

1

Paper 144-2011

Using SAS® Software for Iterative Data Integration (DI)

Evangeline Collado, University of Central Florida, Orlando, FL, USA

ABSTRACT

This large, metropolitan university wanted to know if its graduate students are returning each semester and
continuing to completion of their degree program (i.e., retention and graduation statistics). To accomplish this
analysis a new data mart that contained all of the historical graduate cohorts, beginning with the 1997-1998 cohort
year, and their enrollment information was required. A robust data integration (DI) process had to be developed that
would loop through each cohort year, collect the data from multiple tables in the operational system for each
master’s, doctoral, and specialist student and load it into the data warehouse. After the cohorts were created, another
DI process was needed to update the data mart with enrollment statistics for each subsequent year. We were able to
accomplish this huge iterative task using a combination of SAS

®
 Data Integration Studio, SAS

®
 Stored Processes,

SAS
®
 macro variable, and SAS

®
 Enterprise Guide

®
.

WHO WE ARE

The mission of Enterprise Decision Support (EDS), a division of Institutional Knowledge Management (IKM), is to
provide data integration services and actionable information solutions through the delivery of business intelligence
applications, and other knowledge management tools, to support executive and operational decision-making and
planning at the University of Central Florida (UCF). The EDS team delivers information and reports in various formats
tailored to user need and technical aptitude and we are responsible for system support, administration, and security
of the university data warehouse and functional reporting data marts.

INTRODUCTION

Our university has been reporting undergraduate student retention and graduation statistics for many years via web
applications developed using SAS

®
 software. The College of Graduate Studies had developed their own method of

reporting graduate student information using a combination of MS Access, MS Visual Basic for Applications (VBA),
and MS Excel. A database was created in MS Access by running a series of VBA modules that extracted data from
the university’s Oracle-based operational system, then a series of MS Excel spreadsheets were generated and
emailed to the appropriate audience.

Graduate Studies wanted a more robust, web-enabled delivery of retention and graduation analytics and they
preferred that the atomic data be stored in the university data warehouse as the official reporting source. Members of
the EDS team met with them to gather requirements for the creation of the graduate cohort data mart and web
interface. The data integration process was separated into two phases: 1) the creation of each historical cohort and 2)
the collection of annual enrollment statistics for each of the cohorts. The information delivery would be accomplished
with a stored process using cascading parameters that would create multi-sheet MS Excel output. This paper
provides only the details of the data integration process for the historical cohorts.

PHASE ONE: COHORT CREATION

Each cohort year consists of three admit terms: summer, fall, and spring. For example, the cohorts for the year 1997-
1998 contain information about students admitted to a Master’s, Specialist, or Doctoral graduate program in the
Summer 1997, Fall 1997, and Spring 1998 semesters. The data for the graduate student retention cohorts would be
extracted from our operational system, so the required data elements for the new data mart had to be mapped to the
appropriate Oracle source tables. The decision to include certain fields in the table was based on current and
anticipated reporting needs. When the data model was complete, and all source tables identified, the cohort creation
data integration process began. The process flow for one semester’s data was developed in SAS Data Integration
Studio 3.4 and has since been migrated to version 4.21. When this process was successfully tested to ensure that
the desired data was collected properly, an iterative job was created that would loop through each term in each
cohort year, collect the historical data, and append it to the new table named GRAD_RETENTION_FACT. The
process flow for a single term would then be used for each new subsequent cohort year in the future; thus, allowing
for a re-usable process.

Figure 1 describes the process flow developed to create one term’s data. The first step is to extract the group of
students that meet certain criteria from graduate admissions information. The second step pulls in all the required
information, such as codes and descriptions of the codes, about the program the student was admitted to. The third
step collects bio-demographical data for each student. The resulting data set is then sorted by admit term and student
identification number and appended to the data warehouse table.

Data IntegrationSAS Global Forum 2011

 2

Figure 1. Data Integration Process to Build Graduate Cohorts

The term and cohort year had to be specified at run time so the appropriate data would be collected. Rather than
hard-code this information each year, parameters would be used so the DI developer would be prompted to enter the
term and cohort year at run time. Figure 2 shows the two parameters defined for this process flow: STRM and
COHORT_YEAR.

Figure 2. Process Parameters

Data IntegrationSAS Global Forum 2011

 3

During the development and testing phase, the default values of the parameters were set to ‘1000’, which is the
STRM for Summer 1997, and ‘1997-1998’, which is the COHORT_YEAR corresponding to that term. After
successfully collecting the appropriate data, the DI process was deployed to a stored process that would be executed
in SAS Enterprise Guide each year at the end of the spring term when the data for the new annual cohort was
available in the operational system. Parameters would be created in this tool so the data integration developer would
be prompted for the term and year each time the stored process was executed. Figure 3 displays the default value for
STRM after the testing was complete. This value would then be written to the stored process code that was
generated when the job was deployed to a stored process.

/* Parameter default value(s) for POPULATE GRAD_RETENTION_FACT TABLE */

%let STRM = %SUPERQ(STRM);

%let COHORT_YEAR = %SUPERQ(COHORT_YEAR);

Figure 3. Default Parameter Value

Deploying a job developed in SAS Data Integration Studio to a stored process is an easy process as shown in Figure

4. Right-clicking on the job name displays a menu where Stored Process → New . . . can be selected. The Stored

Process Wizard then guides the user step-by-step to complete the properties for the new stored process. Selecting
the Parameters tab displays the parameters that have been created for this process flow (Figure 5). Clicking the Test
Prompts . . . button shows how the prompts will be displayed when the stored process is executed (Figure 6).

Figure 4. Stored Process Creation

Data IntegrationSAS Global Forum 2011

 4

Figure 5. Stored Process Parameters

Figure 6. Testing the Prompts

The amount of data that had to be collected spanned 39 terms so it would require someone to answer the prompts
that many times. There had to be an easier way to collect the historical information! The solution to this problem was
to develop an iterative job in SAS Data Integration Studio.

Figure 7 describes the process flow for the iterative job to create the 39 historical cohorts. The first step was to create
a control table (Figure 8) that contained the STRM and COHORT_YEAR values that would get passed to the job
described above. Thus, all terms between ‘1000’ (Summer 1997) and ‘1380’ (Spring 2010) were extracted from the
TERM_XREF table (Figure 8). The COHORT_YEAR field was created based on another field in the source table by
using an advanced expression. The format of the BOE_TERM_ID is YYYYTT, where YYYY is the four-digit year and
TT is a term identifier: ‘05’ is summer, ‘08’ is fall, and ‘01’ is spring.

CASE WHEN SUBSTR(BOE_TERM_ID,5,2) IN ('05','08') THEN SUBSTR(BOE_TERM_ID,1,4)||

'-'||(PUT(INPUT(SUBSTR(BOE_TERM_ID,1,4),4.) + 1,4.))

WHEN SUBSTR(BOE_TERM_ID,5,2) = '01' THEN (PUT(INPUT(SUBSTR(BOE_TERM_ID,1,4),4.) -

1,4.))||'-'||SUBSTR(BOE_TERM_ID,1,4)

ELSE ''

END

Data IntegrationSAS Global Forum 2011

 5

Figure 7. Iterative Process Flow

Figure 8. Control Data

Next, a Loop transformation was added to the process flow, followed by the job developed for a single term as
described previously in this document (drag and drop from the tree), and then a Loop End transformation. The
Parameter Mapping tab on the Loop transformation allows selection of the source columns that map to the SAS
macro variables (parameters) in the job (Figure 9). The Loop Options tab provides options for parallel processing
but that didn’t apply in our case so it was disabled. There were not any options to set in the Loop End transformation.

When this iterative process flow was run, the GRAD_RETENTION_FACT table was created with all 39 cohorts. The
first phase of the data collection process was now complete.

Data IntegrationSAS Global Forum 2011

 6

Figure 9. Parameter Mapping

PHASE TWO: CAPTURE ENROLLMENT STATISTICS

The next step in building the graduate retention data mart was to capture enrollment statistics over time for each
student in each cohort. The College of Graduate Studies wanted to maintain the following information in the retention
data mart:

 Candidacy date for doctoral students

 Degree information

 Annual credit hours taken

 Flags for each year, coded 1 or 0, to indicate if enrolled, graduated, withdrawn, dismissed, or dropped out

The fields that contain the above data were created on the GRAD_RETENTION_FACT table with null/missing values
during the cohort creation process in phase one so this phase would collect the data and then update the table. A
robust iterative process had to be developed that would start with the first cohort (Summer 1997), capture the
enrollment information for each academic year starting with the cohort year and ending with the last available
academic year (2009-2010 in this case), and then perform the updates of the fields for each cohort. Due to the
complexity of this data collection and update process, the best solution was to create a SAS

®
 program with macro

variables that uses do-loop processing within macro code. This program would need to prompt for the first cohort
year on the table, last cohort year on the table, and last available academic year at execution time so SAS Enterprise
Guide was the tool selected for development of this phase.

The following process flow was outlined and the code was written via a code node in SAS Enterprise Guide,
successfully tested, and implemented:

1. Collect candidacy dates for all doctoral students; update the CANDIDACY_DATE field.

2. Collect degree information – degree level, term awarded, and program information – then update all the degree
fields.

3. If the student was in a doctoral program, check to see if a master’s degree was received along the way; update
the other degree fields.

4. Sum all enrolled credit hours for the student in the academic year; update the ENRL_CREDIT_YRn and
ENROLLED_YRn fields, where n is the number of each academic year for the cohort. At the time the program
was developed a maximum of 15 years of information was desired so n = 1 to 15. The cohort year is represented
by n = 1.

5. If student was in a doctoral program, sum all dissertation and/or thesis credit hours; update the
DRT_THE_CREDIT_YRn field.

6. If student was not enrolled, or did not receive a degree, check to see if he/she formally withdrew from the
program; update WITHDRAWN_YRn.

7. If student was not enrolled, did not receive a degree, or did not withdraw, check to see if he/she was dismissed
or discontinued; update DISMISSED_YRn.

8. If student did not satisfy any of the previous steps default to drop-out status; update DROP_OUT_YRn.

Data IntegrationSAS Global Forum 2011

 7

SAS
®
 ENTERPRISE GUIDE

®
 DEVELOPMENT

The first step of the program development was to define the project parameters. From the View menu, a selection is
available to display the Prompt Manager. Selecting Add allows creation of a new prompt. Figure 10 shows the

general definition of the first cohort year parameter (first_chrt_yr) and Figure 11 displays the type and default value
for this prompt. A default value was not required but added to reinforce the format of the expected response.

Figure 10. General Tab of New Prompt Definition

Figure 11. Prompt Type and Values of New Prompt

Next, selecting File → New → Program opens a new window (Figure 12) which is very similar to the SAS Software
Enhanced Editor (Figure 13). The program code is color-coded also and SAS Enterprise Guide 4.3 includes syntax

tool-tips.

Figure 12. New Program Window

Data IntegrationSAS Global Forum 2011

 8

Figure 13. SAS
®
 Software Enhanced Editor

At the beginning of the program, the following code is how the macro variables were created for the do-loop
processing. If the first cohort year is more than 15 years back from the current academic year being processed then
set to stop at 15.

%macro updt;

/* Create macro variables from collected parameters */

/* Extract first four characters from first cohort year */

%let beg_yr = %substr(&frst_chrt_yr, 1, 4);

/* Extract first four characters from last cohort year */

%let end_yr = %substr(&lst_chrt_yr, 1, 4);

/* Extract 1st four characters from retention acad year */

%let file_yr = %substr(&lst_acad_yr, 1, 4);

/* Calculate ending value for cohort year do loop */

%let chrt_num = %eval(&end_yr - &beg_yr);

/* Calculate ending value for retained year do loop */

%let ret_num = %eval(&file_yr - &beg_yr);

/* Stop updates at year 15 - delete this section if we add more columns to the

table */

%if %eval(&ret_num) > 15 %then %let ret_num = 15;

The do-loop processing can now begin. We start by looping through each cohort year beginning with the one
specified at run-time for first cohort year and ending with the one specified at run time for last cohort year. This is the
outer cohort year loop.

%do i = 0 %to &chrt_num;

/* Calculate cohort year to update */

 %let chrt_yr = %eval(&beg_yr + &i);

 /* Create macro var for criteria */

%let chrt_yr_parm = &chrt_yr-%eval(&chrt_yr +1);

Next, for each academic year, we need to see if a degree was awarded for the admitted program. If a doctoral
student and a degree was not awarded in the doctoral program then see if a master's degree was received. If no
degree awarded in that academic year, we will check to see if enrolled and sum total credit hours and dissertation
hours (if doctoral student).

If sum of hours is zero then we will look to see if student withdrew. If not withdrawn, then look to see if student was
dismissed. If not graduated, enrolled, withdrawn or dismissed then student will be flagged as dropped out. All flags
will get updated. This is the inner degree/retention update loop.

 %do j = 0 %to &ret_num;

 %let acad_yr = %eval(&chrt_yr + &j); /* Calculate year of update */

 %let year = YR%eval(%unquote(&j) + 1); /* Calculate retained yr number */

 %let prev = YR%eval(%unquote(&j)); /* Calculate previous yr number */

Data IntegrationSAS Global Forum 2011

 9

The following section provides examples of where the macro variables are used in the program as it processes
through each step outlined above in the process flow for the capture of enrollment statistics.

A single macro variable was needed that contained the values of the three terms in a given academic year when data
was required from source table(s) for an entire year:

proc sql noprint;

 select distinct trim(ps_strm) into : strm separated by '", "'

 from source_tablename where substr(acad_year, 1, 4) = "&acad_yr";

quit;

Criteria example: where a.strm in ("&strm")

Three separate macro variables were needed when term processing was necessary:

proc sql noprint;

 select distinct trim(ps_strm) into : strm1 - :strm3

 from source_tablename where substr(acad_year, 1, 4) = "&acad_yr";

quit;

Criteria example:

and (b.effdt between (select term_begin_dt from source_tablename

 where acad_career = 'GRAD' and strm = "&strm1")

 and (select term_end_dt from source_tablename

 where acad_career = 'GRAD' and strm = "&strm3"))

Criteria to create temporary lookup tables and/or update fields using cohort year:

where cohort_year = "&chrt_yr_parm"

After data processing was complete and all fields were updated the loops were ended and the macro code block
ended:

 %end; /* End inner degree/retention update loop */

 %let ret_num = %eval(&ret_num - 1);/* Calculate maximum number for next loop */

%end; /* End outer cohort year loop */

%mend;

By using do-loop processing with macro variables in a program, the entire collection and update process of phase
two was executed with minimal manual intervention and the GRAD_RETENTION_FACT table contained all the
required historical data.

CONCLUSION

The College of Graduate Studies at the University of Central Florida approached Enterprise Decision Support with a
challenging request. They wanted a new robust method of reporting retention and graduation statistics to the UCF
community which required the creation of a reporting data mart. They had been using MS Access, MS VBA modules,
and MS Excel to generate multiple spreadsheets that were then emailed to the appropriate audience. They desired a
web-enabled reporting environment so it was decided that the established cohorts would be stored permanently in
the existing enterprise data warehouse and SAS software tools would be used to collect and update the data and
create the web-based delivery application. A two-phase data integration process had to be developed to accomplish
the data collection and update task.

Phase one – creation of historical cohorts – was accomplished using SAS Data Integration Studio by creating two
jobs/process flows. The first job creates a single cohort for one term of a specified cohort year. The second process
flow creates a control table containing each of the terms needed for the historical build and then iteratively creates
each cohort using the first job.

Phase two – capture enrollment statistics – was accomplished using a program developed in SAS Enterprise Guide
that used macro variables and do-loop processing to iterate through each academic year. The first and last cohort
year and the academic year being processed were collected via prompts.

The GRAD_RETENTION_FACT table was built with all of the required historical cohorts and will need new cohorts
and enrollment statistics added each academic year. The historical processes detailed in this paper are applied
annually without much modification. The first process flow for phase one is used to create a new annual cohort by
executing a SAS Stored Process within the SAS Enterprise Guide interface. The program used in phase two has

Data IntegrationSAS Global Forum 2011

 10

been modified so that it processes only one academic year (the most recent) of enrollment statistics for each of the
cohorts. Thus, the many tools available in the SAS

®
 Intelligence Platform software suite enabled us to accomplish a

huge iterative data integration task with processes that were extremely vigorous during the initial data capture and
successfully re-usable for our ongoing needs.

RECOMMENDED READING

 SAS
®
 Data Integration Studio 4.21 User’s Guide

 SAS
®
 9.2 Stored Processes Developer’s Guide

 Getting Started with SAS
®
 Enterprise Guide

®
 Tutorial – Available at

http://support.sas.com/documentation/onlinedoc/guide/tut43/en/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Evangeline (Angel) Collado
Enterprise: University of Central Florida, Enterprise Decision Support
Address: P.O. Box 160021
City, State ZIP: Orlando, FL 32816-0021
Work Phone: (407) 823-4968
Fax: (407) 823-4769
E-mail: Evangeline.Collado@ucf.edu
Web: www.iroffice.ucf.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Data IntegrationSAS Global Forum 2011

	2011 Table of Contents

