
1

Paper 149-2011

Genetic Algorithm Optimization for Selecting the Best Architecture of a
Multi-Layer Perceptron Neural Network: A Credit Scoring Case

Alejandro Correa, Banco Colpatria

Andrés González, Banco Colpatria

Camilo Ladino, Banco Colpatria

ABSTRACT
Neural Networks are powerful tools for classification and regression, but it is difficult and time costly to determine
the best architecture for a given problem. In this paper, Genetic Algorithms (GA) are used to optimize the
architecture of a Multi-Layer Perceptron Neural Network (MLP) in SAS®, in order to improve the predictive power
of the credit risk scorecards. The objective function to maximize is the ROC curve and the input variables are the
number of hidden layers and units, activation function, use or not of bias and whether it will be a direct
connection between the initial and the final layer. Results show that this method outperforms logistic regression
and the default neural network architecture of SAS Enterprise Miner™. The predictive power of this method is
similar to the Global Optimum but in a reasonable time.

INTRODUCTION
In order to mitigate the impact of credit risk and make more objective and accurate decisions, financial entities
have created new and better tools to predict and control their losses (Anderson, 2007) (Lawrence & Solomon,
2002). This is why it has become common in financial institutions around the world to use scorecards to measure
a customer's credit risk (Abranhams & Zhang, 2009) (Mays, 2004) (Thomas, 2009). A scorecard is a statistical
model that allows attributing a rating (score) to a client, which indicates the predicted probability that the
customer reflect a certain behavior. What is sought with scorecards is to create an estimated measure of a
customer’s risk, i.e., the probability of a customer having a good payment habit if a loan is granted, based on past
experiences (Thomas, 2002). The most commonly used method by financial institutions to estimate these models
is the logistic regression (Allison, 2003), because of its predictive power and ease of interpretation. But there are
other methods, such as Neural Networks, which have a higher level of complexity that could improve the
predictive power of the scorecards.

Neural Networks aren’t widely used in credit scoring due to two main reasons, i) the difficulty with interpretability
and ii) the complexity in model development. When developing a Multi-Layer Perceptron (MLP) Neural Network,
analysts have to address several kinds of architectural issues. In this paper, an optimization of the architecture of
the Multi-Layer Perceptron Neural Network is made using an implementation of Genetic Algorithm in the SAS
system (SAS Institute Inc., 2010).The objective function to maximize is the ROC curve(Receiver operating
characteristic) and the decision variables are the number of hidden layers and their activation function, the
number of hidden units in each layer, the activation function of the target layer, and whenever or not to use bias
or to have a direct connection between the input and output layer. Although, a similar optimization methodology
has been developed in other fields (Carstern & Paasch, 2008), to our knowledge, this methodology haven’t been
applied to improve credit risk scorecards.

This paper is divided into five sections. First, a description of the data and the variables used for the model
development is made. Subsequently, there is an introduction to general concepts of Multi-Layer Perceptron
Networks (MLP) and Genetic Algorithms (GA) methodology. The third section poses the specific definitions for
modeling with the MLP and the GA. Next, the results are shown based on a comparison with a default Neural
Network architecture developed in SAS Enterprise Miner™ (Matignon, 2005), and a logistic regression. Also, all
possible architectures of the MLP for our case of study are calculated, and the best one (Global optimum) is
compared. Finally, conclusions are presented.

DATA DESCRIPTION
For the model construction, 125.557 clients with active credit cards in June 2009 are used. Using the bank’s
default definition over the performance period, clients are classified into good and bad. Variables names are
changed to X1 … X7 by request of the financial institution (clients credit information is confidential).The original
variables have been standardized and Table 1 displays the descriptive statistics of the seven variables, while
Table 2 presents the correlation between them. The maximum correlation between the seven variables is 0,0176.
Finally, Table 3 shows how the original data is randomly divided into three different datasets used for the
scorecard development and validation.

Data Mining and Text AnalyticsSAS Global Forum 2011

2

Table 1. Descriptive statistics of the variables
Variable N Mean Std. Dev. Minimum Maximum

X1 125.557 -0,027 5,823 -5,615 53,637

X2 125.557 0,002 1,629 -66,097 52,220

X3 125.557 0,003 1,511 -13,606 20,037

X4 125.557 0,000 1,376 -13,579 33,091

X5 125.557 0,014 2,108 -10,655 21,943

X6 125.557 -0,014 1,710 -8,699 38,439

X7 125.557 -0,002 1,656 -63,313 122,732

Table 2.Correlation Matrix

Variable X1 X2 X3 X4 X5 X6 X7

X1 1 0,0019 -0,0051 0,0046 0,0176 0,0039 -0,0003

X2 0,0019 1 -0,0026 0,0142 -0,0033 -0,0009 -0,0004

X3 -0,0051 -0,0026 1 0,0111 -0,0059 -0,0015 -0,0094

X4 0,0046 0,0142 0,0111 1 -0,0022 0,0014 -0,0093

X5 0,0176 -0,0033 -0,0059 -0,0022 1 -0,0023 -0,0013

X6 0,0039 -0,0009 -0,0015 0,0014 -0,0023 1 0,001

X7 -0,0003 -0,0004 -0,0094 -0,0093 -0,0013 0,001 1

Table 3.Development and validation datasets

Data N Percentage of the total population Bad Rate

Train 50.223 40,00% 56,48%

Test 37.667 30,00% 56,68%

Validation 37.667 30,00% 56,84%

Total 125.557 100,00% 56,65%

GENERAL CONCEPTS

 MULTI-LAYER PERCEPTRON NEURAL NETWORK
An artificial neural network is a mathematical/computational model that tries to imitate the structure and
functionality of biological neural networks (Rosenblatt, 1962). It is composed by a set of simple
computational units that are highly interconnected. These units are called nodes, and each one
represents a biological neuron. In a neural network, the hidden units receive a weighted sum of the
inputs and apply an activation function to it. Then, the output units receive a weighted sum of the hidden
units output and apply an activation function to this sum. Information is passed from one layer to the
next. The neural network finds the weights by an iterative process through different types of algorithms.

The network discussed in this paper is called a Multi-Layer Perceptron Neural Network and it has some
specific characteristics. In order to easily explain the MLP neural network structure, Figure 1 shows the
main components. It has an input layer that represents the input variables to be used in the neural
network model and it can be connected directly with the output layer. It also has i hidden layers and
each layer contains j hidden units. In Figure 1 the hidden units are represented by circles. The
connections between units are unidirectional and are represented by directed lines. Each connection
has an associate scalar called weight w. The hidden units have a variety of hidden activation functions
and also a linear combination function. Finally, the MLP has an output layer that computes for the result
of the process. The output layer also has a target activation function. Both, the hidden layers and the
output layer could have the bias option activated. A bias term can be treated as a connection weight
from a special unit with a constant, nonzero activation value. The term "bias" is usually used with
respect to a "bias unit" with a constant value of one.
The single bias unit is connected to every hidden or output unit that needs a bias term. Hence the bias
terms can be learned just like other weights.

Data Mining and Text AnalyticsSAS Global Forum 2011

3

Figure 1. MLP Neural Network structure

 GENETIC ALGORITHM
Genetic Algorithm (GA) is an optimization technique that attempts to replicate natural evolution
processes in which the individuals with the considered best characteristics to adapt to the environment
are more likely to reproduce and survive. These advantageous individuals mate between them,
producing descendants similarly characterized, so favorable characteristics are preserved and
unfavorable ones destroyed, leading to a progressive evolution of the species.

Artificial genetic algorithm aims to improve the solution to a problem by keeping the best combination of
input variables. It starts with the definition of the problem to optimize, generating an objective function to
evaluate the possible candidate solutions (chromosomes), i.e., the objective function is the way of
determining which individual produces the best outcome.

The next step is to generate an initial random population of n individuals called chromosomes that are
symbolized by binary strings, where each binary position of the chromosome is called a gene and
denotes a specific characteristic (input variable). Therefore the combination of all the different
characteristics encoded in the string represents an individual who is a candidate for the solution.

Each chromosome is evaluated in the objective function and the best individuals are selected to survive
for mating (parents), while the worse ones are discarded to make room for new descendants. There are
many ways of pairing the selected chromosomes (Haupt & Haupt, 2004). In this paper, a weighted cost
pairing is used, which consists of assigning a selection probability according to each chromosome cost.
That is, a chromosome with the higher cost has a greater probability of mating because cost
maximization is desired.

After selecting the parent chromosomes with the chosen pairing method, the next step is to create a
second generation of individuals, based on the information of the parents. There are several ways of
mating (Haupt & Haupt, 2004).In this paper, two parents create one child.

In order to transfer the parent’s binary information to the child, there are genetic operators such as
crossover point and mutation. The one-point crossover technique consists in selecting one random point
on the parent’s string. The child is created in the following way: First, the parent1 transfers its binary
code from the first gene to the crossover point. Then the parent2 transfers its binary code from the
crossover point to the last gene of the chromosome. New parents are randomly selected for each new
child and the process continues until the chromosome population grows back to the original size n.

Once the breeding process is completed, random mutation is used to alter a certain percentage of the
genes of the chromosomes. The purpose of mutation is to introduce diversity into the population,
allowing the algorithm to avoid local minima by generating new gene combinations in the chromosomes.
The most common mutation procedure is the one called single point mutation. It’s implemented by
generating a random variable that indicates the position of the gene that will be modified, from the
population of chromosomes. Generally, mutation is not allowed in the best solution chromosomes
because these “elite” individuals are destined to propagate unchanged. In genetic algorithm this is
called elitism (Haupt & Haupt, 2004).

Finally, after mutation is done the new generation of chromosomes is evaluated with the objective
function and used in the next iteration of the described algorithm. The algorithm iterates until a
maximum number of chromosome generations are created or a satisfactory solution is reached.

Data Mining and Text AnalyticsSAS Global Forum 2011

4

A flowchart of the described process is presented below:

Flow diagram extracted from (Haupt & Haupt, 2004)

MODELING
Now that the general concepts of MLP neural Networks and genetic algorithms have been covered, it is time to
focus on the specific case of this paper. First, a definition about the activation and combination functions in the
neural network is presented. Given that in credit scoring the objective is to obtain a predicted probability to reflect
a certain behavior of a client, the MLP neural network target activation functions have been bounded to functions
with range between 0 and 1. Table 4.a. and Table 4.b. present the activation and combination functions used in
this paper. Second, the discussed network finds the weights through a Backpropagation algorithm (Warner &
Misra, 1996).

 Table 4.a. Hidden Layers Functions Table 4.b. Target Layer Functions

Hidden
Combination

Function

Hidden
Activation
Function

Hidden
Activation
Function

Range

Target

Combination
Function

Target Activation
Function

Linear:

Linear:

Linear:

Logistic:

Logistic:

 Mlogistic:

arctan:
)

 Softmax:

Hyperbolic
angent:

Gauss:

In addition, for the genetic algorithm modeling the ROC curve (Receiver operating characteristic) is chosen as
the GA objective function to maximize because it measures the neural network capability to assign and rank
relatively more low scores to loans that eventually become bad than to loans that continue with a good behavior.
The ROC is also known as the swap curve since it represents the exchange between good clients and bad
clients, i.e., the percentage of bad clients to be allowed in order to accept a certain percentage of the good
clients.

Data Mining and Text AnalyticsSAS Global Forum 2011

5

Subsequently, the definition of the input variables and the chromosome structure is carried out. Seven input
variables are selected to form the chromosome that is going to have a total of 12 genes which can generate a
total of 4.096 () possible combinations. The chromosome structure is defined as follow:

 Hidden Layers Hidden Units DC HL Bias HL Activation TL Activation TL Bias

Likewise, the variables of the chromosomes are encoded in the following manner:

Hidden
Layers

Hidden
Units

Direct

Connection

Hidden
Layers

Bias

 Hidden
Layers

Activation
Function

Target
Layer

Activation
Function

 Target
Layer
Bias

00 = 1 000 = 1 0 = No 0 = No 00 = Logistic 00 = Logistic 0 = No

01 = 2

001 = 2 1 = Yes

1 = Yes

01 = Linear

01 =
Mlogistic

 1 = Yes

10 = 3 … 10 = Act Tan 10 = Softmax

11 = 4 111 = 8 11 = Tan H 11 = Gauss

Finally, other key definitions are the total size of the population, the number of “elite” individuals and the
percentage of genes to mutate from the entire chromosome population. Correspondingly, the population size is
16 individuals (chromosomes), the best four solution chromosomes will remain unchanged and the percentage of
mutation is 2% of the genes of the total population.
In order to facilitate the understanding of the genetic algorithm (GA) iterative process, the pseudo-code is
attached.

RESULTS
In this section we present the experimental results of the genetic algorithm used to select the best architecture of
the MLP neural network. Results of a run of 30 iterations with the GA are compared with the results of a neural
network using the default parameters of SAS Enterprise Miner™ (1 hidden layer, 3 hidden units, no direct
connection, hidden layer bias = yes, Tan H hidden layer activation function, logistic target layer activation
function, target layer bias = yes), a logistic regression (most common algorithm in credit scoring) using SAS
PROC LOGISTIC with stepwise variable selection and the global optimum.

The comparison of the ROC curves obtained by the Genetic Algorithm in the MLP network and the other three
alternatives are exhibited in Figure 2. The area under the ROC curve of the GA (71,25%) is significantly larger
than that of the MLP neural network using the default parameters of SAS Enterprise Miner™ (68,09%) and the
logistic regression (65,92%). This difference indicates that the GA in the MLP neural network has a greater
predictive power at all risk levels. The only alternative that slightly exceeds the GA performance is the global
optimum (71,26%) but the difference is so small that it doesn´t represent a significant improvement in predictive
power to justify the great additional effort (see Table 5).

Figure 2. Comparison of ROC curve

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Se
ns

it
iv

it
y

1 - Specifity

Global Optima - Roc=71.26%

GA - MLP 30 iters - Roc=71.25%

Sas Default MLP - Roc=68.09%

Logistic - Roc=65.92%

Random - Roc=50%

Data Mining and Text AnalyticsSAS Global Forum 2011

6

In addition to the statistical evidence presented in the ROC curve, Table 5 shows the computational effort of each
alternative through two measures, the total time spent in minutes (CPU time in minutes) and the number of times
that the SAS function was called. Since the logistic regression and the MLP neural network using the default
parameters of SAS Enterprise Miner™ are run only once, both have only one function call and spent 1 and 2
minutes respectively. As presented above, this two alternatives show the worst predictive power measured by the
ROC curve.

The GA used to optimize the MLP neural network architecture spent 9,3 hours (559 minutes) in a 30 iteration run
and made 274 function calls while the model used to find the global optimum took 139,2 hours (8.356 minutes)
and made 4.096 function calls (all possible combinations). These last two alternatives have approximately the
same predictive power and the difference in computational effort is evident. The GA spent 1.395% less time and
function calls than the global optimum finding method.

Table 5. Measures of comparison

Model ROC CPU time (m)
Function

calls

Default MLP 68,09% 2 1

Logistic Regression 65,92% 1 1

GA - MLP 30 iterations 71,25% 559 274

Global Optimum 71,26% 8.356 4.096

Finally, table 6 displays the final architecture of the neural networks found with the GA and the global optimum
model.

Table 6. Best MLP neural network architecture

Model
Hidden
Layers

Hidden
Units

Direct
Connection

Hidden
Layers
Bias

Hidden
Layers

Activation
Function

Target Layer
Activation
Function

Target
Layer Bias

GA - MLP 30
iters 2 6 0 1 TAN 0 SOF

Global Optimum 2 5 1 1 LOG 0 LOG

CONCLUSION
This paper have shown the use of Genetic Algorithms in credit risk modeling as a technique to optimize the
process of choosing the architecture of a MLP neural network that maximizes the area under the ROC curve and
therefore the scorecard predictive power.

The experimental results have shown that with far less computational effort the GA used to optimize the MLP
neural network came to a result approximately equal to the global optimum. Also, since the difference between
the ROC curves of these two alternatives is negligible, we illustrate that it doesn´t represent an improvement in
the scorecard predictive power. It is also important to say that the GA outperformed the results of the logistic
regression and the results of the MLP neural network using the default parameters of SAS Enterprise Miner™.

PSEUDO - CODE
The SAS Code may be sent on request to authors.

Variable Integer Num_Chromosomes

Variable Integer Num_Genes

Variable Integer Num_Elitism

Variable Integer Num_iterations

Variable Integer Per_Mutations

Variable Boolean Chromosomes (Num_Chromosomes , Num_Genes)

Variable Double Cost (Num_Chromosomes)

Variable Double Prob(Num_Chromosomes)

Variable Integer Father (Num_chromosomes – Num_Elitism)

Variable Integer Mother (Num_chromosomes – Num_Elitism)

Variable Boolean Child (Num_chromosomes – Num_Elitism , Num_Genes)

Variable Boolean Elitism (Num_Elitism , Num_Genes)

Function Decoding

// Function that convert a chromosome into Neural Network parameters

Function Calculate_Cost

Data Mining and Text AnalyticsSAS Global Forum 2011

7

 Architecture = Call Decoding(Chromosome)

 Net = Call Neural_Networks(Architecture)

 Return CallRoc (Net)

End Function

Function Genetic_Algorithm

Cromosomes (all,all) = Call Create_random_population

For iter = 1 to Num_iterations

 For i = I to Num_Chromosomes

 Cost(i) = Call Calculate_Cost (Cromosomes (i , all))

 End For

 // Calculate cumulative matching probability

 For i = I to Num_Chromosomes

 Prob(i) = Prob(i-1) + Cost(i) / sum (Cost(all))

 End For

 // Selection

 For k = 1 to Num_Chromosomes – Num_Elitism

 Rand = Call Random(Uniform,0,1)

 Father(k) = 0

 For i = 1 to Num_Chromosomes

 If Rand <= Prob(i) And Father (k) = 0 Then

 Father(k) = i

 End If

 End For

 Rand = Call Random(Uniform,0,1)

 Mother(k) = 0

 For i = 1 to Num_Chromosomes

 If Rand <= Prob(i) And Mother (k) = 0 Then

 Mother(k) = i

 End If

 End For

 End For

 // Mating

 For k = 1 to Num_Chromosomes – Num_Elitism

 Rand = Call Random(Uniform,1,Num_Genes)

 For j = 1 to Num_Genes

 If j <= Rand Then

 Child(k , j) = Chromosome (Father (k) , j)

 Else

 Child(k , j) = Chromosome (Mother (k) , j)

 End If

 End For

 End For

 // Elitism

 Call Sort (Chromosomes by Cost)

 For k=1 to Num_Elitism

 Elitism(k , all) = Chromosomes (k , all)

 End For

 // Replace

 For i = 1 to Num_Chromosomes

 If i<= Num_Elitism Then

 Chromosomes(i , all) = Elitism (i , all)

 Else

 Chromosomes(i , all) = Child (i + Num_Elitism , all)

 End If

 End For

 // Mutations

 For m = 1 to Per_Mutations * Num_Chromosomes * Num_Genes

 R1 = Call Random(Uniform,1,Num_Chromosomes)

 R2 = Call Random(Uniform,1,Num_Genes)

 Chromosomes(R1, R2) = (Chromosomes(R1,R2) – 1) ^ 2

 End For

End For

Data Mining and Text AnalyticsSAS Global Forum 2011

8

End Function

REFERENCES
Abranhams, C. & Zhang, M. (2009). Fair Lending Compliance. NewJersey: John Wiley & Sons, Inc.
Allison, P. D. (2003). Logistic Regression using the SAS system: Theory and Application. Cary, United States of
America: SAS Institute and Wiley.
Anderson, R. (2007). The credit scoring toolkit: Theory and practice for retail credit risk management and
decision automation. New York: Oxford University press Inc.
Carsten, A.W. Paasch (2008). Credit Card Fraud Detection Using Artificial Neural Networks Tunned By Genetic
Algorithms.The Hong Kong University of Science and Technology.
Haupt, Randy. Haupt, Sue (2004). Practical Genetic Algorithms. Second edition. New Jersey: John Wiley &
Sons.
Lawrence, D., & Solomon, A. (2002). Managing a consumer lending business. New York: Solomon
Matignon, Randall (2005). Neural Network Modeling using SAS Enterprise Miner. Author House.
Mays, E. (2004). Credit Scoring for Risk Managers. The Handbook for Lenders. Mason, Ohio, United States of
America: Thomson South-Western.
Rosenblatt, F. (1962). Principles of Neurodynamics. Washington, DC: Spartan.
SAS Institute Inc. (2010). SAS help and documentation. PROC NEURAL. Cary, North Carolina, United States of
America.
Thomas, L. C. (2002). Credit Scoring and its applications. Philadelphia: Siam.
Thomas, L. C. (2009). Consumer Credit Models: Pricing, Profit, and Portfolios. New York: Oxford
Warner,B. & Misra, M. (1996). Understanding Neural Networks as Statistical Tools. The American Statistician
Association. URL:http://www.jstor.org/stable/2684922 (Accessed: 03/01/2011).

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Name: Alejandro Correa Bahnsen
Enterprise: Banco Colpatria
City: Bogotá, Colombia
Phone: (+57) 3208306606
E-mail: correaal@colpatria.com

Name: Andrés González
Enterprise: Banco Colpatria
City: Bogotá, Colombia
Phone: (+57) 3103595239
E-mail: gonzalean@colpatria.com

Name: Camilo Ladino
Enterprise: Banco Colpatria
City: Bogotá, Colombia
Phone: (+57) 3185865390
E-mail: ladinoi@colpatria.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Data Mining and Text AnalyticsSAS Global Forum 2011

http://www.jstor.org/stable/2684922
mailto:correaal@colpatria.com
mailto:ladinoi@colpatria.com

	2011 Table of Contents

