
1 

 

Paper 148-2011 
 
 

Conditional Classes and Pattern Recognition in SAS® 
Scott Hanson, Bank of America, Calabasas, CA 

 
 

 

ABSTRACT 
 

Conditional classes are data objects that do not have tidy rules of membership. Their characteristics make up, more 
or less, the possibilities of membership rather than probabilities. 
 
How one thinks about conditional classes is critical. Complexities of pattern recognition, an area that has received 
strong practical implementation in SAS, will serve to illustrate questions of assignment, data ambiguity, and data 
objects that do not have precise relation and certain membership. 
 

CONDITIONAL CLASSES 
 
Data objects of conditional classes are not binary in any statistical sense.  They do not fit a class precisely, or true, or 
one.  They do not fit a class precisely with another class.  Conditional classes are characterized by inclusion, 
convergence, proximity, and intersection, which take precedence over probabilities, truth, and certainty. 
 
Toxicity, adequate tea consumption, and genetically engineered (GE) food are examples of data objects belonging to 
a conditional class:   Two cups of tea consumption a day may be adequate by members of certain British classes but 
insufficient for more robust tea devotees.  Exposure of less than 0.010 mg per liter for arsenic is deemed satisfactorily 
safe by the EPA but may be objectionable by certain physicians and radiologists.  A GE tomato meets the nutritional 
standards set by the FDA but may not have as much credence in the eyes of the public. 
 
As a mental exercise, consider for a moment the opposite of conditional classes, „Exact‟ classes.  Exact classes are 
typified by precise correspondence, truthful properties, and clear membership to a class.  Ordered pairs (x,y) set to a 
probability between 0 and 1 is an expression of an exact class.  If the relation (x,y) is clear then the rules of 
membership must be articulate and vice versa.  For conditional classes, the ordered pairs are approximate or 
subjective.   Certainty and equivalence support the concept of an Exact classification as much as uncertainty and 
approximation belie the concept of conditional classification. 
 
Lastly, a conditional class is a set of characteristics on a hierarchical continuum.  The decision to include an element 
is intricate if the characteristics of the conditional class are abstruse or uncertain or ambiguous.  Typically, a hierarchy 
is present which helps to ascertain the level of uncertainty or ambiguity or imprecision of the relation.  An assignment 
of element A to element B typically is predicated on a hierarchical set of rules whereby imprecision or subjectivity (or 
other characteristics of a conditional class) can be discerned. 
 
 

EVALUATING A CONDITIONAL CLASS 
 
Evaluating a conditional class can be problematic.  How do we postulate exact or conditional classes in the area of 
epidemiological research?  We may first question if the relationship between exposure and a dichotomous disease 
variable is unambiguous or causal (Snow (1936) in his famous study on cholera in London, was able to discern a 
direct relationship).   One may argue that the data object is an example of an exact class.  On the other hand, the 
scientific tendency of contemporary epidemiological thought in general is multivariate.   In the study of disease on a 
populace, complexity equates to consideration of extraneous influences.   Complexity is not a necessary condition but 
is often a factor in the absence of an exact class. 
 
How do we postulate exact or conditional classes in certain physiological functions?  Sensory interpretation - reading, 
hearing, touching – follows an inherently complex mechanism of recognizing a pattern of some kind.   Faulty reading 
is a case of imperfect or uncertain recognition, as is memory loss, hearing insensitivity and muted smell.  Sight, even 
if slightly imperfect, involves a reliable, precise correspondence.   Would it be appropriate to consider exact class as 
unequivocal correspondence as a result of a single examination?   Perfect vision, albeit a conspicuous attribute of 
good health, is in fact an exceptionally close approximation. 
 

Data Mining and Text AnalyticsSAS Global Forum 2011

 
 



2 

 

With what precision can we ascertain data objects whose mechanisms are even less reliable than physiological 
processes?  How well can we recognize oil residue at the lowest depth of a voluminous and turbulent sea?    Other 
examples are genetic sequences mapping and categorizing fresh-water sport fish.  Our reliance on machines to 
correctly identify objects can be paradoxical.   We need to distinguish properties of data objects that purport truthful 
claims when they are often approximations or subjective or imperfect.  

 
 

PATTERN RECOGNITION AND SAS FUNCTIONS 
     
One area of classification that deals with conditional classes is pattern recognition.  SAS provides several algorithms 
including, in no rank order, the SPEDIS function (short for spelling distance), COMPGED, COMPLEV, SOUNDEX, 
and CALL COMPCOST.  Another algorithm to be discussed, though not available in SAS, is the Daitch-Mokotoff 
Soundex System.  Regardless of the selected algorithm, the underlying problem of pattern recognition is the absence 
of an exact class. 
 
First, a synopsis of each algorithm: 

 
1. SPEDIS:  Determines the likelihood of two words matching, expressed as the asymmetric spelling distance 

between the two words (slowest performance). 
 

2. COMPLEV: Returns the Levenshtein edit distance between two strings (symmetric, fastest performance).  
 

3. COMPGED: Returns the generalized edit distance between two strings (asymmetric). 
 

4. CALL COMPCOST: Sets the costs of operations for later use by the COMPGED function (asymmetric to 
symmetric). 

 
5. SOUNDEX: Encodes a string to facilitate searching.  The SOUNDEX function encodes a character string 

according to an algorithm that was originally developed by Margaret K. Odell and Robert C. Russell (US 
Patents 1,261,167 (1918) and 1,435,663 (1922)).   

 
6. DAITCH-MOTOKOFF: A modification to the U.S. (i.e., Russell‟s SOUNDEX) System.  Essentially, DAITCH-

MOTOKOFF is distinguishable by logic that addresses Germanic and Slavic surnames.  The algorithm is 
often misidentified as the Jewish Soundex System, the Eastern European Soundex System, or the 
European Soundex System because of its origins. 

 
 
SPEDIS FUNCTION  
 
SPEDIS determines the distance between a keyword and a query, expressed as the asymmetric spelling distance 
between two words.  Gershteyn (2000) hypothesizes a writer who mistakenly types „SUGI‟ instead of „SAS‟ and wants 
to know the spelling distance between „SAS‟ and „SUGI‟ (a novel idea!).  
 
SPEDIS resolves this problem of pattern divergence by calculating the cost of each operation necessary to convert 
the keyword to the query.  The costs of each operation that is required to convert are listed in the following: 
 

Operation Cost Explanation 

Match 0 no change 
Singlet 25  delete one of a double letter 
Doublet 50 double a letter 
Swap 50 reverse the order of two consecutive letters 
Truncate 50 delete a letter from the end 
Append 35 add a letter to the end 
Delete 50 delete a letter from the middle 
Insert 100 insert a letter in the middle 
Replace 100 replace a letter in the middle 
Firstdel 100 delete the first letter 
Firstins 200 insert a letter at the beginning 
Firstrep 200 replace the first letter 
   

 

Data Mining and Text AnalyticsSAS Global Forum 2011

 
 



3 

 

In addition to the hierarchical set of Operation and Costs, SPEDIS has these characteristics: 
 

1. Returns non-negative value <= 200 
2. The distance is the sum of the costs divided by the length of the query. If this ratio is greater than one, the 

result is rounded down to the nearest whole number. 
3. Asymmetric,  SPEDIS(QUERY, KEYWORD)  <> SPEDIS(KEYWORD, QUERY) 

 
In the case of the writer‟s typographical error, the spelling distance is either 58 or 83, depending on the order of 
evaluation.  The writer decides that a low score of less than 50 is a match and rejects that the typo was in fact „SAS‟ 
(a 0 score is an exact match).  A low score is directly a measure of the writer‟s error tolerance. 

 
 

SOUNDEX FUNCTION 
 
Imagine genealogists poring over an index of a several hundred thousand records over several years only to notice a 
misspelled word.  In 1918, Robert C. Russell developed an algorithm to assist these ardent genealogists who 
wrestled with changing surnames from census data (Fan, NESUG 16).  In his patent application filing, Russell claims 
a „certain new and useful Improvements in Indexes‟ and „full, clear, and exact description of the invention, such as will 
enable others skilled in the art to which it appertains to make and use the same‟.  What does he hope to achieve 
exactly? 
 

“…one object of the invention being to provide an index wherein names are entered and grouped 
phonetically rather than according to the alphabetical construction of the names.  
 
A further object is to provide an index in which names which do not have the same sound do not appear in 
the same group, thus shortening the search.  
 
A further object is to provide an index in which each name or group of names having the same sound but 
differently spelled shall receive the same phonetic description and definite location.  
 
With these and other objects in view, the invention consists in certain novel features as hereinafter set forth 
and pointed out in the claims…” 

 
In Russell‟s thinking, we see a deep understanding of the language at work, a language variant, approximate, and 
inconsistent.  Unsophisticated knowledge of the language and other circumstances most likely led to inconsistent 
spellings in the index census.  The surnames “Smith” and “Smyth” for example were a common point of divergence in 
the index census.  Although these two names converge phonetically, they fall far apart in an alphabetical index.  
 
“Soundexing” helped to address this inadequate mapping between the English alphabet and its pronunciation. 
 
As a conditional class, the observations of genealogical data are arbitrary lengths and vast in number (besides 
alphabetic dissimilarity).  SOUNDEX maps this conditional data object to a four-byte literal, which is a relation from a 
vast space to a small space.  A very serious question is how to infer two dissimilar names which result in the same 
Soundex code: 
 

The SOUNDEX code for “Hilbert” is “H416”. 
The SOUNDEX code for “Heilbrom” is “H416”. 

 
Reconciling “Hilbert” and “Heilbrom” presents a crucial dilemma, that is, the errors associated with an imperfect data 
object. 
 
Below are a few additional examples of phonemic contrasts and SOUNDEX results: 
 
SOUNDEX codes: 
 

Name1 Name2 SOUNDEX 
(Name1) 

SOUNDEX2 
(Name2) 

 

Smith Smythe S53 S53  
Jean Gene J5 G5  
Beijing Peking B252 P252  

 

Data Mining and Text AnalyticsSAS Global Forum 2011

 
 



4 

 

DAITCH-MOTOKOFF (D-M) SOUNDEX SYSTEM 
 
In 1985, Gary Motokoff had the challenging task of indexing the names of 28,000 persons who changed their 
surnames while living in Palestine between 1921 and 1948.  The majority of these names were Germanic or Slavic.  
Because many Jewish names with identical phonetic sounds did not yield identical Russell Soundex values, Motokoff 
created an improved phonetic system to address this divergence from the English standard by Russell.   The aim is a 
more satisfactory correspondence. 

 
Name1 Name2 SOUNDEX 

(Name1) 
SOUNDEX2 
(Name2) 

 

Moskovitz Moskowitz M2132 M232  

 
It was obvious to Motokoff there were numerous spelling variants of the same basic surname and thus the list should 
be soundexed accordingly. 
 
D-M has a wide audience, accepted by the Hebrew Immigrant Aid Society (HIAS) and acknowledged as the standard 
at the U.S. Holocaust Memorial Museum in Washington, D.C. (see http://www.avotaynu.com/soundex.htm). 

 

LEVENSHTEIN ALGORITHM 
 
Russian scientist Vladimir Levenshtein developed a string-matching algorithm, similar to SPEDIS, in 1965.  Known 
also as the “Edit Distance”, the algorithm constructs an (m,n) cell matrix, and performs operations of Insert, Delete, 
Replace.  Because its operations are performed in a matrix, the algorithm is symmetric, unlike the SPEDIS function. 
 

 
A BRIEF EVALUATION 
 
Given this backdrop, of the algorithms that we select, how would they evaluate a simple if innocuous text string 
„123456789‟?    Should we assume that the refinements of the algorithms, which are often rooted in a particular data 
object (Slavic names, e.g.), have a wider utility?  Further, knowing the availability of these algorithms in SAS and that 
the documentation‟s examples are generic, suggests a receptive audience. 
 
We have seen that imprecision and other characteristics of an archival data base led Russell to subjective but 
systematic and rigorous undertaking.   Let us assume that the string „123456789‟ is perhaps a Social Security 
Number, a default value, a special term, or an outlier with no explanation.  How should we discriminate Russell‟s 
algorithm and other specific, reliable algorithms when evaluating innocuous terms?   Should we expect pattern 
recognition algorithms, text recognition algorithms in this case, to evaluate closely given the text string is not nuanced 
towards any particular data object? 
 
The SAS code below tests various unique but not exhaustive typical operations on a nine-byte string „123456789‟.  
What is the extent of convergence of the string we are testing and a string that is closely similar?  Does choice of the 
algorithm matter? 
 
The following SAS code creates a data set of 11 unique types of operations, which are simple, non- intricate 
modifications.  However, note that the last three operations are relatively distant cases, highly divergent, from the 
string „123456789‟. 
 

data testssn; 

 length ssn1 $9 operation $14; 

 ssn1 = '123456789'; operation = 'match'; output; 

 ssn1 = '23456789'; operation = 'insert first'; output; 

 ssn1 = '12345678'; operation = 'insert last'; output; 

 ssn1 = '12346789'; operation = 'insert middle'; output; 

 ssn1 = '213456789'; operation = 'swap first'; output; 

 ssn1 = '123456798'; operation = 'swap last'; output; 

 ssn1 = '113456789'; operation = 'double first'; output; 

 ssn1 = '123455789'; operation = 'double middle'; output; 

 ssn1 = '987654321'; operation = 'reverse'; output; 

 ssn1 = '         '; operation = 'null'; output; 

 ssn1 = 'abcdefghi'; operation = 'no match'; output; 

run; 

 

 

Data Mining and Text AnalyticsSAS Global Forum 2011

 
 

http://www.avotaynu.com/soundex.htm


5 

 

data testssn_; 

 set testssn; 

 ssn = '123456789'; 

 v_spedis = spedis(ssn, ssn1); 

 v_complev = complev(ssn, ssn1); 

 v_compged = compged(ssn, ssn1); 

run; 

 

proc rank data=testssn_ out=test ties=condense; 

 var v_spedis v_complev v_compged; 

 ranks r_spedis r_complev r_compged; 

run; 

 

proc sort data=test; by r_spedis r_complev; run; 

 
 

The table below reveals the rank order of each algorithm for each operation.   In comparing string „123456789‟ with a 
null value and a no match (all a-z characters), COMPGED clearly assesses that a null value is much more distant 
than a string of not a single character matching whereas SPEDIS and COMPLEV indicate comparisons of null and no 
match as equivalent.  That is, the distance from „123456789‟ and a null value and a non-matching value is the same.  
Do we agree that the cost of a null value of 1800 compared to a cost of 1000 of no match is plausible or should we 
believe they are equally divergent?   
 
With this rudimentary table, we recognize the hierarchical and subjective properties of each algorithm. 
 
 

Operation

r_spedis r_complev r_compged v_spedis v_complev v_compged

1 1 1 0 0 0 match

2 2 3 3 1 50 insert last

3 3 2 5 2 20 swap first

3 3 2 5 2 20 swap last

4 2 4 11 1 100 insert middle

4 2 4 11 1 100 double first

4 2 4 11 1 100 double middle

5 2 5 22 1 200 insert first

6 4 6 100 8 900 reverse

7 5 8 111 9 1800 null

7 5 7 111 9 1000 no match

Rank Value

 
 
 
 

SUMMARY 

 
For conditional classes, model complexity implies inexact class separability.   In the area of text recognition, it is 
axiomatic that the number of names must be greater than the number of variations of the algorithm.  For example, 
how much information is lost If one attempts to account for all features of French names (or Portuguese)?   How well 
does the algorithm of French names work against novel or unforeseen cases?   Hypothesize for a moment that an 
algorithm is strong:  for a given subset of the data, how well does the model converge on the unprecedented and the 
unexplained? 
 
Hierarchical rules are descriptive of a conditional class object as well.  For example, Russell‟s phonetic algorithm 
consists of a letter and three numbers.  We may question the logic if the data object has materially changed over 
time.  How well has the U.S. phonetic system developed by Russell over 90 years ago endured?   Thus, an algorithm 
may be subject to improvement, validation, and critical argument, despite enduring features and claims of accuracy 
and clarity.  The Daitch-Motokoff algorithm, possessing similar properties as Russell‟s invention, faces similar 
scrutiny. 
 

Data Mining and Text AnalyticsSAS Global Forum 2011

 
 



6 

 

In their seminal work on pattern recognition, Duda and Hart emphasize the breadth of this topic.  They posit that the 
concept of pattern recognition transcends text recognition to genetic sequencing, biological sensory mechanisms, 
machine functions, and other complex systems of classification.   We can step back and appreciate the immensity, 
subjectivity and approximation of these classification systems and our dependence on these systems.   Although the 
algorithms discussed, SAS and non-SAS related, inform just a small segment of pattern classification systems, they 
illustrate a way of thinking of these idiosyncratic data objects.  Their common thread is the absence of an exact class 
and clear membership. 
 

 

ACKNOWLEDGMENTS 
 
I wish to thank colleagues Russ Phanvong and Yongsuk Park for their comments and suggestions.   I am also 
grateful to Suresh Baral, my manager, for his support and confidence. 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are 
registered trademarks or trademarks of their respective companies. 
 

 

BIOGRAPHY 
 
Scott currently is SVP in Credit Risk (Modeling) at Bank of America in Calabasas, California.  Previously, he held 
similar roles at Washington Mutual and HSBC, completed post-graduate studies at Reed College, and taught 
philosophy at the University of British Columbia.  Scott is SAS certified in Advanced Programming and Predictive 
Modeling. 

 

REFERENCES 

Duda, R. O. and Hart, P. E (2001). Pattern Classification (2
nd

 Edition). John Wiley & Sons. 

Fan, Zizhong. “Matching Character Variables by Sound: A closer look at SOUNDEX function and Sounds-Like 

Operator (=*)”, Westat, Rockville, MD. NESUG 16. 

Gershteyn, Yefim.  “Use of SPEDIS Function in Finding Specific Values”, SCIREX Corporation, Chicago, IL. SUGI 25, 
Paper 86-25. 

Knuth, Donald (1998). The Art of Computer Programming, Volume 4.  Addison-Wesley. 

Motokoff, Gary (2010). “Soundexing and Genealogy”.  http://www.avotaynu.com/soundex.htm 

SAS(R) 9.2 Language Reference: Dictionary, Third Edition. 
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/viewer.htm#a000245949.htm 

Snow, John (1936).  “On the Mode of Communication of Cholera”.  Commonwealth Fund: New York. 

CONTACT INFORMATION 

Scott Hanson, PhD 
Bank of America 
Mail Code: CA7-910-02-27 
4500 Park Granada 
Calabasas CA 92032 
 
Phone: 1.213.345.8805 
 
Email:  scott.p.hanson@bankofamerica.com 
 

Data Mining and Text AnalyticsSAS Global Forum 2011

 
 

http://www.avotaynu.com/soundex.htm
http://support.sas.com/documentation/cdl/en/lrdict/63026/HTML/default/viewer.htm#a000245949.htm

	2011 Table of Contents



