. label='Line Number'
code_name format=$50. label='SAS Program Name'
code_line label='Code Line'
filename length=$256

;
retain code_name;

Planning and SupportSAS Global Forum 2011

Maintaining and Improving Existing SAS© Programs continued

8

infile inCode filename=filename eov=eov length=L;
input Code_Line $varying256. l;

/*===Capture the name of SAS program name if more than one program */
if _n_ eq 1 or eov then do;

code_name = scan(upcase(filename),-2,'\.');
eov = 0;

end;

/*Helps preserve line order during a SORT */
NUMBER=_N_;

/*Compress line to remove all white space, tabs; set line to uppercase*/
NewLine=upcase(strip(compress(code_line,"'009'x")));

/*Note: Assignment order for TYPE is purposeful */
/*Re arrange the order or make additions based on your situation */

if index(newline, '/*') gt 0
or index(newline, '*/') gt 0
or substr(newline,1,1) = '*' then TYPE='COMMENT';

else if index(newline, '%INCLUDE') gt 0 then TYPE='INCLUDED CODE';

else if index(newline, 'TITLE') gt 0
or index(newline, 'FOOT') GT 0
or index(newline, 'STYLE') GT 0 then TYPE='DISPLAY';

else if index(newline, 'PROC FORMAT') gt 0
or index(newline, 'VALUE') GT 0 then TYPE='FORMAT';

else if indexw(newline, 'PROC') gt 0 then TYPE='PROCEDURE';

else if indexw(newline, 'DATA') gt 0
or index(newline, 'CREATE TABLE') gt 0
or indexw(newline, 'OUT=') gt 0 then TYPE='OUTPUT DATA';

else if indexw(newline, 'SET') gt 0
or indexw(newline, 'FROM') gt 0
or indexw(newline, 'JOIN') gt 0
or indexw(newline, 'MERGE') gt 0
or indexw(newline, 'UPDATE') gt 0
or index(newline, 'DATA=') gt 0 then TYPE='INPUT DATA';

else if index(newline, 'LIBNAME') gt 0 then TYPE='LIBRARY';

else if index(newline, 'FILENAME') gt 0
or indexw(newline, 'FILE=') gt 0 then TYPE='FILES';

else if index(newline, 'IF') gt 0
or index(newline, 'ELSE') gt 0
or index(newline, 'CASE') gt 0
or index(newline, 'WHEN') gt 0
or index(newline, 'SELECT') gt 0
or index(newline, 'DO') gt 0 then TYPE='LOGIC';

else if indexw(newline, 'WHERE') gt 0
or indexw(newline, 'AND') gt 0
or indexw(newline, 'OR') gt 0 then TYPE='FILTER';

else if index(newline, '&') gt 0 then TYPE='MACRO VARIABLE';
else if index(newline, '%MACRO') gt 0 then TYPE='MACRO CREATED';

Planning and SupportSAS Global Forum 2011

Maintaining and Improving Existing SAS© Programs continued

9

else if index(newline, '%') gt 0 then TYPE='MACRO USED';
/****** Any custom code can go here */

else TYPE='OTHER';

/*Only output lines with data*/
if length(newline) gt 1 then output;

run;

/*___*/
/*Color code the lines to assist with learning */
/* You can change the hex codes for your preferred colors */
/*Reference for hex code colors: http://www.neopets.com/~triflot */

%LET GRAY = #D3D3D3; %LET RED = #CD5C5C; %LET PINK = #FFE4E1;
%LET ORANGE = #FA8072; %LET GREEN = #808000; %LET YELLOW = #FFFFCC;
%LET LTBLUE = #9999CC; %LET DKBLUE = #4682B4; %LET PURPLE = #DDA0DD;

proc format;
value $colorkeywords
'COMMENT' = &GRAY 'OTHER' = &GRAY 'DISPLAY' = &PINK
'PROCEDURE' = &GREEN 'MACRO' = &YELLOW 'LIBRARY' = &RED
'INCLUDED CODE' = &ORANGE 'LOGIC' = &PURPLE 'FILTER' = &PURPLE
'OUTPUT DATA' = <BLUE 'FORMAT' = &RED 'FILES' = &RED
'INPUT DATA' = &DKBLUE
;

run;

/*___*/
/*Create Spreadsheets */

ods listing close;

ods html file="&OUTPUT_PATH.Job_Info.xls" style=statistical;

title h=4 "Job Overview: Library";
proc report data=sdata.code nowd

style(header)=[background=#AD8BFE font_size=3]
style(report)=[background=white];

where type in ('LIBRARY', 'FILES', 'INCLUDED CODE')
or type contains ('MACRO CREATED')
or type contains ('FORMAT');

column type code_line;
define type/group;
define code_line/width=200;
run;

ods html close;

ods html file="&OUTPUT_PATH.Job_Code.xls" style=seaside;

title;
proc report data=sdata.code nowd

style(header)=[background=black foreground=white font_size=3];

where type not in ('COMMENT' 'OTHER'); /*Remove this line to see comments */

column code_name type code_line;
define code_line/width=200;

Planning and SupportSAS Global Forum 2011

Maintaining and Improving Existing SAS© Programs continued

10

compute type;
call define (_COL_, 'style', 'STYLE=[background=$colorkeywords.]');

endcomp;

run;

ods html close;
ods listing;

/*___*/
/* END OF CODE ==*/

Planning and SupportSAS Global Forum 2011

	2011 Table of Contents

