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ABSTRACT 

As the volume of data available from operational systems continues to grow, dimensional models are becoming an 
increasingly important analytic tool for enterprise reporting and analysis.  Although there are a number of software 
packages specifically designed for transforming data from operational systems into dimensional models, many 
smaller organizations find themselves unable to make the significant investment in new technology and personnel 
necessary to utilize these tools.  Many of these same organizations, however, use Base SAS as an analytic tool.  
Especially for these organizations (but also for larger organizations with more sophisticated business intelligence 
systems), the current work provides an example of using PROC SQL, SAS/ACCESS®, and SAS hash objects to 
extract, transform, and load data from an operational system into a dimensional data model. 

INTRODUCTION 

Across industries, the increasing volume and complexity of data generated by business processes impacts the ability 
of analysts and report writers to extract meaningful information from operational systems.  Whereas analysts could 
previously produce analytic datasets with a simple DATA step or PROC SQL query against a relatively small number 
of source system tables (and be able to answer a large proportion of the questions that could possibly be answered 
with those data), now source systems often involve hundreds or thousands of database tables that could be used to 
answer a seemingly endless number of business questions.  Moreover, the increasing granularity of these data has 
resulted in datasets with rows that number in the millions, tens of millions, or hundreds of millions.   

One widely accepted approach to dealing with these issues is the creation of Data Marts (or Enterprise Data 
Warehouses) that focus on modeling data in a way that accurately describes the business processes of interest while 
optimizing query performance and analytic ease-of-use.  Although the classic data warehousing questions revolving 
around approaches to data warehousing will not be revisited here [see instead, Kimball (1996) and Inmon (1993) for 
classic data warehousing approaches and Grasse and Nelson (2006), Heinsius (2001), Lupetin (1998), and Rausch 
(2006) for discussions specific to SAS and star-schemas], the present work focuses on one example of creating and 
maintaining a dimensional model using Base SAS techniques. 

Specifically, the current work describes the creation of a dimensional model of billing activity associated with 
professional medical services.  The main data source for this example is a charge transaction table that records each 
transaction (e.g., new charge, payment, charitable reduction, etc.) associated with billing line-items (e.g., medical 
procedures, tests, etc.).  Each of these transactions contains a billing id that identifies the specific billing line-item, a 
transaction type (e.g., new charge, patient copay, etc.), a billing amount, and the names of the patient, physician, and 
clinic involved in the episode of care. 

Billing ID 
Tran. 
Type 

Transaction 
Date 

Service 
Date 

Patient 
Name 

Provider 
Name 

Billed 
Amount Clinic Name Procedure 

81096011 0 10/1/2009 10/1/2009 Smith, John Jones, Mary 175.20 Clinic XYZ v70.0 

81096011 1 11/12/2009 10/1/2009 Smith, John Jones, Mary 75.20 Clinic XYZ v70.0 

81096011 2 12/1/2009 10/1/2009 Smith, John Jones, Mary 10.15 Clinic XYZ v70.0 

81096012 0 10/15/2009 10/15/2009 Smith, John Stevens, Tom 520.16 Clinic ABC 88.54 

81096012 1 11/12/2009 10/15/2009 Smith, John Stevens, Tom 0.16 Clinic ABC 88.54 

81096012 3 12/1/2009 10/15/2009 Smith, John Stevens, Tom 25.00 Clinic ABC 88.54 

As one can see from this example, there is a lot of information stored redundantly (e.g., Provider Name, Clinic Name, 
etc.).  This makes creating reports easier in some ways, because one does not need to join records from this table to 
other source system tables in order to bring (for example) the name of the physician or clinic onto the report.  This is 
especially helpful for inexperienced report writers or those unfamiliar with the larger data model, but as the number of 
records grows into the millions, tens of millions, or hundreds of millions, the cost to query performance for storing 
these redundant data becomes significant.  This problem is exacerbated by the fact that users may want their reports 
and analytic datasets to include not only a provider's name but also their degrees, license numbers, etc.  As demand 
to add additional text labels to this table grows, storage size increases and query performance degrades even further. 

Alternatively, analysts and report writers could link to other source system tables (e.g., the "providers" table) to return 
text labels for inclusion on a report, but doing so could lead to inconsistencies across analysts as similar data 
elements (with subtle or not-so-subtle differences) are queried from different source tables to answer the same 
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question.  In addition, use of current operational data could result in the loss of information about historical trends.  
For example, if the primary clinic on Provider A's provider profile is Clinic XYZ and we roll up reimbursements by 
primary clinic, all of the revenue generated by Provider A would appear to have been generated at Clinic XYZ, even if 
Provider A spent the last ten years practicing at Clinic ABC.  A separate rollup of the charge transactions table by 
clinic would fail to tie-out to the query performed using the primary clinic field from the provider profile.  This state of 
affairs can be confusing and is often regarded with skepticism even by those who understand the reasons for such 
conflicting results.   

The goal of a dimensional model is to eliminate the data model as a source of confusion and improve query 
performance when analyzing and reporting on large, complex data models.  Dimensional models achieve these goals 
by transforming the data from the source system into "Fact" tables comprised of records that contain (a) the numeric 
performance data of interest (e.g., gross charges, adjustments, and net charges associated with each billing line-
item) and (b) foreign keys to tables (the "Dimensions") that describe the context within which the facts were 
generated.  The latter part of this description is particularly important because it hints at the historical nature of the 
dimensions.  Dimensions are not simply a description of the entity (e.g., provider) as it is currently described in the 
operational source system.  Instead, dimensions should accurately describe the provider, clinic, patient, etc. at a point 
in time so that the facts can be understood in terms of their characteristics at the time the facts were generated.   

In addition to building and maintaining dimensions in a way that enables valid analysis of the fact table, another 
design consideration for building a dimensional model is the granularity of the data in the fact table(s).  Whereas 
there are certainly valid reasons for retaining our professional billing data at the finest level of analysis (i.e., the 
individual transaction), the present work will focus on a data model (depicted below) that rolls up the transactions to 
the level of the billing line-item.  In addition to the aggregated and computed values (facts) assigned to each billing 
line-item, each record in the "billing_fact" table also contains foreign keys that link each fact table record to its 
corresponding record in each of the dimension tables. 

BILLING_FACT

PK BILLING_FACT_ID

FK4 PROCEDURE_DIM_ID

FK1 PATIENT_DIM_ID

FK3 DATE_DIM_ID

FK2 CLINIC_DIM_ID

FK5 PROVIDER_DIM_ID

 REIMBURSEMENT_TYPE

 NUM_PROCEDURES

 NET_CHARGES

 GROSS_CHARGES

 TOTAL_ADJUSTMENTS

 CAPITATION_PAYMENTS

 TOTAL_PAYMENTS

 ESTIMATED_REIMBURSEMENT

 VOIDED_CHARGES

 COPAY

 BAD_DEBT

CLINIC_DIM

PK CLINIC_DIM_ID

 CLINIC_ID

 CLINIC_NAME

 NUM_EXAM_ROOMS

PROVIDER_DIM

PK PROVIDER_DIM_ID

 PROVIDER_LASTNAME

 PROVIDER_FIRSTNAME

 PROVIDER_NAME

 PROVIDER_NPI

 PROVIDER_LICENSE_NUM

 PROVIDER_SPECIALTY

 PROVIDER_GENDER

 PROVIDER_DOB

DATE_DIM

PK DATE_DIM_ID

 SERVICE_DATE

 DOW

 DOY

 FISCAL_YEAR

 CALENDAR_YEAR

 FISCAL_PERIOD

 FEDERAL_FISCAL_YEAR

PROCEDURE_DIM

PK PROCEDURE_DIM_ID

 PROCEDURE_CODE

 PROCEDURE_NAME

 PROCEDURE_SHORT_NAME

PATIENT_DIM

PK PATIENT_DIM_ID

 PATIENT_ID

 PATIENT_CITY

 PATIENT_ZIP

 

Using the data in this model, one could easily sum all charges or calculate the reimbursement rate (e.g., 
"total_payments" / "gross_charges") for a given provider or clinic over a given calendar year, fiscal year or specific 
date range.  Query performance is improved significantly compared to the wider charge transaction table because: 
(a) redundant descriptive information has been removed from the organizational performance data of interest and 
placed in the dimensions, (b) the contents of the descriptive dimensions are limited to the relatively small number of 
unique historical dimension records, and (c) the relationships between the fact table and the dimensions are defined 
in terms of simple numeric keys.  Further, because the dimension tables are smaller and easier to traverse, one can 
add many additional descriptors to each of these records without degrading performance—increasing the number of 
ways in which the facts can be sliced or rolled up.   

In order to achieve the benefits of this powerful model, one must first transform the source system's relational data 
model into a dimensional model.  The following sections describe how to achieve this transformation using Base SAS 
DATA steps, SAS/ACCESS, PROC SQL, and SAS hash objects. 

EXTRACTING AND TRANSFORMING SOURCE SYSTEM DATA 

As described by Kimball and Ross (2002), there are a variety of fact table types, each of which serves different 
business purposes.  What is described in the following example is an accumulating snapshot of the billing line-items.  
With each rebuild of the model, all of the transactions that are associated with a given billing line-item are used to 
update the calculated facts.   
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DATABASE ACCESS.  The first step in creating the fact table, is extracting data from the source system.  In the current 
example, the source system is an Oracle 10g® database containing an electronic health record vendor's proprietary 
reporting tables.  In order to connect to the database, SAS/ACCESS is used to create a SAS library that references a 
database connection.  As described elsewhere (SAS Institute Inc., 1999, 2004; Schacherer, 2008), using native 
Oracle SQL*Net connections to the database, one can create SAS libraries that reference a database schema.  The 
pre-requisites for such connections include installation of Oracle’s SQL*Net client software on the server or 
workstation on which you are running SAS, access to the “tnsnames.ora” file containing the network references and 
connection parameters for the database(s), and database privileges appropriate for accessing the data. 

Having successfully configured Oracle’s proprietary networking software, creating the library definition that connects 
SAS to the database can be accomplished as shown in the following example. 

LIBNAME billing ORACLE 

        USER = hca_etl 

     DBPROMPT = yes 

     PATH = "ehr" 

        SCHEMA = billing_owner; 

The preceding code invokes the SAS/ACCESS engine for Oracle and creates the SAS library “billing”.  The USER 
parameter specifies that the connection will be made using the credentials of Oracle database user “hca_etl”, and the 
PATH parameter specifies the connection is being made to database instance "ehr".  Finally, the SCHEMA parameter 
specifies the logical collection of database objects that will be referenced by the SAS library.  Once this database 
connection is established, the database tables and views to which the user has access can be used as source data 
for DATA step programming, SQL Procedure queries, or analytic procedures (e.g., GLM, ANOVA, FREQ, etc.).   

INITIAL DATA EXTRACTION.  As described previously, each record in the fact table ("billing_fact") summarizes the 
charges, payments, and adjustments applied to a professional billing line-item.  For example, for a given patient visit 
there may be multiple procedures or tests performed, and each of these billable items generates a line-item on the 
professional billing statement.  Each of these line-items, in turn, is associated with one or more records in the charge 
transactions table—for example, new charges (transaction_type = 0), payments (transaction_type = 1), voided 
charges (transaction_type = 2), etc.  Therefore, the initial step in creating the fact table for this model is to create a 
dataset comprised of all new charges—those in which "transaction_type" equals zero.   

The resulting dataset ("billing_fact1") contains a natural primary key ("billing_id"), natural foreign keys (e.g., 
"provider_id", "procedure_id", etc.) used to link dataset records to their associated records in the operational system's 
supporting tables, one aggregated fact ("gross charges"), placeholders for additional aggregated facts (e.g., 
"net_charges", "total_adjustments", etc.) and placeholders for surrogate foreign keys (e.g., "provider_dim_id", 
"clinic_dim_id", etc.) that will be used to link the fact table records to the dimensions. 

This initial dataset is created in the SAS library "stage" that serves as the work area where the dimensional model will 
be built prior to being loaded to the business intelligence system.  The SAS library "etldat" contains persistent 
dimension data (used later in the program) as well as the audit data associated with each execution of the extract, 
transform, and load (ETL) program. 

LIBNAME stage '\\hca\etl\product\probill\data\'; 

LIBNAME etldat '\\hca\etl\persistent\'; 

 

PROC SQL; 

   CREATE TABLE stage.billing_fact1 AS 

   SELECT billing_id, service_date, service_fiscal_year, procedure_id,  

          provider_id, patient_id, clinic_id, billing_amount AS gross_charges, 

          . AS payments, . AS voided_charges, . AS copays,  

          . AS net_charges, . AS balance, . AS total_adjustments 

          . AS svc_date_dim_id, . AS provider_dim_id, . AS procedure_dim_id, 

          . AS clinic_dim_id, . AS patient_dim_id 

     FROM billing.charge_transactions 

    WHERE detail_type = 0; 

QUIT; 

After the initial data extraction, additional PROC SQL statements are used to create summaries (e.g., payments, 
voided charges, and copayments) that roll up the other types of transactions associated with each billing id.   
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PROC SQL; 

   CREATE TABLE stage.payments AS 

   SELECT billing_id, SUM(billing_amount) AS payments 

     FROM billing.charge_transactions 

    WHERE detail_type = 1 

 GROUP BY billing_id; 

QUIT; 

 

PROC SQL; 

   CREATE TABLE stage.voided_charges AS 

   SELECT billing_id, SUM(billing_amount) AS voided_charges 

     FROM billing.charge_transactions 

    WHERE detail_type = 2 

 GROUP BY billing_id; 

QUIT; 

 

PROC SQL; 

   CREATE TABLE stage.copays AS 

   SELECT billing_id, SUM(billing_amount) AS copays 

     FROM billing.charge_transactions 

    WHERE detail_type = 3 

 GROUP BY billing_id; 

QUIT; 

Once these summary variables are computed, each needs to be added to the "billing_fact1" record with the 
corresponding "billing_id".  One approach to performing these joins would be to use PROC SQL to perform a left join 
from the billing fact table to each of the summary tables.  With large datasets like the ones associated with the 
professional billing model, however, each of these joins could take a significant amount of time to complete.  To more 
efficiently perform these joins, SAS hash objects are used to speed the assignment of these summary variables to 
their associated billing line-item. 

USING SAS HASH OBJECTS TO ASSIGN SUMMARY VALUES.  As described by Dorfman (2000), Dorfman & Snell 
(2003), Dorfman & Vyverman (2006, 2009), Parman (2006), and Snell (2006), the SAS hash object provides an 
extraordinarily fast way to assign values from one dataset to corresponding records in another dataset in the context 
of the DATA step.  Hash objects achieve their performance gains by (1) holding the look-up data in memory—
obviating the need for repeated disk access and (2) allowing data to be joined without first being sorted (Secowsky & 
Bloom, 2007).  As described by Secowsky and Bloom, the SAS hash object is: 

"an in-memory lookup table accessible from the DATA step.  A hash object is loaded with records and is 
only available from the DATA step that creates it.  A hash record consists of two parts:  a key part and a 
data part.  The key part consists of one or more character and numeric values.  The data part consists of 
zero or more character and numeric values". 

Because the hash object entries (key/data combinations) are held in memory, finding the data value that corresponds 
to a given key happens much faster than it would if the records were read from disk.  In the following DATA step, 
hash objects are used to assign the summary values in the tables "payments", "voided_charges", and "copays" to the 
aggregated fact placeholders in "billing_fact1". 

At the beginning of this DATA step (where the automatic variable "_N_" equals one), the hash objects are initialized 
using the DECLARE statement and the keyword HASH and are assigned a name (e.g., "payment").  As part of the 
declaration statement, each hash object is associated with a dataset (e.g., stage.payments) from which the values 
used to fill the hash object will be read.  The key and data elements are then defined for the hash objects using the 
DEFINEKEY and DEFINEDATA methods, respectively.  You can think of the key and data elements as two distinct 
parts of a record in the hash object.  At the time a look-up is performed against the hash object, the KEY values are 
searched for a match to the current record being processed, and if a match is found, the data element associated 
with that key will be returned as the result of the look-up operation.  The declaration of the hash object is completed 
with the DEFINEDONE method.  For the three hash objects in this example, "billing_id" is defined as the key value 
and the summary variables "payments", "voided_charges", and "copays", respectively, are defined as the data 
elements.  It should be noted that although each of these hash objects has only one key variable and one data 
variable, hash objects can also be defined to use complex keys (i.e., those comprised of multiple variables) and to 
return values for multiple variables. 
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DATA etl.billing_fact2; 

  IF _N_ = 1 THEN DO; 

 

  DECLARE HASH payment(dataset:'stage.payments'); 

    payment.DEFINEKEY ('billing_id'); 

    payment.DEFINEDATA('payments');  

    payment.DEFINEDONE(); 

 

  DECLARE HASH voided(dataset:'stage.voided_charges'); 

    voided.DEFINEKEY ('billing_id'); 

    voided.DEFINEDATA('voided_charges');  

    voided.DEFINEDONE(); 

 

  DECLARE HASH copay(dataset:'stage.copays'); 

    copay.DEFINEKEY ('billing_id'); 

    copay.DEFINEDATA('copays');  

    copay.DEFINEDONE(); 

END; 

With the hash objects defined, data from the first stage of the fact table build ("billing_fact1") are processed.  As each 
record is read from "billing_fact1", the FIND method is used to perform a search of each hash object for entries 
having a key value that matches the value of "billing_id" in the current record.  For example, when the call to 
payment.FIND() is made, the value of "billing_id" from the current record is used to search for a matching "billing_id" 
in the "payment" hash object.  If a match is found, the value corresponding to the data element of the hash record is 
assigned to the variable "payments" in the current record and the return code variable "rc1" is assigned a value of 
"0"—indicating that a match was found.  If a match is not found, a non-zero value is returned from the FIND() call—
indicating that there were no entries in the hash object that had a "billing_id" matching the "billing_id" of the current 
record.  In this latter case, we set the value of "payments" to 0—indicating the total amount of the payments received 
for that billing line-item.   

  DO UNTIL (eof_fact1); 

   SET etl.billing_fact1 END = eof_fact1; 

       rc1 = payment.FIND(); 

    IF rc1 ne 0 THEN payments = 0; 

       rc2 = voided.FIND(); 

    IF rc2 ne 0 THEN voided_charges = 0; 

      rc3 = copay.FIND(); 

       IF rc3 ne 0 THEN copay = 0; 

After using the hash objects to add the aggregate facts to the billing line-item records, additional facts are calculated 
in the same DATA step and the records are output to "billing_fact2". 

   net_charges = gross_charges + voided_charges;  

   total_adjustments = charity_adjustments + other_discounts;  

   OUTPUT; 

 END; 

RUN; 

In the actual production code there are a number of other calculated variables produced during this DATA step, but 
this example demonstrates that in a single pass through the dataset you can both use hash objects to look up values 
from multiple datasets and perform calculations and transformations involving the dataset variables.   

Before leaving this discussion of the hash object, there are two additional points that deserve mention.  First, when 
creating a hash object, you cannot assign it the same name as a variable that will be encountered in the source 
dataset—or anywhere in the DATA step, for that matter.  This may not seem obvious at first; after all, the "payment" 
hash object is used to look up payments, so why not name it "payments" as well?  Consider what would happen if we 
did this.  The hash object "payments" would be declared just as "payment" was in the previous example.   

  DECLARE HASH payments(dataset:'etl.payments'); 

    payment.DEFINEKEY ('billing_id'); 

    payment.DEFINEDATA('payments');  

    payment.DEFINEDONE(); 
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Following this declaration the name "payments" refers to the "payments" hash object.  Later in the program, when 
"billing_fact1" is SET as a source dataset, SAS attempts to define the dataset variable "payments" and an error is 
generated because "payments" is already defined as the name of the hash object. 

  DO UNTIL (eof_fact1); 

   SET etl.billing_fact1 END=eof_fact1; 

ERROR: Variable payments has been defined as both object and scalar. 

Of course, this error can be easily avoided by not using the names of source dataset variables as hash object names, 
but the first time this error is encountered it can be a bit confusing.  It should also be noted that even if there was not 
a variable named "payments" in "billing_fact1" a DATA step using this hash object would still generate errors because 
the hash object's data element, once defined, is also a DATA step variable. 

A second, very important, consideration in the use of hash objects is the size of the hash object being created relative 
to the available physical memory.  Because hash objects reside in memory, the size of the hash table is limited to the 
memory available to SAS.  If the hash object exceeds the available memory, an error similar to the following will be 
generated: 

ERROR: Hash object added 16777200 items when memory failure occurred. 

FATAL: Insufficient memory to execute DATA step program.   

       Aborted during the EXECUTION phase. 

NOTE: The SAS System stopped processing this step because of insufficient memory. 

NOTE: There were 1 observations read from the data set STAGE.BILLING_FACT1. 

WARNING: The data set STAGE.BILLING_FACT2 may be incomplete.  When this step was  

         stopped there were 0 observations and 23 variables. 

As described in the SAS 9.2 Help and Documentation, the amount of memory (in bytes) used to hold the data 
associated with each entry in a hash object can be determined using the ITEM_SIZE attribute of the hash object.  In 
the following example, each entry in the "payment" hash object requires 32 bytes of memory. 

  DECLARE HASH payment(dataset:'stage.payments'); 

    payment.DEFINEKEY ('billing_id'); 

    payment.DEFINEDATA('payments');  

    payment.DEFINEDONE(); 

... 

  hash_size = payment.ITEM_SIZE; 

  PUT 'hash size:' hash_size; 

END; 

 

NOTE: There were 20000000 observations read from the data set STAGE.PAYMENTS. 

hash size:32 

Multiplying the hash size by the number of rows in the hash object's source dataset will give a rough estimate of the 
memory required for the hash object (Secowsky & Bloom, 2007), but this method will underestimate the hash object 
size because ITEM_SIZE accounts only for the memory needed to store the data and does not account for the 
overhead required by the hash object.  However, SAS Institute, Inc. (2008) provides a macro (%hash_test) that more 
accurately predicts the memory usage of a hash object with given characteristics.  Another quick way to estimate the 
size of a hash object is to create a smaller subset of the dataset that sources the hash object and execute the DATA 
step in which the hash object is created with the FULLSTIMER system option enabled (OPTIONS FULLSTIMER;).  
This option will provide statistics on the amount of memory used in creating the smaller hash object, and one can use 
these data to estimate the memory required for the full hash object.   

In the previous example, there was sufficient memory for all three hash objects to be loaded, and the DATA step that 
produced "billing_fact2" successfully added the aggregate facts and calculated fields to the fact table records.  
Following assignment of the facts to each record, variables that serve as the foreign keys linking the fact table to its 
descriptive dimensions must be assigned the appropriate value for each record.  Before that assignment can occur, 
however, maintenance of the dimension tables must be performed. 

CREATING INFORMATIVE DIMENSIONS AND ASSIGNING SURROGATE FOREIGN KEYS 

Dimension tables provide the context for understanding the facts stored in a fact table.  Some dimensions have a 
corollary in the source system (e.g., the "provider_dim" dimension and the "providers" table), whereas others are not 
represented as tables in the source system (e.g., "date_dim").  Regardless of the type of dimension, however, it is 
recommended that each dimension table have—as its primary key—a single-column, integer variable that is 
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managed as part of the ETL process and has no relation to a record identifier or operational code in the source data 
system.  Not only does the use of these surrogate keys help avoid the potentially disastrous impacts of unexpected 
changes to the operational system keys, but their use also facilitates the management of dimensions that change 
over time. 

As an example of the latter benefit, consider the clinics dimension ("clinic_dim"); it contains information about the 
location, schedule capacity, and number of exam rooms associated with each clinic.  This information is available in a 
table in the source system, and using the source system's primary key ("clinic_id"), the billing line-item records could 
be linked to the current description of each clinic in the source system.  Therefore, one could use this operational 
table as the clinics dimension and be able to answer questions about the performance of clinics in terms of their 
current characteristics.  However, this approach presents a challenge to analyzing the performance impact of 
changes to the clinics.  Once a change is made to the operational system's "clinics" table (e.g., an increase in the 
number of exam rooms at Clinic XYZ), that changed value would become the new descriptor for all billing records 
associated with that clinic.  The number of exam rooms associated with medical services provided at Clinic XYZ prior 
to the change would be lost, and the impact of this change on performance could not be readily analyzed. Instead, we 
need to somehow capture such changes in our "clinic_dim" dimension in a way that allows us to link the "billing_fact" 
records to records that describe the clinic as it was at the time the billed service was performed.   

Instead of using the operational system's "clinics" table as the dimension table, the clinics dimension ("clinic_dim") is 
built and maintained in a way that allows us to capture certain changes to the attributes describing each clinic. 

clinic_dim  

Clinic ID Clinic Dim ID  Clinic Name Num Exam Rooms Effective Date 

0012 1 Clinic XYZ 2 01/01/2002 

0012 4 Clinic XYZ 3 03/02/2003 

0013 2 Clinic ABC 9 01/01/2002 

0014 3 123 Clinic 6 01/01/2002 

Starting from a baseline copy of the operational system's "clinics" table, the following code executes as part of the 
ETL process to look for changes in the clinic descriptions and adds records reflective of those changes to the clinics 
dimension ("clinic_dim").  The first step in this process is to identify the most recent description of each clinic in the 
current clinics dimension. 

PROC SQL; 

  CREATE TABLE stage.max_clinic_records AS 

  SELECT * FROM dim.clinic_dim a 

   WHERE effective_date = (SELECT MAX(effective_date)  

                             FROM etldat.clinic_dim b 

                            WHERE a.clinic_id = b.clinic_id); 

QUIT; 

The resulting dataset "max_clinic_records" contains the most recent information about each clinic from the clinics 
dimension. 

"max_clinic_records"  

Clinic ID Clinic Dim ID Clinic Name Num Exam Rooms Effective Date 

0012 4 Clinic XYZ 3 03/02/2003 

0013 2 Clinic ABC 9 01/01/2002 

0014 3 123 Clinic 6 01/01/2002 

Using this dataset, the next step in updating the clinics dimension is to create a dataset ("changed_clinics") that 
contains: (a) those records from the source system that have a different value for "num_exam_rooms" than the most 
recent record for that clinic in the dimension table and (b) new records (associated with new clinics).  Note that one 
can control the changes that are tracked in the dimension by adding additional OR statements to the WHERE clause 
in the following query.   

PROC SQL; 

 CREATE TABLE stage.changed_clinics AS 

 SELECT a.clinic_id,a.clinic_name,a.num_exam_rooms,TODAY() AS effective_date 

   FROM billing.clinics a LEFT JOIN stage.max_clinic_records b 

     ON a.clinic_id = b.clinic_id 

  WHERE a.num_exam_rooms NE b.num_exam_rooms; 

QUIT; 
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With all of the new and changed clinic records in the "changed_clinics" dataset, the macro variable "max_surrogate" 
is assigned the value corresponding to the highest value of the surrogate key in the clinics dimension.  Surrogate key 
values are then assigned to the "changed_clinics" records, and these new records are inserted into the clinics 
dimension. 

PROC SQL NOPRINT; 

 SELECT MAX(clinic_surrogate) INTO :max_surrogate 

   FROM etldat.clinic_dim; 

QUIT; 

 

DATA stage.changed_clinics; 

 SET stage.changed_clinics; 

 RETAIN clinic_dim_id; 

 IF _n_ = 1 THEN clinic_dim_id = &max_surrogate + 1; 

 ELSE clinic_dim_id = clinic_dim_id + 1; 

RUN; 

 

PROC SQL; 

 INSERT INTO etldat.clinic_dim 

(clinic_id,clinic_name,clinic_dim_id,num_exam_rooms,effective_date) 

 SELECT clinic_id,clinic_name,clinic_dim_id,num_exam_rooms,effective_date  

   FROM stage.changed_clinics; 

QUIT; 

Following the latest expansion of Clinic XYZ from three exam rooms to six, the clinics dimension now contains a third 
record for Clinic XYZ. 

Clinic ID Clinic Dim ID Clinic Name Num Exam Rooms Effective Date 

0012 1 Clinic XYZ 2 01/01/2002 

0012 4 Clinic XYZ 3 03/02/2003 

0013 2 Clinic ABC 9 01/01/2002 

0014 3 123 Clinic 6 01/01/2002 

0012 5 Clinic XYZ 6 11/15/2009 

This view of the clinics dimension highlights the problem inherent in using the source system's primary keys as the 
keys that link the billing fact records to the dimensions.  Because there are multiple entries for clinic_id "0012", it is 
not possible to unequivocally match billing line-item records to the correct clinics dimension record based solely on 
the natural foreign key "clinic_id".  Instead, the surrogate key value ("clinic_dim_id") from the clinics dimension needs 
to be assigned to each record in the billing fact table based on the date of service and the effective date of the clinics 
dimension records. 

In the following example, "clinic_id" and "service_date" in "billing_fact2" are used to identify the record in the clinics 
dimension that accurately reflects the clinic characteristics at the time the billing line-item was generated.  A 
correlated subquery of the clinics dimension ("clinic_dim") is performed to identify the clinic dimension record with the 
most recent effective date prior (or equal) to the "service_date".  Once identified, that record's surrogate key value is 
assigned as the value of "clinic_dim_id" on the "billing_fact2" record.   

PROC SQL; 

 UPDATE etl.billing_fact2 A 

 SET clinic_dim_id = (SELECT clinic_dim_id  

                        FROM etldat.clinic_dim b 

                       WHERE a.clinic_id = b.clinic_id and 

                             b.effective_date =  

                            (SELECT MAX(effective_date)  

                               FROM etldat.clinic_dim c 

                              WHERE a.clinic_id = c.clinic_id and  

                                    c.effective_date <= a.service_date)); 

QUIT; 

With the surrogate foreign key values assigned to the billing fact table records, the dimensional model is complete.  It 
should be noted, however, that in each dimension table there is also a record with the surrogate key value "9999999".  
The values assigned to variables in these records denote that "billing_fact" records assigned this surrogate foreign 
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key have "UNKOWN" attributes along that particular dimension.  If you use this approach to identify missing data in 
your fact table, your ETL program should also contain a report generation stage that identifies the billing records with 
these unknown attributes, and an effort should be made to understand the origins of these missing values.  Assigning 
this missing value code, however, allows analysts and report writers to be able to use inner joins without fear that 
they may accidentally drop "billing_fact" records. 

LOADING DATA INTO THE DATA WAREHOUSE 

Once the fact and dimension datasets are created, the data are loaded into a Microsoft SQL Server 2005® database 
where the analysts and report-writers access the data model.   

LIBNAME hca OLEDB PROVIDER=SQLOLEDB.1 DATASOURCE="BI-PROD" 

        PROPERTIES = ('initial catalog'=HCA 'Integrated Security'=SSPI  

                      'Persist Security Info'=True)  

        BCP = Yes SCHEMA = 'BI_OWNER'; 

Several steps of the load process are accomplished using pass-through SQL.  When performing multiple pass-
through SQL statements to the same database, repeating database connect strings for each step of a process can 
become confusing and add unnecessary clutter to the program.  To avoid this situation, the macro variable "bi_etl" is 
assigned the value of the connect string for the target system. 

%LET bi_etl = OLEDB ( PROVIDER=SQLOLEDB.1  DATASOURCE="BI-PROD"  

              PROPERTIES = ('Initial Catalog'=HCA  

                            'Integrated Security'=SSPI  

                            'Persist Security Info'=True) ); 

Next, the program connects to the data warehouse and drops the existing foreign key constraints for this data mart. 

PROC SQL; 

CONNECT TO &bi_etl; 

   EXECUTE ( 

alter table bi_owner.billing_fact drop constraint fk_billing_fact_providers  

alter table bi_owner.billing_fact drop constraint fk_billing_fact_dates  

alter table bi_owner.billing_fact drop constraint fk_billing_fact_procedures  

alter table bi_owner.billing_fact drop constraint fk_billing_fact_patients  

alter table bi_owner.billing_fact drop constraint fk_billing_fact_clinics  

) BY OLEDB; 

The existing indexes are dropped to speed the loading of the data.  These indexes will be rebuilt after the tables are 
loaded with the new data. 

EXECUTE ( 

drop index bi_owner.billing_fact.billing_facts 

drop index bi_owner.billing_fact.providers 

drop index bi_owner.billing_fact.dates 

drop index bi_owner.billing_fact.procedures 

drop index bi_owner.billing_fact.patients 

drop index bi_owner.billing_fact.clinics 

) BY OLEDB; 

QUIT; 

The data in the existing model are truncated.   

EXECUTE (truncate table bi_owner.billing_fact  

         truncate table bi_owner.provider_dim 

         truncate table bi_owner.procedure_dim 

         truncate table bi_owner.patient_dim 

         truncate table bi_owner.date_dim 

         truncate table bi_owner.clinic_dim 

)BY OLEDB; 

QUIT; 
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At this point the tables in the professional billing data mart are empty.  The following PROC SQL insert statements 
are used to load data from the staging area to the analytic data mart.   

PROC SQL; 

INSERT INTO hca.billing_fact 

       (billing_fact_id,procedure_dim_id,patient_dim_id,date_dim_id, 

        clinic_dim_id,provider_dim_id, gross_charges, payments, voided_charges,     

        copays, net_charges, balance, total_adjustments) 

SELECT  procedure_dim_id,patient_dim_id,svc_date_dim_id,clinic_dim_id, 

        provider_dim_id,reimbursement_type,num_procedures,net_charges, 

        gross_charges,total_adjustments,modified_charges, 

        voided_charges,copay,bad_debt 

  FROM  stage.billing_fact2; 

QUIT; 

 

PROC SQL; 

INSERT INTO hca.procedure_dim 

       (procedure_dim_id,procedure_code,procedure_name,procedure_short_name) 

SELECT  procedure_dim_id,procedure_code,procedure_name,procedure_short_name 

  FROM  etldat.procedure_dim; 

QUIT; 

 

PROC SQL; 

INSERT INTO hca.patient_dim 

       (patient_dim_id, patient_name, patient_city, patient_zip patient_gender) 

SELECT  patient_dim_id, patient_name, patient_city, patient_zip patient_gender 

  FROM  etldat.patient_dim; 

QUIT; 

 

PROC SQL; 

INSERT INTO hca.date_dim 

       (date_dim_id,service_date,dow,doy,fiscal_year,calendar_year, 

        fiscal_period,federal_fiscal_year) 

SELECT  date_dim_id,service_date,dow,doy,fiscal_year,calendar_year, 

        fiscal_period,federal_fiscal_year 

  FROM  etldat.date_dim; 

QUIT; 

 

PROC SQL; 

INSERT INTO hca.clinic_dim 

       (clinic_dim_id, clinic_id, clinic_name, clinic_state, clinic_city,  

        num_exam_rooms, clinic_director ) 

SELECT  clinic_dim_id, clinic_id, clinic_name, clinic_state, clinic_city,  

        num_exam_rooms, clinic_director 

  FROM  etldat.clinic_dim; 

QUIT; 

 

PROC SQL; 

INSERT INTO hca.provider_dim 

      (provider_dim_id, provider_id, provider_name, provider_specialty, dea_number,  

       license_number) 

SELECT provider_dim_id, provider_id, provider_name, provider_specialty, dea_number,  

       license_number  

  FROM etldat.provider_dim; 

QUIT; 
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After the new data are loaded, the foreign key constraints are recreated and the data are re-indexed. 

PROC SQL; 

CONNECT TO &bi_etl; 

 

EXECUTE ( 

alter table bi_owner.billing_fact add constraint fk_billing_fact_providers  

 foreign key (provider_dim_id)  

 references bi_owner.provider_dim (provider_dim_id) 

alter table bi_owner.billing_fact add constraint fk_billing_fact_dates  

 foreign key (svc_date_dim_id)  

 references bi_owner.date_dim (date_dim_id) 

alter table bi_owner.billing_fact add constraint fk_billing_fact_procedures  

 foreign key (procedure_dim_id)  

 references bi_owner.procedure_dim (procedure_dim_id) 

alter table bi_owner.billing_fact add constraint fk_billing_fact_patients  

 foreign key (patient_dim_id)  

 references bi_owner.diagnosis_dim (patient_dim_id) 

alter table bi_owner.billing_fact add constraint fk_billing_fact_clinics  

 foreign key (clinic_dim_id)  

 references bi_owner.clinic_dim (clinic_dim_id) 

) BY OLEDB; 

 

EXECUTE ( 

create index idx_billing_fact_id on bi_owner.billing_fact(billing_fact_id) 

create index idx_billing_fact_provider on bi_owner.billing_fact(provider_dim_id) 

create index idx_billing_fact_svc_date on bi_owner.billing_fact(svc_date_dim_id) 

create index idx_billing_fact_procedure on bi_owner.billing_fact(procedure_dim_id) 

create index idx_billing_fact_patient on bi_owner.billing_fact(patient_dim_id) 

create index idx_billing_fact_clinic on bi_owner.billing_fact(clinic_dim_id) 

) BY OLEDB; 

 

QUIT; 

With the data re-indexed, the SAS program is finished, and the refreshed professional billing data mart is ready for 
use. 

CONCLUSION 

The information provided here has hopefully stimulated your thinking about how to build your own dimensional 
models using Base SAS, PROC SQL, and SAS hash objects.  There are number of related topics that should be 
considered as the reader begins contemplating his or her own dimensional modeling/ETL project.  For example, the 
ETL program could be scheduled to run daily as an unattended batch job (Kincheloe, 2002; 2006), but this will entail 
conditionally controlling the execution of your SAS code (see Flavin & Carpenter, 2001).  You would hate to have 
empty SAS data sets at the end of your transformation process and then continue on to truncate your published 
analytic tables, and "publish" your empty datasets.  For more information on automating your ETL program and 
controlling your processes with audit checks, see Schacherer and Steines (2010).  Whether your ETL program is 
simple or complex, I think you will agree that PROC SQL and SAS DATA step programming with hash objects can be 
used to create fast, efficient ETL programs for transforming relational source system data into dimensional models. 

REFERENCES 

Dorfman, P. M. (2000).  Private Detectives in a Data Warehouse: Key-Indexing, Bitmapping, and Hashing. 
Proceedings of the 25

th
 Annual SAS Users Group International Meeting.  Cary, NC:  SAS Institute, Inc. 

Dorfman, P. M. & Snell, G. P. (2003).  Hashing: Generations.  Proceedings of the 28
th

 Annual SAS Users Group 
International Meeting.  Cary, NC:  SAS Institute, Inc. 

Dorfman, P. M. & Vyverman, K.. (2009).  The SAS Hash Object in Action. Proceedings of the SAS Global Forum 
2009.  Cary, NC:  SAS Institute, Inc. 

Dorfman, P. M. & Vyverman, K.. (2006).  Data Step Hash Objects as Programming Tools. Proceedings of the 31
st
 

Annual SAS Users Group International Meeting.  Cary, NC:  SAS Institute, Inc. 

Data IntegrationSAS Global Forum 2011

 
 



12 

 

Flavin, J. M. & Carpenter, A. L. (2001).  Taking Control and Keeping It: Creating and using conditionally executable 
SAS® Code.  Proceedings of the 26

th
 Annual SAS Users Group International Meeting.  Cary, NC:  SAS 

Institute, Inc. 

Grasse, D. & Nelson, G. (2006).  Base SAS vs. SAS Data Integration Studio:  Understanding ETL and the SAS Tools 
Used to Support it.  Proceedings of the 31

st
 Annual SAS Users Group International Meeting.  Cary, NC:  

SAS Institute, Inc. 

Heinsius, B. (2001).  Querying Star and Snowflake Schemas in SAS.  Proceedings of the 26
th

 Annual SAS Users 
Group International Meeting.  Cary, NC:  SAS Institute, Inc. 

Inmon,W.H. (1993).  Building the Data Warehouse, John Wiley & Sons,Inc. 

Kimball, R. (1996).  The Data Warehouse Toolkit.  John Wiley & Sons, Inc. 

Kimball, R. & Ross, M. (2002).  The Data Warehouse Toolkit, Second Edition.  John Wiley & Sons, Inc. 

Kincheloe, F. (2006).  Sleepless in Wherever - Resolving Issues in Scheduled Jobs.  Proceedings of the 31
st
 Annual 

SAS Users Group International Meeting.  Cary, NC:  SAS Institute, Inc. 

Kincheloe, F. (2002).  While You Were Sleeping - Scheduling SAS Jobs to Run Automatically.  Proceedings of the 
27

th
 Annual SAS Users Group International Meeting.  Cary, NC:  SAS Institute, Inc. 

Lupetin,Maria,(1998).  A Data Warehouse Implementation Using the Star Schema.  Proceedings of the 23
rd

 Annual 
SAS Users Group International Meeting.  Cary, NC:  SAS Institute, Inc. 

Parman, B (2006).  How to implement the SAS® DATA Step Hash Object.  Proceedings of the SouthEast SAS User's 
Group.  

Rausch, N. (2006).  Stars and Models:  How to Build and Maintain Star Schemas Using SAS® Data Integration 
Server in SAS® 9.  Proceedings of the 31

st
 Annual SAS Users Group International Meeting.  Cary, NC:  SAS 

Institute, Inc. 

SAS Institute Inc. (2008).  Sample 34193: How to determine how much memory my hash table will require.  
Downloaded February 13, 2011 from: http://support.sas.com/kb/34/193.html  

SAS Institute Inc. (2004).  SAS 9.1 SQL Procedure User’s Guide. Cary, NC: SAS Institute Inc. 

SAS Institute Inc. (1999).  SAS/ACCESS Software for Relational Databases:  Reference, Version 8. Cary, NC: SAS 

Schacherer, C.W. (2008).  Utilizing SAS as an Integrated Component of the Clinical Research Information System.  
Proceedings of the SAS Global Forum 2008.  Cary, NC:  SAS Institute, Inc. 

Schacherer, C.W. & Steines, T.J. (2010).  Building an Extract, Transform, and Load (ETL) Server Using Base SAS, 
SAS/SHARE, SAS/CONNECT, and SAS/ACCESS.  Proceedings of the Midwest SAS Users Group. 

Secosky, J. & Bloom, J. (2007).  Getting Started with the DATA Step Hash Object.  Proceedings of the SAS Global 
Forum 2007.  Cary, NC:  SAS Institute, Inc. 

Snell, G. P. (2006) Think FAST! Use Memory Tables (Hashing) for Faster Merging. Proceedings of the 31
st
 Annual 

SAS Users Group International Meeting.  Cary, NC:  SAS Institute, Inc. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged.  Contact the author at: 

Christopher W. Schacherer, Ph.D. 

Clinical Data Management Systems, LLC 

6666 Odana Road #505 

Madison, WI 53719 

Phone:  608.478.0029 

E-mail: CSchacherer@cdms-llc.com 

Web:  www.cdms-llc.com 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.   

Other brand and product names are trademarks of their respective companies.  

Data IntegrationSAS Global Forum 2011

 
 

http://support.sas.com/kb/34/193.html

	2011 Table of Contents



