
1 

Paper 124-2011 

SAS Software Development with the V-Model 
Andrew Ratcliffe, RTSL.eu, United Kingdom 

ABSTRACT 
Software development is about building useful systems, not generating reams of documents. The V-Model helps the 
development team apply focus to what documents are useful (and why) and how much content is appropriate for 
each. 

The V-model offers a framework that clarifies the relationships between requirements, specifications, and testing. 
This paper discusses the benefits of the V-Model in a variety of differing development processes including waterfall 
and agile. 

INTRODUCTION 
Developing software can be difficult enough without development managers or project managers demanding we 
produce reams of documentation too. If there’s a clear purpose to writing something down then the task becomes 
more palatable - especially useful if we don’t feel that we’re natural authors or writers. The V-Model attempts to put 
some structure and purpose into the documents that we should consider producing during the lifetime of our 
development project. Whilst it is not a process itself, it helps establish a standard process for creating software. 

TARGET 
We need to produce software that meets the customers’ expectations. We can summarise those expectations as: 

• Functional – it allows the customers to get their day jobs done 

• Operable on a day-to-day basis – the behind the scenes and/or automated tasks can be done effectively 

• Maintainable - problems can be fixed, and enhancements can be made 

• Cost effective – all of the above can be done at an affordable and justifiable price 

To meet those demands we are going to need to test the code. To test it we are going to need to know what it’s 
meant to do. Knowing what it’s meant to do implies that the requirements and design are written down somewhere, 
but we don’t need to get into any arguments over documentation; as we’ll see later in this paper, comments in code 
can adequately substitute for formal documents if the comments are well written (this paper is agnostic on the subject 
of waterfall versus agile, etc.). 

We need a development framework that ensures we collect testable requirements and design. 

THE SOLUTION 

MEET THE V 
We can simplify software development as a series of tasks thus:  

a) customers tell us what they want,  

b) we figure-out how we can deliver that,  

c) we build it,  

d) we make sure we built what we intended to, and  

e) the customers check that we’ve built something that does what they need.  

This linear progression can be bent and folded in many ways in order to describe lots of different processes; so, for 
instance, in iterative projects we may run through the sequence many times, adding extra bits of functionality each 
time; if we use test driven design we might do some of the steps out of sequence, but at the end of any phase of 
development we will have completed elements of all five steps a through e. So, in essence, we have to have the 
steps that we have listed. 

Coders' CornerSAS Global Forum 2011

 
 



Developing With the V-Model, continued 

 

2 

The V-model simply takes those five steps and places them onto a V-shape thus: 

 
 

There’s a relationship between the elements on the left-hand side. They represent the decomposition of the problem 
from business-speak into technical speak and ultimately into technical activity (from top to bottom). This is sometimes 
known as elucidation or verification. 

We can see that the right-hand side of the V contains the tests of the counterparts on the left-hand side, e.g. “Does it 
do what the customers needed?” is the test of “What the customers need”. This is sometimes known as testing or 
validation. 

So the left and right sides of the V capture verification and validation.  

Let’s expand those activities: 

 
 

 
 

The documents are explained in more detail in following sections (and we’ll also see that some can be combined to 
reduce size and effort further), but by highlighting the verification and validation relationships, we can begin to see the 

VV  What the customers 
need 

How we will meet the 
need 

Build it 

Did we do what we 
intended? 

Does it do what the customers 
need? 

VV  
Business Requirements 

System Requirements 

Build it Peer reviews 

Unit tests 

Design Specification 

Unit Specifications 

Integration tests 

System tests 

User Acceptance tests 

Static testing 

Dynamic testing 

Figure 1. The Basic Flow Through the V 

Figure 2. Traceability to testing 

Coders' CornerSAS Global Forum 2011

 
 



Developing With the V-Model, continued 

 

3 

purpose of a number of documents. The size and complexity of the project will determine how many physical 
documents we actually need, but the content will need to be present somewhere. 

In summary, there’s a transition of requirements down the left-hand side of the V, and there’s a testing relationship 
going across the V. 

WHAT IS NEEDED 
The Business Requirements are a statement by the customer of what the system shall achieve in order to meet the 
need. These involve both functional and non-functional requirements. 

These requirements establish what the ideal system has to perform in terms of the business processes (the day-to-
day tasks) of the customer. The Business Requirements are usually collected by a series of interviews with users or 
customers conducted by a business analyst. Tools used in creating the Business Requirements often include Use 
Cases and workshops. 

The User Acceptance Tests (UAT) are derived from the business requirements. 

The System Requirements describe the full range of attributes of the system such as the system’s functional, 
physical, interface, performance, data and security requirements. These are derived from the business requirements, 
typically by the business analyst. The system requirements are used by the business analyst to communicate their 
understanding of the system back to the customers. The customers must carefully review this reinterpretation of the 
business requirements because the system requirements will serve as the guideline for the system designers in 
producing the design specification.  

The system tests are derived from the system requirements. 

The business and system requirements specify what the system must do. They do not attempt to spell-out how the 
system will meet these requirements. It’s very easy to fall into solution mode and begin to make design decisions but 
this temptation must be avoided at all costs. 

HOW IT CAN BE ACHIEVED 
So, the business requirements specify what the customers need (in their own language) and the system requirements 
echo that back in a technical interpretation of those requirements. Neither of these collections says how the system 
will meet the requirements. That’s the job of the specifications. 

The Design Specification is where we analyse and understand the purpose of the system by studying the system 
requirements (with reference to the business requirements too). We figure out possibilities and techniques by which 
the system requirements can be implemented.  Clearly, if any of the requirements seem infeasible or are unlikely to 
be justifiable in terms of the cost of designing and building them, we must revert to the customers. We can discuss 
and resolve the issues and update the requirements accordingly. 

The design specification incorporates the high-level design and contains the general system organisation, data 
structures, data flow, process flow, etc. It may also hold example reports for increased clarity and understanding. 
Other technical documentation like entity diagrams and a data dictionary will also be produced as part of the design 
specification. The design specification will typically include a list of modules, brief functionality of each module, their 
interface relationships, dependencies, tables, etc.  

The unit specifications provide the design of each individual unit (or module). These unit-level designs are sometimes 
known collectively as the low-level design. The design specification broke the system down into small units and each 
of them is explained in their respective unit specification so we could start coding straight away. The unit 
specifications will usually contain a detailed functional logic of the module (in pseudo code), data sets with columns, 
lengths and formats, all interface details (e.g. stored processes and macros) including inputs and outputs, and a list of 
messages (including error messages) that the unit may issue.  

BUILD IT 
We might guess that this is the stage that needs least explanation! We can follow the unit specifications one at a time 
and build the units one at a time. Or we can get a room full of programmers sufficient for each programmer to 
independently build one unit! 

BE SURE WE BUILT WHAT WE INTENDED 
Before we release our lovely new shiny code to the customer, we better check that it works in a manner that matches 
our specifications. 

Coders' CornerSAS Global Forum 2011

 
 



Developing With the V-Model, continued 

 

4 

The first phase of testing should be Peer Review. This is typically a static test whereby a fellow programmer will take 
a look at our code and offer opinion on whether it meets the team’s coding guidelines and other standards, and 
whether it gives the impression of meeting the unit specification. Peer review should not focus on being a destructive 
critique of our code, it should be constructive and should offer additional benefits such as an opportunity to share 
knowledge and experience of the overall system and of programming techniques in general. 

Unit testing involves checking that each feature in the unit specifications has been implemented successfully in the 
module. Unit testing is usually white box testing, i.e. it requires knowledge of the code. This should be done by a 
different programmer but is often done by the coder themselves. 

If a unit is reliant on one or more other units then the tester may prepare dummy units so that the emphasis is on 
testing just the one real unit, or it may be pragmatic to skip to integration testing for some units. 

Integration Testing involves executing groups of units in order to test their interaction and to see if they behave as 
predicted by the Design Specification. Units can only be integration tested once they have successfully been unit 
tested! Integration tests can be planned in a layered fashion so that they test increasingly large groups of units until 
the full system is constructed and tested. 

Integration testing is focused upon the communication between the units, not their individual behaviour. We wish to 
test that the units co-exist and cooperate as planned, under error conditions as well as the “happy path”. 

BE SURE IT DOES WHAT THE CUSTOMERS NEED 
The V-Model shows System Testing opposing the system requirements. System testing is about checking the 
system as a whole, not about checking the individual parts of the design. It treats the whole system as one big unit.  

System testing can involve a number of specialist types of test to see if all the functional and non-functional 
requirements have been met. In addition to functional requirements these may include the following types of testing 
for the non-functional requirements: 

• Performance - Are the performance criteria met? 

• Volume - Can large volumes of information be handled? 

• Stress - Can peak volumes of information be handled? 

• Documentation - Is the documentation usable for the system? 

• Robustness - Does the system remain stable under adverse circumstances? 

Finally, User Acceptance Testing (UAT) is an opportunity for the customer to check that the system does what they 
need. It may sound like system testing but there’s a key difference: Systems testing checks that the system that was 
specified has been delivered, UAT checks that the system delivers what was requested. As its name implies, UAT is 
done by the users. The users should check that the system fits into the business processes that they choose to 
employ, and they should check that the documentation and training is adequate and fit for purpose. 

DOING WHAT’S APPROPRIATE 
It’s important we understand the big picture, but it’s also important to apply the rule of “appropriateness” to what we 
do. We just discussed at least eight documents, but it is not necessary to produce eight documents for each separate 
project that we work on.  

It is quite common to deliver one document for the left-side of the V, and another for the right-side. These documents 
can be known as the Project Specification and the Test Specification, but names and terminology vary. 

One of the most common concerns is “how much detail do I need to put into each document”. Well, we can’t answer 
that without being clear on what the purpose of the document is. We’ve now done that: each document typically has 
two purposes, i.e. to inform the next stage of verification/elucidation and to inform the associated stage of 
validation/testing. A third audience we should remember is the maintenance programmer (the poor soul who has to 
fix bugs or add features six months down the line after you’ve moved to  a new project, or employer, or retired). And 
having established those facts, we can now confidently fill the documents with the appropriate amount of detail, i.e. 
we should provide the barely adequate amount of detail to each. 

Barely adequate is a good phrase. Adequate tells us that we’ve done the job; it means the target has been met. 
Barely tells that we only just got across the line; there was no wastage or unnecessary effort. 

Coders' CornerSAS Global Forum 2011

 
 



Developing With the V-Model, continued 

 

5 

FITTING THE V TO THE PROCESS 
The information that the V-Model framework specifies can be collected and stored in a variety of different ways and 
means. It is by no means the case that each of the stages (such as Business requirements and Design Specification) 
have to be a separate document. Indeed, we’re not saying that any of this has to be typed into a Word Processor. If 
we’re content that the code comments encapsulate some or all of what we’ve described (and if our coding guidelines 
permit) then we may not need to produce any documents for elucidation/verification. 

It’s less easy to see how we can avoid describing what we intend to do for tests outside of a document, and there’s 
usually a demand to keep evidence of successful test runs, but each site is different so we must judge each case on 
its merits. 

TRACEABILITY 
By assigning unique IDs to each business requirement and to each system requirement, we can build a “traceability 
matrix” to check that each business requirement has at least one system requirement that is intended to meet the 
need. Thus we can use the traceability matrix to be sure that we have covered the system’s business requirements in 
full within the system requirements document, and we can also easily see if system requirements have been added 
without any associated business requirement (that could scope creep). 

We can do the same between system requirements and design specification, between design specification and unit 
specification, and between unit specification and code. How much of this we actually do will be dependent on the 
effort versus the benefit for our specific project. 

Having assigned unique IDs to each element on the left-side of the V, it’s easy to see how we also apply traceability 
to our testing plans in order to be sure we have tested every element from the left-side of the V. 

BACKGROUND AND HISTORY 
The creation (invention?) of the V-model seems to be a happy coincidence of events in the US and in Germany. 
Around the end of the 1980s, two separate software development teams happened upon the same fundamental idea 
and produced it as the V-model. 

The V-model is now in wide use around the world, providing structure and focus to numerous projects. 

CONCLUSION 
The V-Model is a framework, not a process. It can be used with a wide variety of the popular development processes, 
from water fall to agile. It does not specify what documents are required, it merely provides guidance on what 
information should be collected, why that information should be collected, and how that information relates to other 
information (whether it be relating to higher or lower degrees of elucidation/verification, or whether it relates to 
testing/validation). 

Adopting the V-Model framework as part of our development process: 

• facilitates greater control  due to standardisation of products in the process 

• delivers an increase in quality due to the ease with which templates and examples can be produced and due 
to familiarity with the process’s products 

• easier cost estimation due to the repeatability of the process 

Adopt the V-Model. V is for victory! 

APPENDIX A. TESTING – SOME SAS® SOFTWARE SPECIFICS 
This paper is presented in the Coders’ Corner stream of SAS Global Forum 2011. This appendix contains some SAS 
coding tips related to the unit testing phase. 

Testing an individual unit such as a macro is not restricted to checking that the unit provides the functionality 
required; testing should also examine whether the unit has been well-built and follows coding guidelines. Those 
coding guidelines might include requirements to clean-up the environment after execution. In practice, this can mean 
that each unit should delete temporary elements that were created, such as data sets & library assignments, and no 
unintended creation of other objects (such as global macro variables). 

The following test harness (THARNESS) macro will execute a specified macro and report upon whether the macro-
under-test created (or removed) any macro variables and/or library assignments. As such, the THARNESS macro is 

Coders' CornerSAS Global Forum 2011

 
 



Developing With the V-Model, continued 

 

6 

a skeleton and forms an example of what can be done to automate some elements of unit testing. The principles 
demonstrated by the macro are easily adopted for other elements of the environment, etc. 

THE TEST HARNESS DEFINITION 
Key features of the THARNESS macro are as follows: 

Echoes all of its 
parameters upon 
initiation 

Using %put _local_, the macro echoes the values of all of its parameters to the log at 
initiation. This ensures that the values of those parameters taking default values (and 
hence not specified in the calling program) are known to anybody inspecting the log 

Deletes its own 
temporary WORK data 
sets 

In keeping with the implied coding guidelines, the THARNESS macro deletes its own 
WORK data sets prior to termination. This is facilitated by the fact that the names of all of 
the macro’s WORK data sets are prefixed with _THARNESS_ (achieved generically with 
_&sysmacroname._). By using the same prefix, the data sets can be deleted generically 
at the end of the macro by specifying _THARNESS_: on PROC DATASETS’ DELETE 
statement. 

However, this functionality is optional, based upon the THARNESS macro’s TIDY 
parameter. 

Internal workings are 
hidden 

OPTIONS NONOTES is used to hide the test harnesses activities from the log. This 
allows the reader of the log to focus upon a) execution of the macro-under-test, and b) the 
results from THARNESS. 

Ideally, the initial value of the NOTES option would be captured prior to changing it to 
NONOTES, and then subsequently restored to its original value. The GETOPTION 
function can be used for this purpose. Currently the code simply specifies OPTIONS 
NOTES in order to “restore” it. 

Limited to global 
macro variables and 
library assignments 

The functionality of the skeleton/example macro is limited to reporting upon whether the 
macro-under-test created (or removed) any macro variables and/or library assignments. 

The principles demonstrated by the macro are easily adopted for other elements of the 
environment, etc. 

Basic approach is to 
take snapshot of 
environment before 
and after 

A snapshot of relevant elements of the environment is taken before and after execution of 
the macro-under-test. In practice this means taking copies of sashelp.vmacro and 
sashelp.vslib. 

The comparison of the before and after images are then done in DATA steps and reported 
using PUT statements. This is more flexible than using PROC COMPARE, for example. 

The macro definition is listed below. 

%macro tharness(testmacro = 
               ,tidy      = y 
               ); 
  %put &sysmacroname: Parameters received by this macro are:; 
  %put _local_; 
  %put ; 
 
  options nonotes; 
  /*******************************/ 
  /* Collect the BEFORE image(s) */ 
  /*******************************/ 
  Data work._&sysmacroname._macroBefore; 
    Set sashelp.vmacro; 
    Where scope not in ("&sysmacroname",'AUTOMATIC'); 
  Run; 
 
  Data work._&sysmacroname._vslibBefore; 
    Set sashelp.vslib; 
  Run; 
  options notes; 
 

Coders' CornerSAS Global Forum 2011

 
 



Developing With the V-Model, continued 

 

7 

  /********************/ 
  /* Execute the test */ 
  /********************/ 
  %put &sysmacroname: Starting execution of code to be tested; 
  %&testmacro; 
  %put &sysmacroname: Execution of code to be tested has finished; 
  %put ; 
 
  /******************************/ 
  /* Collect the AFTER image(s) */ 
  /******************************/ 
  options nonotes; 
  Data work._&sysmacroname._macroAfter; 
    Set sashelp.vmacro; 
    Where scope not in ("&sysmacroname",'AUTOMATIC'); 
  Run; 
 
  Data work._&sysmacroname._vslibAfter; 
    Set sashelp.vslib; 
  Run; 
 
  /*************************/ 
  /* Summarise the results */ 
  /*************************/ 
  %put &sysmacroname: Summarising results; 
  %put ; 
 
  /* Macro Variables */ 
  %put &sysmacroname: Summary of results for macro variables:; 
  proc sort data=work._&sysmacroname._macroBefore; 
    by scope name; 
  run; 
 
  proc sort data=work._&sysmacroname._macroAfter; 
    by scope name; 
  run; 
 
  data _null_; 
    merge work._&sysmacroname._macrobefore (in=before) 
          work._&sysmacroname._macroafter (in=after) 
          end=finish; 
    by scope name; 
    retain IssueFound 0; 
    if before and not after then 
    do; 
      put "&sysmacroname: Macro variable has been removed: " scope= name=; 
      IssueFound=1; 
    end; 
    else if not before and after then 
    do; 
      put "&sysmacroname: Macro variable has been added: " scope= name=; 
      IssueFound=1; 
    end; 
    if finish and not IssueFound then 
      put "&sysmacroname: No macro variable issues found"; 
  run; 
  %put ; 
 
  /* Library Assignments */ 
  %put &sysmacroname: Summary of results for library assignments:; 
  proc sort data=work._&sysmacroname._vslibBefore; 
    by libname; 
  run; 

Coders' CornerSAS Global Forum 2011

 
 



Developing With the V-Model, continued 

 

8 

 
  proc sort data=work._&sysmacroname._vslibAfter; 
    by libname; 
  run; 
 
  data _null_; 
    merge work._&sysmacroname._vslibbefore (in=before) 
          work._&sysmacroname._vslibafter (in=after) 
          end=finish; 
    by libname; 
    retain IssueFound 0; 
    if before and not after then 
    do; 
      put "&sysmacroname: Library assignment has been removed: " libname=; 
      IssueFound=1; 
    end; 
    else if not before and after then 
    do; 
      put "&sysmacroname: Library assignment has been added: " libname=; 
      IssueFound=1; 
    end; 
    if finish and not IssueFound then 
      put "&sysmacroname: No library assignment issues found"; 
  run; 
  %put ; 
 
  %put &sysmacroname: End of results summary; 
 
  %if %upcase(%substr(&tidy,1,1)) eq Y %then 
  %do; 
    proc datasets lib=work nolist; 
      delete _&sysmacroname._: ; 
    quit; 
    options notes; 
  %end; 
 
%mend tharness; 

THE TEST HARNESS EXECUTION 
The following code uses the Test Harness to execute the macro-under-test, i.e. %BestCodeEver. 

/* Execute the harness on the macro-under-test: %BestCodeEver */ 
%tharness(testmacro=BestCodeEver); 

THE TEST HARNESS LOG OUTPUT 
The log output shown below illustrates how the Test Harness is able to report upon the newly-created global macro 
variable (NLOBS) and library assignment. Reference to the design of the unit may show that the creation of the global 
macro variable NLOBS was intended functionality but the assignment of the library may not be (perhaps it was 
intended as a temporary assignment and should have been cleared prior to the termination of the macro-under-test). 

141        %tharness(testmacro=BestCodeEver); 
THARNESS: Parameters received by this macro are: 
THARNESS TESTMACRO BestCodeEver 
THARNESS TIDY y 
 
THARNESS: Starting execution of code to be tested 
 
nlobs=19 
NOTE: The data set WORK.COUNT has 1 observations and 3 variables. 
NOTE: DATA statement used (Total process time): 
      real time           0.00 seconds 
      cpu time            0.00 seconds 

Coders' CornerSAS Global Forum 2011

 
 



Developing With the V-Model, continued 

 

9 

       
 
NOTE: Libref NFIND_ME was successfully assigned as follows:  
      Engine:        V9  
      Physical Name: C:\SAS\Config\Lev1\SASApp 
NLOBS=2.7481588701 
THARNESS: Execution of code to be tested has finished 
 
THARNESS: Summarising results 
 
THARNESS: Summary of results for macro variables: 
THARNESS: Macro variable has been added: scope=GLOBAL name=NLOBS 
 
THARNESS: Summary of results for library assignments: 
THARNESS: Library assignment has been added: libname=NFIND_ME 
 
THARNESS: End of results summary 

 

AUTHOR BIOGRAPHY 
Andrew is Managing Director of RTSL.eu, a leading European SAS specialist consultancy. Having first used SAS in 
1983, Andrew's experience and knowledge covers breadth as well as depth. Andrew shares his experience through 
his www.NoteColon.info blog. 

CONTACT INFORMATION  
Your comments and questions are valued and encouraged. Contact the author at: 

Name: Andrew Ratcliffe 
Enterprise: Ratcliffe Technical Services Limited (RTSL.eu) 
Address: Willow Close, Bexley, Kent, DA5 1QY, United Kingdom 
Work Phone: +44-1322-525672 
Web: www.RTSL.eu  /  www.NoteColon.info  
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

 

Coders' CornerSAS Global Forum 2011

 
 

http://www.rtsl.eu/�
http://www.notecolon.info/�

	2011 Table of Contents



