
1 

 

Paper 149-2011 

 

Genetic Algorithm Optimization for Selecting the Best Architecture of a       
Multi-Layer Perceptron Neural Network: A Credit Scoring Case 

Alejandro Correa, Banco Colpatria 

Andrés González, Banco Colpatria 

Camilo Ladino, Banco Colpatria 
 
 
ABSTRACT 
Neural Networks are powerful tools for classification and regression, but it is difficult and time costly to determine 
the best architecture for a given problem. In this paper, Genetic Algorithms (GA) are used to optimize the 
architecture of a Multi-Layer Perceptron Neural Network (MLP) in SAS®, in order to improve the predictive power 
of the credit risk scorecards. The objective function to maximize is the ROC curve and the input variables are the 
number of hidden layers and units, activation function, use or not of bias and whether it will be a direct 
connection between the initial and the final layer. Results show that this method outperforms logistic regression 
and the default neural network architecture of SAS Enterprise Miner™. The predictive power of this method is 
similar to the Global Optimum but in a reasonable time.  
 

 
INTRODUCTION 
In order to mitigate the impact of credit risk and make more objective and accurate decisions, financial entities 
have created new and better tools to predict and control their losses (Anderson, 2007) (Lawrence & Solomon, 
2002). This is why it has become common in financial institutions around the world to use scorecards to measure 
a customer's credit risk (Abranhams & Zhang, 2009) (Mays, 2004) (Thomas, 2009). A scorecard is a statistical 
model that allows attributing a rating (score) to a client, which indicates the predicted probability that the 
customer reflect a certain behavior. What is sought with scorecards is to create an estimated measure of a 
customer’s risk, i.e., the probability of a customer having a good payment habit if a loan is granted, based on past 
experiences (Thomas, 2002). The most commonly used method by financial institutions to estimate these models 
is the logistic regression (Allison, 2003), because of its predictive power and ease of interpretation. But there are 
other methods, such as Neural Networks, which have a higher level of complexity that could improve the 
predictive power of the scorecards.  
 
Neural Networks aren’t widely used in credit scoring due to two main reasons, i) the difficulty with interpretability 
and ii) the complexity in model development. When developing a Multi-Layer Perceptron (MLP) Neural Network, 
analysts have to address several kinds of architectural issues. In this paper, an optimization of the architecture of 
the Multi-Layer Perceptron Neural Network is made using an implementation of Genetic Algorithm in the SAS 
system (SAS Institute Inc., 2010).The objective function to maximize is the ROC curve(Receiver operating 
characteristic) and the decision variables are the number of hidden layers and their activation function, the 
number of hidden units in each layer, the activation function of the target layer, and whenever or not to use bias 
or to have a direct connection between the input and output layer. Although, a similar optimization methodology 
has been developed in other fields (Carstern & Paasch, 2008), to our knowledge, this methodology haven’t been 
applied to improve credit risk scorecards. 
 
This paper is divided into five sections. First, a description of the data and the variables used for the model 
development is made. Subsequently, there is an introduction to general concepts of Multi-Layer Perceptron 
Networks (MLP) and Genetic Algorithms (GA) methodology. The third section poses the specific definitions for 
modeling with the MLP and the GA. Next, the results are shown based on a comparison with a default Neural 
Network architecture developed in SAS Enterprise Miner™ (Matignon, 2005),  and a logistic regression. Also, all 
possible architectures of the MLP for our case of study are calculated, and the best one (Global optimum) is 
compared. Finally, conclusions are presented. 
 

 
DATA DESCRIPTION 
For the model construction, 125.557 clients with active credit cards in June 2009 are used. Using the bank’s 
default definition over the performance period, clients are classified into good and bad. Variables names are 
changed to X1 … X7 by request of the financial institution (clients credit information is confidential).The original 
variables have been standardized and Table 1 displays the descriptive statistics of the seven variables, while 
Table 2 presents the correlation between them. The maximum correlation between the seven variables is 0,0176. 
Finally, Table 3 shows how the original data is randomly divided into three different datasets used for the 
scorecard development and validation.  
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Table 1. Descriptive statistics of the variables 
Variable N Mean Std. Dev. Minimum Maximum 

X1 125.557 -0,027 5,823 -5,615 53,637 

X2 125.557 0,002 1,629 -66,097 52,220 

X3 125.557 0,003 1,511 -13,606 20,037 

X4 125.557 0,000 1,376 -13,579 33,091 

X5 125.557 0,014 2,108 -10,655 21,943 

X6 125.557 -0,014 1,710 -8,699 38,439 

X7 125.557 -0,002 1,656 -63,313 122,732 

 
Table 2.Correlation Matrix 

Variable X1 X2 X3 X4 X5 X6 X7 

X1 1 0,0019 -0,0051 0,0046 0,0176 0,0039 -0,0003 

X2 0,0019 1 -0,0026 0,0142 -0,0033 -0,0009 -0,0004 

X3 -0,0051 -0,0026 1 0,0111 -0,0059 -0,0015 -0,0094 

X4 0,0046 0,0142 0,0111 1 -0,0022 0,0014 -0,0093 

X5 0,0176 -0,0033 -0,0059 -0,0022 1 -0,0023 -0,0013 

X6 0,0039 -0,0009 -0,0015 0,0014 -0,0023 1 0,001 

X7 -0,0003 -0,0004 -0,0094 -0,0093 -0,0013 0,001 1 

 
Table 3.Development and validation datasets 

Data N Percentage of the total population Bad Rate 

Train 50.223 40,00% 56,48% 

Test 37.667 30,00% 56,68% 

Validation 37.667 30,00% 56,84% 

Total 125.557 100,00% 56,65% 

 
 
GENERAL CONCEPTS 

 MULTI-LAYER PERCEPTRON NEURAL NETWORK  
An artificial neural network is a mathematical/computational model that tries to imitate the structure and 
functionality of biological neural networks (Rosenblatt, 1962). It is composed by a set of simple 
computational units that are highly interconnected. These units are called nodes, and each one 
represents a biological neuron. In a neural network, the hidden units receive a weighted sum of the 
inputs and apply an activation function to it. Then, the output units receive a weighted sum of the hidden 
units output and apply an activation function to this sum. Information is passed from one layer to the 
next. The neural network finds the weights by an iterative process through different types of algorithms. 
 
The network discussed in this paper is called a Multi-Layer Perceptron Neural Network and it has some 
specific characteristics. In order to easily explain the MLP neural network structure, Figure 1 shows the 
main components. It has an input layer that represents the input variables to be used in the neural 
network model and it can be connected directly with the output layer. It also has i hidden layers and 
each layer contains j hidden units. In Figure 1 the hidden units are represented by circles. The 
connections between units are unidirectional and are represented by directed lines. Each connection 
has an associate scalar called weight w. The hidden units have a variety of hidden activation functions 
and also a linear combination function. Finally, the MLP has an output layer that computes for the result 
of the process. The output layer also has a target activation function. Both, the hidden layers and the 
output layer could have the bias option activated. A bias term can be treated as a connection weight 
from a special unit with a constant, nonzero activation value. The term "bias" is usually used with 
respect to a "bias unit" with a constant value of one. 
The single bias unit is connected to every hidden or output unit that needs a bias term. Hence the bias 
terms can be learned just like other weights. 
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Figure 1. MLP Neural Network structure 

 
 

 GENETIC ALGORITHM 
Genetic Algorithm (GA) is an optimization technique that attempts to replicate natural evolution 
processes in which the individuals with the considered best characteristics to adapt to the environment 
are more likely to reproduce and survive. These advantageous individuals mate between them, 
producing descendants similarly characterized, so favorable characteristics are preserved and 
unfavorable ones destroyed, leading to a progressive evolution of the species. 

 
Artificial genetic algorithm aims to improve the solution to a problem by keeping the best combination of 
input variables. It starts with the definition of the problem to optimize, generating an objective function to 
evaluate the possible candidate solutions (chromosomes), i.e., the objective function is the way of 
determining which individual produces the best outcome.  

 
The next step is to generate an initial random population of n individuals called chromosomes that are 
symbolized by binary strings, where each binary position of the chromosome is called a gene and 
denotes a specific characteristic (input variable). Therefore the combination of all the different 
characteristics encoded in the string represents an individual who is a candidate for the solution. 

 
Each chromosome is evaluated in the objective function and the best individuals are selected to survive 
for mating (parents), while the worse ones are discarded to make room for new descendants.  There are 
many ways of pairing the selected chromosomes (Haupt & Haupt, 2004). In this paper, a weighted cost 
pairing is used, which consists of assigning a selection probability according to each chromosome cost. 
That is, a chromosome with the higher cost has a greater probability of mating because cost 
maximization is desired. 

 
After selecting the parent chromosomes with the chosen pairing method, the next step is to create a 
second generation of individuals, based on the information of the parents. There are several ways of 
mating (Haupt & Haupt, 2004).In this paper, two parents create one child.  
 
In order to transfer the parent’s binary information to the child, there are genetic operators such as 
crossover point and mutation. The one-point crossover technique consists in selecting one random point 
on the parent’s string. The child is created in the following way: First, the parent1 transfers its binary 
code from the first gene to the crossover point. Then the parent2 transfers its binary code from the 
crossover point to the last gene of the chromosome. New parents are randomly selected for each new 
child and the process continues until the chromosome population grows back to the original size n.  

 
Once the breeding process is completed, random mutation is used to alter a certain percentage of the 
genes of the chromosomes. The purpose of mutation is to introduce diversity into the population, 
allowing the algorithm to avoid local minima by generating new gene combinations in the chromosomes. 
The most common mutation procedure is the one called single point mutation. It’s implemented by 
generating a random variable that indicates the position of the gene that will be modified, from the 
population of chromosomes. Generally, mutation is not allowed in the best solution chromosomes 
because these “elite” individuals are destined to propagate unchanged. In genetic algorithm this is 
called elitism (Haupt & Haupt, 2004). 

 
Finally, after mutation is done the new generation of chromosomes is evaluated with the objective 
function and used in the next iteration of the described algorithm. The algorithm iterates until a 
maximum number of chromosome generations are created or a satisfactory solution is reached.  
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A flowchart of the described process is presented below: 

 

 
Flow diagram extracted from (Haupt & Haupt, 2004)  

 

 
MODELING 
Now that the general concepts of MLP neural Networks and genetic algorithms have been covered, it is time to 
focus on the specific case of this paper. First, a definition about the activation and combination functions in the 
neural network is presented. Given that in credit scoring the objective is to obtain a predicted probability to reflect 
a certain behavior of a client, the MLP neural network target activation functions have been bounded to functions 
with range between 0 and 1. Table 4.a. and Table 4.b. present the activation and combination functions used in 
this paper. Second, the discussed network finds the weights through a Backpropagation algorithm (Warner & 
Misra, 1996). 
 

                       Table 4.a. Hidden Layers Functions                         Table 4.b. Target Layer Functions                                          

Hidden 
Combination 

Function 

Hidden 
Activation 
Function 

Hidden 
Activation 
Function 

Range 

 
Target 

Combination 
Function 

Target Activation 
Function 

Linear: 
 

 

Linear: 
 

 

 

 

Linear: 
 

 

Logistic: 

 

Logistic: 

 
 

 Mlogistic: 

 

arctan: 
) 

 

 Softmax: 

 

Hyperbolic 
angent: 

 

 

 

Gauss: 

 

 
In addition, for the genetic algorithm modeling the ROC curve (Receiver operating characteristic) is chosen as 
the GA objective function to maximize because it measures the neural network capability to assign and rank 
relatively more low scores to loans that eventually become bad than to loans that continue with a good behavior. 
The ROC is also known as the swap curve since it represents the exchange between good clients and bad 
clients, i.e., the percentage of bad clients to be allowed in order to accept a certain percentage of the good 
clients. 
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Subsequently, the definition of the input variables and the chromosome structure is carried out. Seven input 
variables are selected to form the chromosome that is going to have a total of 12 genes which can generate a 
total of 4.096 ( ) possible combinations. The chromosome structure is defined as follow: 

 
 

 
        Hidden Layers                   Hidden Units                    DC               HL Bias     HL Activation     TL Activation           TL Bias 
 
Likewise, the variables of the chromosomes are encoded in the following manner: 

 

Hidden 
Layers  

  
Hidden 
Units 

  
Direct 

Connection 
  

Hidden 
Layers 

Bias 

  Hidden 
Layers 

Activation 
Function 

  
Target 
Layer 

Activation 
Function 

  Target 
Layer 
Bias 

  
    

  
  

00 = 1   000 = 1   0 = No   0 = No   00 = Logistic   00 = Logistic   0 = No 

01 = 2 
  

001 = 2   1 = Yes 
  

1 = Yes 
  

01 = Linear 
  

01 = 
Mlogistic 

  1 = Yes 

10 = 3   …           10 = Act Tan   10 = Softmax     

11 = 4   111 = 8           11 = Tan H   11 = Gauss     

 
Finally, other key definitions are the total size of the population, the number of “elite” individuals and the 
percentage of genes to mutate from the entire chromosome population. Correspondingly, the population size is 
16 individuals (chromosomes), the best four solution chromosomes will remain unchanged and the percentage of 
mutation is 2% of the genes of the total population.  
In order to facilitate the understanding of the genetic algorithm (GA) iterative process, the pseudo-code is 
attached. 

 
 
RESULTS 
In this section we present the experimental results of the genetic algorithm used to select the best architecture of 
the MLP neural network. Results of a run of 30 iterations with the GA are compared with the results of a neural 
network using the default parameters of SAS Enterprise Miner™ (1 hidden layer, 3 hidden units, no direct 
connection, hidden layer bias = yes, Tan H hidden layer activation function, logistic target layer activation 
function, target layer bias = yes), a logistic regression (most common algorithm in credit scoring) using SAS 
PROC LOGISTIC with stepwise variable selection and the global optimum. 
 
The comparison of the ROC curves obtained by the Genetic Algorithm in the MLP network and the other three 
alternatives are exhibited in Figure 2. The area under the ROC curve of the GA (71,25%) is significantly larger 
than that of the MLP neural network using the default parameters of SAS Enterprise Miner™ (68,09%) and the 
logistic regression (65,92%). This difference indicates that the GA in the MLP neural network has a greater 
predictive power at all risk levels. The only alternative that slightly exceeds the GA performance is the global 
optimum (71,26%) but the difference is so small that it doesn´t represent a significant improvement in predictive 
power to justify the great additional effort (see Table 5). 

 
Figure 2. Comparison of ROC curve 
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In addition to the statistical evidence presented in the ROC curve, Table 5 shows the computational effort of each 
alternative through two measures, the total time spent in minutes (CPU time in minutes) and the number of times 
that the SAS function was called.  Since the logistic regression and the MLP neural network using the default 
parameters of SAS Enterprise Miner™ are run only once, both have only one function call and spent 1 and 2 
minutes respectively. As presented above, this two alternatives show the worst predictive power measured by the 
ROC curve. 
 
The GA used to optimize the MLP neural network architecture spent 9,3 hours (559 minutes) in a 30 iteration run 
and made 274 function calls while the model used to find the global optimum took 139,2 hours (8.356 minutes) 
and made 4.096 function calls (all possible combinations). These last two alternatives have approximately the 
same predictive power and the difference in computational effort is evident. The GA spent 1.395% less time and 
function calls than the global optimum finding method. 

 
Table 5. Measures of comparison 

Model ROC CPU time (m) 
Function 

calls 

Default MLP 68,09% 2 1 

Logistic Regression 65,92% 1 1 

GA - MLP 30 iterations 71,25% 559 274 

Global Optimum 71,26% 8.356 4.096 

 
Finally, table 6 displays the final architecture of the neural networks found with the GA and the global optimum 
model. 

 

Table 6. Best MLP neural network architecture 

Model 
Hidden 
Layers  

Hidden 
Units 

Direct 
Connection 

Hidden 
Layers 
Bias 

Hidden 
Layers 

Activation 
Function 

Target Layer 
Activation 
Function 

Target 
Layer Bias 

GA - MLP 30 
iters 2 6 0 1 TAN 0 SOF 

Global Optimum 2 5 1 1 LOG 0 LOG 

 
 
CONCLUSION 
This paper have shown the use of Genetic Algorithms in credit risk modeling as a technique to optimize the 
process of choosing the architecture of a MLP neural network that maximizes the area under the ROC curve and 
therefore the scorecard predictive power. 
 
The experimental results have shown that with far less computational effort the GA used to optimize the MLP 
neural network came to a result approximately equal to the global optimum. Also, since the difference between 
the ROC curves of these two alternatives is negligible, we illustrate that it doesn´t represent an improvement in 
the scorecard predictive power. It is also important to say that the GA outperformed the results of the logistic 
regression and the results of the MLP neural network using the default parameters of SAS Enterprise Miner™. 
 
 

PSEUDO - CODE  
The SAS Code may be sent on request to authors. 
 

Variable Integer  Num_Chromosomes  

Variable Integer  Num_Genes   

Variable Integer  Num_Elitism   

Variable Integer  Num_iterations   

Variable Integer  Per_Mutations   

Variable Boolean Chromosomes ( Num_Chromosomes , Num_Genes)   

Variable Double  Cost ( Num_Chromosomes)       

Variable Double  Prob(Num_Chromosomes)       

Variable Integer  Father (Num_chromosomes – Num_Elitism)   

Variable Integer Mother ( Num_chromosomes – Num_Elitism)    

Variable Boolean  Child ( Num_chromosomes – Num_Elitism , Num_Genes)   

Variable Boolean Elitism ( Num_Elitism , Num_Genes)  

 

Function Decoding 

// Function that convert a chromosome into Neural Network parameters 

 

Function Calculate_Cost 
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 Architecture = Call Decoding( Chromosome ) 

 Net  = Call Neural_Networks( Architecture )  

 Return  CallRoc ( Net ) 

End Function 

 

Function Genetic_Algorithm 

 

Cromosomes (all,all) = Call Create_random_population 

For iter = 1 to Num_iterations  

 For  i = I to Num_Chromosomes 

  Cost( i )  = Call Calculate_Cost ( Cromosomes ( i , all ) ) 

 End For 

 

 // Calculate cumulative matching probability 

 For i = I to Num_Chromosomes 

  Prob(i) = Prob(i-1) + Cost( i )  / sum ( Cost( all) ) 

 End For 

 

 // Selection 

 For k = 1 to Num_Chromosomes – Num_Elitism 

  Rand = Call Random(Uniform,0,1) 

  Father( k ) = 0 

  For i  = 1 to Num_Chromosomes 

   If Rand <= Prob( i ) And Father ( k ) = 0  Then 

    Father( k ) = i 

   End If 

  End For   

  Rand = Call Random(Uniform,0,1) 

  Mother( k ) = 0 

  For i  = 1 to Num_Chromosomes 

   If Rand <= Prob( i ) And Mother ( k ) = 0  Then 

    Mother( k ) = i 

   End If 

  End For   

 End For 

 

 // Mating 

 For k = 1 to Num_Chromosomes – Num_Elitism 

  Rand = Call Random(Uniform,1,Num_Genes) 

  For j = 1 to Num_Genes 

   If j <= Rand Then 

    Child( k , j ) = Chromosome ( Father (k) , j ) 

   Else 

    Child( k , j ) = Chromosome ( Mother (k) , j ) 

   End If 

  End For  

 End For 

 

 // Elitism 

 Call Sort ( Chromosomes by Cost ) 

 For k=1 to Num_Elitism 

  Elitism( k , all ) = Chromosomes ( k , all ) 

 End For 

 

 // Replace 

 For i = 1 to Num_Chromosomes 

  If i<= Num_Elitism Then 

   Chromosomes( i , all ) = Elitism ( i , all ) 

  Else 

   Chromosomes( i , all ) = Child ( i + Num_Elitism , all) 

  End If 

 End For 

 

 // Mutations 

 For m = 1 to Per_Mutations * Num_Chromosomes * Num_Genes 

  R1 = Call Random(Uniform,1,Num_Chromosomes) 

  R2 = Call Random(Uniform,1,Num_Genes) 

  Chromosomes( R1, R2 ) = (Chromosomes(R1,R2) – 1 )  ^ 2 

 End For 

End For 
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End Function 
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