
1 

Paper 121-2011 

A Macro to Modify Attributes for All Character Variables in SAS® Data Sets 

Suresh B. Kadaru, Syngenta Seeds, Inc., Stanton, MN, USA 

ABSTRACT 

Often SAS® programmers modify the attributes of text columns in data tables as part of their SAS routines. Some of 
these modifications might be necessary to avoid erroneous output results, especially while performing SQL queries, 
DATA step merges, or while subsetting tables. In such cases, a macro can be used to apply desired SAS character 
functions across all variables in incoming data tables. Thus, there is no need to repeatedly type the function names in 
SAS statements, eliminating the risk of forgetting the use of necessary functions in the code, and providing flexibility 
to incorporate the latest SAS functions. This macro has a high utility value when it is run in a production environment 
ahead of other user tasks, without altering the existing code. Currently, this macro can handle several of the SAS 
character functions that modify the attributes of text variables and do not return a value after execution. 

INTRODUCTION 

While performing queries, merges, and data subsetting steps, it is quite common that we obtain incomplete or 
inaccurate results if the character variables from incoming tables do not match properly e.g., differ by case. SAS 
character functions are very handy in such cases and can solve the issue by incorporating them into key IF, WHERE, 
and ON statements. 

However, if we are dealing with multiple tables and multiple columns, it then becomes difficult to keep track of 
variable differences. An example of this may be a situation where one needs to perform several SQL queries 
involving multiple text columns from multiple SAS tables. One way to deal with this situation is to include the required 
SAS functions in all query statements. Soon the SAS code becomes lengthy and there remains the risk that the 
programmer may forget the use of a few required SAS functions. This situation may have already happened in the 
existing in-house macros where appropriate SAS functions need to be inserted, which sometimes can be difficult to 
do.  

Another approach would be to harmonize all the variables in the input SAS tables before performing queries, merges 
or subsetting. The macro described in this paper provides the functionality of modifying all the character variables in 
the input tables using a given SAS function prior to their use in the queries. The code reads the SAS table either from 
work or permanent libraries and applies a user-defined SAS function to all text columns present in that SAS table. 
The user can run this macro as a first step and does not have to worry about the use of the same SAS function 
multiple times.  

During the macro run, the original table is only modified once using a PROC SQL UPDATE statement and hence, 
incoming table dependencies such as primary keys, indices, and sorting order etc., should not be disturbed. Only the 
values within text columns will be changed permanently as per the SAS function defined by the user. This SAS macro 
can be run on both Linux and Windows operating systems and is compatible with several previous SAS base 
package versions, which support both PROC CONTENTS and PROC SQL procedures. 

ADDITIONAL FEATURES  

In addition to the merits discussed in the above paragraphs, the concise SAS code used in this macro also provides 
the following additional functionality: 

1) Verification of input table(s) presence at the beginning of the run 

2) Verification of user input function name prior to running the main code; else run will abort 

3) Ability to display feedback and error messages in log window for easy troubleshooting 

4) Ability to abort the run automatically if character variables are not detected in the submitted dataset(s) 

DESCRIPTION 

The user needs to provide only two input parameters: 1) "datasets" parameter – a list of SAS table name(s) that need 
to be modified and 2) "function_name" parameter – the SAS function to be used. Both are text inputs and should be 
of at least one character length. Only the valid SAS names will be processed, else an error note is written to the log. 
Multiple SAS data tables can be processed through the macro by separating names in the "datasets" input using a 
“space” character. However, during batch processing of multiple datasets, the same SAS function will be applied 

Coders' CornerSAS Global Forum 2011

 
 



A Macro to Modify Attributes for All Character Variables in SAS® Data Sets, continued 

 

2 

similarly across all SAS tables.  

The macro code uses two simple procedures from the base SAS package, namely, PROC CONTENTS and PROC 
SQL. In addition, the following eleven macro variable names are generated for either checking the input parameters 
or for execution of code: D, DSNO, DATASETS, EXIT, EXITVARIABLE, FUNCTION_NAME, LASTEXIT, 
MODIFY_ALL_CHARACTER_VARIABLES, SEL_DATASET, SEL_CVARIABLES, SEL_NVARIABLES. Users need 
to pay attention to these macro variable names when incorporating this macro code into their own macros.  

EXPLANATION FOR THE MACRO CODE  

PART1 

%macro Modify_All_Character_Variables; 

%let ExitVariable=1; 

/*checking whether or not required input parameters are defined*/ 

%if %length(&datasets)>0 and %upcase(&datasets)^= and %length(&function_name)>0 and 

%upcase(&function_name)^= 

%then %let ExitVariable=0; 

%if %eval(&ExitVariable)>0 %then %do;  

%put;%put !!! Not enough parameters defined to run this macro !!!;%put; 

%goto LastExit; 

%end; 

 

/*checking whether or not input "function_name" parameter is valid*/ 

%if %length(%sysfunc(&function_name(TEST)))<4 %then %do; 

%put; %put !!! Please provide valid SAS character function name !!!;%put; 

%goto LastExit; 

%end; 

This portion of the code checks whether or not the user has provided both of the required inputs by using the 
%SYSFUNC and %LENGTH functions. The “ExitVariable” macro variable acts as an ON/OFF switch with a default 
value of „1‟ (OFF condition). Only when both input parameters are defined does its value get reset to „0‟ and the 
macro proceeds further. If any of the two parameters are not defined, an error message will be displayed in the log 
window. The second check validates the applicability of the user-defined SAS function by testing the changes to the 
length of the word “TEST”. Failure of either check diverts the code to go to the “LastExit” statement at the end of the 
macro. 

PART2 

options nonotes; 

/*counting the number of submitted datasets*/ 

data _NULL_; call symput('DSNo',count("&datasets",' ')+1); run; 

%do D=1 %to &DSNo; 

%let sel_dataset=%scan(&datasets,&D,' '); 

%put; 

%put Applying "&function_name" function to the dataset: &sel_dataset; 

%if %sysfunc(exist(&sel_dataset))=0 %then %do; 

%put !!! "&sel_dataset" does not exist. Please check. !!!; %put; 

%goto Exit; 

%end; 

This portion of code counts the number of “space” characters in the user-defined “datasets” parameter. The best 
method to count “useful” spaces is to use the CALL SYMPUT function inside a DATA _NULL_ step. Then a %DO 
loop is set with the limit of as many datasets as needed to process. Within the %DO loop, “sel_dataset” names are 
assigned sequentially, and the presence of the respective SAS table is also checked using and EXIST functions. 

PART3 

/*identifying the character variables from the SAS data table*/ 

proc contents data=&sel_dataset out=Tmp noprint; run; 

proc sql noprint; 

%let sel_Cvariables=; %let sel_Nvariables=; 

select compress(left(NAME)), 

catt(compress(left(NAME)),"=&function_name(",compress(left(NAME)),')') 

into:sel_Cvariables separated by ', ',:sel_Nvariables separated by ', ' from Tmp where 

Type=2; 

Coders' CornerSAS Global Forum 2011

 
 



A Macro to Modify Attributes for All Character Variables in SAS® Data Sets, continued 

 

3 

drop table Tmp; 

%if %length(&sel_Nvariables)=0 %then %do; 

%put !!! There are no character variables in this dataset !!!;%put; 

%goto Exit;  

%end; 

Using PROC CONTENTS, information about character variables within each of the input data tables is generated. If 
there are no character variables in the given dataset, the code is diverted to the “Exit” statement before the loop 
%END statement. In addition, a message is written to the log window regarding this issue. Otherwise, SQL syntax for 
updating character variables with the user-defined SAS function gets generated. This information is stored in SAS 
memory with the help of the “sel_Nvariable” macro variable. 

PART4 

/*applying the character function specified by the user*/ 

update &sel_dataset set &sel_Nvariables; 

quit; 

%put "&function_name" converted variables: &sel_Cvariables;  

%Exit : ; 

%let sel_dataset=; %let Sel_cvariables=; %let Sel_nvariables=; 

%put; 

 

%end; 

%put;%put  !!! Done. Thanks for using "Modify_All_Character_Variables" macro !!!;%put; 

%LastExit: ; 

%symdel datasets function_name; 

option notes; 

%mend Modify_All_Character_Variables; 

The first six lines of this code execute the UPDATE statement using the SQL Procedure and also list the variables 
that are converted into the log window. The remaining code closes the loop, sets all the macro variable names used 
in the macro to null values, and ends the macro. 

SAMPLE TEST DATASETS 

To demonstrate the utility of this macro, the PRDSAL2 table from the SASHELP library was chosen. Using the below 
SAS code, three additional copies, namely, TEST1 (saved as a permanent table in the CHECK library), TEST2, and 
TEST3 are created (saved in the work library). Note that table TEST3 was created by dropping all the character 
columns from the original SASHELP.PRDSAL2 table. 

%let workingfolder=C:\For SAS Paper\; 

libname CHECK "%superq(workingfolder)"; 

 

data CHECK.test1 test2 test3 (drop=COUNTRY STATE COUNTY PRODTYPE PRODUCT MONTH); 

set sashelp.prdsal2; 

run;  

A portion of original TEST2 table view is shown below in Figure 1. 

 

Figure 1. A portion of original WORK.TEST2 table view 

Coders' CornerSAS Global Forum 2011

 
 



A Macro to Modify Attributes for All Character Variables in SAS® Data Sets, continued 

 

4 

MACRO TEST RUN & OUTPUT 

/*calling in the SAS file containing "Modify_All_Character_Variables" macro*/ 

%include "%superq(workingfolder)\Modify_All_Character_Variables.sas"; 

 

%let datasets=CHECK.test1 test2 test3; /*separate multiple dataset names using space 

character*/ 

%let function_name=lowcase; /*must be a valid SAS character function*/ 

 

%Modify_All_Character_Variables; 

With the help of an INCLUDE statement, the entire code (described in Parts 1-4) for the 
“Modify_All_Character_Variables” macro is imported into the current SAS session. Then, using the “datasets” 
parameter, all three tables created from the “SAMPLE TEST DATASETS” step are submitted for processing. The 
character function used in this example is LOWCASE. Execution of the above four lines of code will result in two 
updated tables. The following messages are written to the log: 

 

Display 1. Messages displayed in the log window while processing three sample test datasets 

As noted from the log messages, table TEST1 from the permanent SAS library CHECK and table TEST3 from the 
work library are processed successfully. However, table TEST3 was not updated as there are no character variables 
in this dataset. The table below depicts the updated changes for the TEST2 table columns (please note that “Month” 
and “Month/Year” variables are not altered as they are numeric). 

 

Figure 2. A portion of TEST2 table view after processing 

ERROR REPORTING 

As described in the “Additional Features” section and Part1 discussion, prior to executing the main code, the macro 

Coders' CornerSAS Global Forum 2011

 
 



A Macro to Modify Attributes for All Character Variables in SAS® Data Sets, continued 

 

5 

checks whether or not the user has defined both “datasets” and “function_name”. It will also check whether or not the 
user-defined character function is suitable for running the macro. Sets of sample SAS codes below demonstrate 
these features: 

CASE 1 

The user has not defined the “function_name” parameter required for macro. 

 

Display 2. Error message displayed in the log window when user has not defined “function_name” parameter 

CASE 2 

The user has not defined the “datasets” parameter required for the macro. 

 

Display 3. Error message displayed in the log window when user has not defined “datasets” parameter 

CASE 3 

The user has provided a numeric function that is not valid. 

 

Display 4. Error message displayed in the log window when user has defined non-valid “function_name” 
input 

Similar to the above example results, other tests indicated that updated values for the character variables were 
accurate and did not alter the incoming table attributes. As with other macros, prior to running the code, the user 
needs to carefully consider the implications of applying a SAS function across all character variables. Currently, this 
macro can handle quite a few of the SAS character functions which modify the attributes of text variables but do not 
return a value after execution. These functions include UPCASE, LOWCASE, PROPCASE, COMPBL, STRIP, TRIM, 
SUBPAD, LEFT, RIGHT, REVERSE, QUOTE, and DEQUOTE. Care must be taken while using the SAS functions 
QUOTE and DEQUOTE, as the result can change the length of the values by two characters. Nesting of SAS 
functions is not allowed; instead, the user can run this macro multiple times. 

CONCLUSION  

The macro described in this paper can provide a solution for harmonizing all the character variables in the input SAS 
tables for a given SAS function. It is indeed a feasible approach and has worked successfully in many real-life 

Coders' CornerSAS Global Forum 2011

 
 



A Macro to Modify Attributes for All Character Variables in SAS® Data Sets, continued 

 

6 

situations. The most utility out of this macro is found when the UPCASE, LEFT and TRIM functions are applied 
across multiple datasets prior to performing SQL queries. This macro can also serve as a quick way to fix the data-
entry errors in SAS tables. 

Due to the simplicity of the code, either the entire code or portions of it (as described in the main text) can be easily 
incorporated into other user-written SAS routines. There is much value for the code (Part1) that checks user input 
parameters and it can be executed independently. Similarly, the remaining parts of the code can also be modified as 
per user-specific requirements.  

Finally, the SAS code used in this paper demonstrates one working example of how macro variables can be skillfully 
applied and managed within macros. 

ACKNOWLEDGMENTS 

I want to extend my sincere thanks to Syngenta for its commitment toward employee learning and development. I 
express my heartfelt gratitude to my supervisor, Todd L. Warner, Genetic Project Lead, Stanton, MN for his 
continuous support, encouragement and guidance. Many thanks to Kari Kust, my colleague, for her invaluable word-
smith help during preparation of this manuscript. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Suresh Babu Kadaru 
B.Sc. (Ag), M.Sc. Biotech, Ph.D Agronomy (minor - Applied Statistics) 
Scientist I 
Syngenta Seeds, Inc., 
317 330th Street 
Stanton, MN 55018 
 
Phone: 225 202 0409 
Email: suresh.kadaru@syngenta.com, suresh_kadaru@yahoo.com 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

Coders' CornerSAS Global Forum 2011

 
 


	2011 Table of Contents



