
Paper 110-2011

To Hash or Not To Hash! That is the Question!! When it Comes to SQL!!!
Mustaq Ahmad, Merck Sharp & Dohme Corp., Upper Gwynedd, PA

ABSTRACT

This paper demonstrates how to compare the efficiency of using the hash object when the same results can be
produced with PROC SQL. In the process of efficiency quantification, other efficiency determinants such as data set
size, compression, index, and environmental factors (remote PC versus local laptop) are accounted for in an
experimental model with a simulation approach.

KEYWORDS

Hash object, SQL, Efficiency, Statistical Modeling, Data Compression, Index, Simulation.

INTRODUCTION

The hash object is used for table lookup, and in most cases has been preferred over MERGE, SQL, ARRAY,
FORMAT, and SET with KEY= procedures due to its memory-resident searching method. In this approach, the hash
object performs the look up not primarily by comparison between the keys but by direct addressing. If the data sets
are small then all these table lookup procedures may have non-significant differences in regard to program execution
time. But dealing with the large data sets raises questions regarding one procedure's effectiveness over the other
procedure. Previous literature indicates that the hash object and PROC SQL approach is more efficient (i.e. less
CPU and / or real time needed) than the MERGE procedure. The efficiency of other table lookup procedures like
ARRAY, FORMAT, and SET with KEY= procedures varies in different situations. In these previous approaches, most
of the efficiency comparisons were made using a single program with a DATA or PROC step and one execution of
the program. No other factors or data set attributes was considered in the efficiency comparison approach.

In this paper, the efficiency of two procedures, the hash object and PROC SQL, is compared taking into consideration
of other factors such as data set attributes (i.e. size, compression, index) and the environmental factor (i.e. remote
PC versus local laptop). This comparison is performed using statistical analytical model (Generalized Linear Model,
PROC GLM) on CPU and real time in a simulation approach.

APPROACH

OVERALL SETUP FOR THE STATISTICAL ANALYTICAL MODEL

In this setup, the hash object and PROC SQL procedures are handled separately. To build the setup, each
procedure (hash object or PROC SQL) is used to build a table lookup using two SAS® input data sets which generate
an output data set resulting from the specific procedure used. This pair of input data sets has differing attributes such
as data set size, compression, and indexing. To check whether the two procedures are performing the exact same
lookup, PROC COMPARE is executed on the output data sets to ensure exact match. Each table lookup is repeated
five times and CPU and real time are generated for each execution to develop a simulation environment.

The efficiency endpoints, CPU and real time, are captured from the SAS Log for each procedure (hash object or
PROC SQL), and an Analysis-Ready data set is created containing the values of CPU and real time for each specific
procedure. The same data set also contains all the information for extraneous factors associated to the input data
sets, procedure (hash object or PROC SQL) used, number of iterations, etc.

APROACH TO STATISTICAL ANALYSIS

Subsequently, the statistical analytical model using PROC GLM is applied to the CPU and real time for the two (hash
object or PROC SQL) procedures. The detailed schema of analytical setup and analysis is provided in the following
Figure 1 -

1

Coders' CornerSAS Global Forum 2011

Real time

CPU time

Real time

CPU time

A. Input Datasets
(EX, CM)

Table Lookup using
Proc SQL

Proc Compare to
ensure exact match

E

Figure 1: Schematic presentation of analytical model setup and analysis.

DESCRIPTION OF ANALYTICAL MODEL COMPONENTS

INPUT AND OUTPUT DATA SETS

The two input data sets, EX and CM, are used (A. in Figure 1). The EX data set contains the study exposure data
and CM contains the concomitant medication data. EX is the larger data set, and CM is smaller one. These data
sets are joined together using the hash object and SQL procedures. Both data sets for each procedure are joined
using two key variables: SUBJ_ID and VISITNUM. Both data sets are not-sorted for the key variables. Also, while
joining these two data sets (EX and CM), two additional variables, SPDYRLEP and EXSTDY, are used to restrict
values - some are given upper and lower boundary values. Both procedures generate identical output data sets (B
and C in Figure 1) as confirmed by PROC COMPARE. In the hash procedure, CM, the smaller data set, is used to
create the hash object and put to the SAS buffer to make it memory-resident.

INPUT DATA SETS ATTRIBUTES

The larger input data set, EX, has the following attributes –

• Data set size: 5 gigabytes (GB) to 1GB. Each data set size with decrement of 1GB (five data sets).
• Data set compression: Compressed or not-compressed (two compression status).
• Data set index: Indexed or not-indexed (two index status)
• Data set variables: 1640836 observations (for 5GB data set) and 31 variables containing the key

variables SUBJ_ID and VISITNUM

The smaller input data set, CM, has the following attributes –
• Data set size: ~16MB. (one data set).
• Data set compression: Compressed or not-compressed (two compression status).

EFFFFIICCIIEENNCCYY EENNDDPPOOIINNTTSS
CCrreeaattiioonn ooff AAnnaallyyssiiss--RReeaaddyy

DDaattaasseett CCaappttuurreedd ffrroomm SSAASS LLoogg

Setup of Analytical Model

Statistical Analysis

Table Lookup using
Hash Object

DDAATTAASSEETTSS
AATTTTRRIIBBUUTTEESS::

11..SSiizzee
22..CCoommpprreessssiioonn

33..IInnddeexx
44..RReemmoottee vveerrssuuss

LLooccaall PPCC

Statistical
Modeling Using

Proc GLM

Statistical Inference on Efficiency
for Hash Object and Proc SQL

B. Output Dataset
from Hash Object

C. Output Dataset
from PROC SQL

EACH SETUP REPEATS 5 ITERATIONS TO CREATE SIMULATION

SAS Log

2

Coders' CornerSAS Global Forum 2011

• Data set index: Indexed or not-indexed (two index status)
• Data set variables: 3009 observations and 36 variables containing the key variables SUBJ_ID and

VISITNUM

Each EX data set of varying size will be joined to the CM data set by key variables.

CODE CONSTRUCT

Figure 2 contains the programming code used to join the EX and CM data sets to produce the identical output data
sets for hash object and PROC SQL –

Figure 2: SAS Programming code excerpt (%DT macro) to execute the hash object and PROC SQL procedures; the
parameters to execute the procedures are presented.

PROC COMPARE DATA=S_Dt&GIGA._&COMPRES._&INDX._&PC._&I
 COMPARE=H_Dt&GIGA._&COMPRES._&INDX._&PC._&I;
RUN;
TITLE;
%end;

/* EXCERPT 0F THE CODE TO SHOW THE CALL MACRO */
%DT (no_compress = y /* SAS Options (compress=) usage control */
 , supp_mprint = n /* SAS Options (mprint) usage control */
 , dtin_lib = Q:\ahmad\hash\final_datasets /* Library for input data sets */
 , dtin_lg = ex1gb_notcomp_notindx /* Large data set (EX) */
 , dtin_sm = cm /* Small data set (CM) */
 , giga = 1 /* Data set size (1GB) indicator */
 , compres = NotComp /* Data set compression status indicator */
 , indx = NotIndx /* Data set index status indicator */
 , pc = Rem /* Remote PC versus local laptop indicator */
 , iter = 5 /* Procedure (Hash or SQL) iteration indicator */
 , show_comp = y /* Proc COMPARE output control */
 , debug = n /* Program execution and debugging control */
 , list_out = y | Q:\ahmad\hash\list_output
 /* Generating SAS .lst output control */
 , log_out = y | Q:\ahmad\hash\log_output
 /* Generating SAS Log control */
 , anal_out = Q:\ahmad\hash\anal_ready_output
 /* Library for analysis-ready data sets */
 , outfile_nm = NotComp_NotIndx_Rem
 /* Name of the analysis-ready data set */
 , append = y
 /* Control for append results to the existing data set */
 , delim = | /* Delimiter for list_out & log_out parameter */
 , caplog = y /* SAS Log capture to create 'Analysis-Ready' data set */
);

TITLE1 "COMPARE OUTPUT FROM SQL AND HASH PROCEDURE";

select a.* , b.*
 from dtin_lib.&dtin_lg (rename =(subj_id=ex_subj visitnum = ex_visit)) a,
 dtin_lib.&dtin_sm b

QUIT;
** JOIN BY HASH OBJECT **;

 CM.definekey('subj_id','visitnum');
 CM.definedata(all:'Y'); CM.definedone();

 do until(eof);
 set dtin_lib.&dtin_lg (where= (50 < SPDYRLEP < 300 and 200 < EXSTDY < 400))
 end=eof;

%if %upcase(&show_comp) = Y %then %do;
RUN;
 stop;
 end;
 if CM.find()=0 then output;

 declare hash cm(hashexp:7, dataset:"dtin_lib.&dtin_sm");
 if 0 then set dtin_lib.&dtin_sm ;
DATA H_Dt&GIGA._&COMPRES._&INDX._&PC._&I;

 50 < SPDYRLEP < 300 and 200 < EXSTDY < 400;
 where a.ex_subj = b.subj_id and a.ex_visit = b.visitnum and

create table S_Dt&GIGA._&COMPRES._&INDX._&PC._&I (drop = ex_subj ex_visit) as
PROC SQL NOPRINT;
** JOIN BY PROC SQL **;
/* EXCERPT OF THE CODE FROM %DT MACRO TO INDICATE JOIN BY SQL AND HASH OBJECT */

3

Coders' CornerSAS Global Forum 2011

CREATION OF ANALYSIS-READY DATA SET

The Analysis-Ready data set is created from the SAS log generated from the execution of the %DT macro presented
in Figure 2. This data set has a specific number of columns and rows and contains all the data points to perform a
statistical analysis using PROC GLM. The following Table 1 describes the determinants of the Analysis-Ready data
set structure (columns and rows) and relevant information.

Procedure
Name

Input Data Set Attributes

Hash object
& PROC SQL

Data Set
Size

Compression Index Remote PC vs.
Local Laptop

Iterations TOTAL NUMBER OF
ROWS IN ANALYSIS-
READY DATA SET

2 procedures 5GB, 4GB,
3GB, 2GB,

1GB,

Yes / No Yes /
No

Remote PC /
Local Laptop

5
iterations

(2) (5) (2) (2) (2) (5) (2*5*2*2*2*5) = 400
 Table 1: Determinants of columns and rows for Analysis-Ready data set.

STATISTICAL ANALYSIS AND SIMULATION

THE TEST HYPOTHESES

Two tailed, two sample, hypotheses testing is performed for statistical analysis approach.

The Null Hypothesis: In this hypothesis, mean CPU or real time for execution of hash object and PROC SQL
is same i.e. there is no difference in mean CPU or real time.

 Hence H0: µCPU Time from hash object = µCPU Time from PROC SQL (for CPU Time) or
 H0: µReal Time from hash object = µReal Time from PROC SQL (for Real Time)

The Alternative Hypothesis: In this hypothesis, mean CPU or real time for execution of hash object and
PROC SQL is significantly different i.e. there is significant difference in mean CPU or real time.

 Hence HA: µCPU Time from hash object ≠ µCPU Time from PROC SQL (for CPU Time) or
 HA: µReal Time from hash object ≠ µReal Time from PROC SQL (for Real Time)

THE EQUATION FOR STATISTICAL MODEL

To model the CPU and real time, the following respective Generalized Linear Models (GLM) is used –

YCPU Time = a + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + e
 YReal Time = a + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + e

 Where b1 to b5 are different coefficients for CPU and real time.

DEPENDENT VARIABLE

The CPU and real time are considered as continuous variables and are treated as the dependent variable in the
statistical model. The CPU and real time are considered separately so two separate models are built.

INDEPENDENT VARIABLES

The attributes of the EX data set are considered as the independent variables for the model. These independent
variables are procedure (SQL/hash), data set size, compression, index, and remote PC versus local laptop. Table 2
presents the description of the independent variables.

4

Coders' CornerSAS Global Forum 2011

Independent Variables

 x1 x2 x3 x4 x5
 Procedure Data set size Compression Index Remote PC vs.

Local Laptop
Variable Characteristics Categorical Ordinal Categorical Categorical Categorical
Category Indicator in
the Model

SQL=0
Hash=1

5GB = 0
4GB = 1
3GB = 2
2GB = 3
1GB = 4

Yes = 1
No = 0

Yes = 1
No = 0

Remote PC = 0
Local Laptop = 1

 Table 2: Description of the independent variables to use in the statistical model.

Depending on information presented in Table 1 and 2, a tabular structure of the Analysis-Ready data set is presented
in the Appendix 1.

RESULT

DEFINITION AND SCOPE OF ANALYTICAL SETUP

To test the hypotheses, a controlled approach is applied to collect the CPU and real time. There is no missing data
for CPU and real time and for combinations for each categorical / ordinal levels of independent variables, there are
equal number of CPU and real time. Thus, the analytical setup can be considered as balanced design in an
experimental setup. For building the analytical model, the differential effect of SQL and hash object on CPU and real
time is considered as the main effect and this effect is determined while adjusted for other covariates as data set size,
compression status, index status, and remote or local laptop usage. Thus, in the final GLM model, variable reflecting
SQL/hash effect on CPU and real time is included because that is the main effect is to be determined.

PREPARATION OF THE ANALYSIS-READY DATA SET

In the analysis-ready data set the dependent variable, CPU and real time, is captured as character variables from the
SAS log in the form of nn:nn:nn.n. These variables are transformed to numeric variables and for CPU and real time
the assigned units are seconds and minutes respectively. No additional change is performed to the categorical /
ordinal independent variables.

The SAS variables in analysis-ready data set are –

 Dependent

Variable
Independent Variables

 y x1 x2 x3 x4 x5
 CPU and Real

Time
Procedure Data set size Compression Index Remote PC vs.

Local Laptop
SAS
Variable
Name

CPUTIME_SEC
REALTIME_MIN

PROC DATA_SIZE COMPRESS INDEX PC

SAS
Variable
Value

Numerical &
Continuous

0,1 0,1,2,3, and 4 0,1 0,1 0,1

SAS
Variable
Value
Definition

 PROC=0(SQL)
PROC=1(Hash)

DATA_SIZE=0(5GB)
DATA_SIZE=1(4GB)
DATA_SIZE=2(3GB)
DATA_SIZE=3(2GB)
DATA_SIZE=4(1GB)

COMPRESS=0(
Not
Compressed)
COMPRESS=1(
Compressed)

INDEX=0(N
ot Indexed)
INDEX=1(In
dexed)

PC=0(Remote)
PC=1(Local
Laptop)

Variable's
Role in
the GLM
model

 Predictor for
Primary Effect
for the GLM
Model

Used for Covariate
Adjustment

Used for
Covariate
Adjustment

Used for
Covariate
Adjustment

Used for
Covariate
Adjustment

 Primary Effect Covariates
Table 3: Description of the variables in analysis-ready data set.

5

Coders' CornerSAS Global Forum 2011

There are five ordinal groups for the data set size. To interpret the effect of the data set size on the CPU and real
time, dummy coding is introduced for the variable DATA_SIZE. The framework for the dummy coding for data set
size is –

 Data Set Size
Variable (variable
value) [Data Set Size]

1GB 2GB 3GB 4GB 5GB

DATA_SIZE (0) [5GB] 0 0 0 0 1
DATA_SIZE (1) [4GB] 0 0 0 1 0
DATA_SIZE (2) [3GB] 0 0 1 0 0
DATA_SIZE (3) [2GB] 0 1 0 0 0

Thus the effect (b2 coefficient) of independent variable X2 can be interpreted as the additive effect of –
b2i DATA_SIZE (0) [5GB] + b2j DATA_SIZE (1) [4GB] + b2k DATA_SIZE (2) [3GB] + b2l DATA_SIZE (3) [2GB]
(Where b2 is replaced by b2i, b2j, b2k, and b2l and these coefficients may or may not be different). For other covariates
(PROC, COMPRESS, INDEX, and PC), the values are dichotomous and one coefficient is appropriate to build the
GLM model.

FITTING THE SIMPLE LINEAR REGRESSION MODEL USING GLM AND CHECKING OF THE
ASSUMPTIONS

To perform the preliminary exploration of the collected data several Simple Linear Regression (SLR) models are
developed to determine the effect of individual independent variable on CPU and real time. For each fitted model, the
parameter estimate, p-value, and R2 are determined. In SLR approach it is evident that PROC variable has no
significant effect on the CPU and real time. But, DATA_SIZE, COMPRESS, INDEX, and PC have significant effects
on the CPU and real time at the α = 0.05 level and considered as the significant predictors for the CPU and real time.
For the real time, these independent variables individually explain between 3% to 13% of the total variance. For the
CPU time the same variables explain between 4% to 14% of the total variance.

Even some of the independent variables became significant in the SLR models, checking for the model assumptions
is necessary to determine the validity of the SLR models. Residual plots are performed to check the assumptions
required for SLR models. In the residual plots, residual data points are plotted against the predicted values and the
independent variables to check for normality, linearity, and heteroscedasticity. Existence and independence
assumption can not be checked and assumed to be present. From the residual plots it is verified that normality and
linearity assumptions are satisfied and heteroscedasticity is not satisfied. To address the assumption of
heteroscedasticity, the dependent variables, CPU and real time, are transformed using LOG (natural log with base e)
function and residual plots are generated. LOG transformation addressed the issue of heteroscedasticity and thus
following two new variables are created in the analysis-ready data set –

 REALTIME_MINLOG = log(REALTIME_MIN)
 CPUTIME_SECLOG = log(CPUTIME_SEC)

Subsequently, these two variables are used as dependent variables for future model determination.

FITTING MULTIPLE LINEAR REGRESSION MODEL USING GLM AND CHECKING OF
INTERACTIONS BETWEEN COVARIATES

As determination of the primary effect of PROC (SQL/hash) on the CPU and real time while the effects of other
covariates are fixed is the main hypotheses of this paper, a Multiple Linear Regression (MLR) model is developed. In
process of building the MLR model, the effect of interaction terms are explored. The approach to explore the
interaction terms is to determine whether the effect of PROC variable on CPU and real time (log transformed)
depends on ordinal values of DATA_SIZE used. Interactions are explored for different combinations of pair of
independent variables (covariates) using the plotted graphs and the variable pairs which show interaction effects are
DATA_SIZE*COMPRESS, DATA_SIZE*INDEX, DATA_SIZE*PC, COMPRESS*INDEX, COMPRESS*PC, and
INDEX*PC. The subsequent MLR models are built using GLM procedure with and without interaction terms.

The MLR model without interaction terms provides evidence that the primary effect of PROC (SQL/hash) on CPU and
real time is significant (at the α = 0.05 level) after fitting the covariates in the model. The R2 is increased significantly
in comparison to the SLR model. For MLR model using real and CPU time the R2 values become 0.72 and 0.68
respectively. Thus, the model without interaction terms explains 72 percent of the total variance of real time and 68
percent of the total variance of CPU time respectively. Beyond the primary effect, this MLR model also provides
similar trend of significant effect between real time and CPU time. For both real time and CPU time as dependent
variable, the covariates COMPRESS, INDEX, PC also become significant at the α = 0.05 level. The covariate
DATA_SIZE is significant for larger data sets (3GB – 5GB).

6

Coders' CornerSAS Global Forum 2011

For the MLR model with selected interaction terms, similar trend of significance is found. The R2 increased slightly in
comparison to the MLR without interaction terms. For real time and CPU time it is 0.88 and 0.87 respectively. The
primary effect of PROC(SQL/hash) on CPU and real time remains significant as it is the same for larger data set
categories of covariate DATA_SIZE. In this model, the effects of COMPRESS, INDEX, and PC is significant at α =
0.05 level when CPU time is the dependent variable and not significant for real time as the dependent variable.
COMPERSS*INDEX, COMPRESS*PC, and INDEX*PC interactions are significant for both CPU and real time as
dependent variables.

AUTOMATED MODEL SELECTION

To verify the validity of the above mentioned MLR models with and without interactions terms, a set of automated
model selection techniques are used. Among the techniques available following are the preferred ones –

• Adjusted R2
• Mallows' C(p) Statistic
• Akaike Information Criterion (AIC) and
• Automated Covariate Selection Using Forward, Backward and Stepwise procedures with

GLMSELECT

Using the adjusted R2, C(p) statistic, and AIC the best fitted predictors are identified in hierarchy and depending on all
three selection techniques model with PROC, DATA_SIZE, COMPRESS, INDEX, and PC as predictors becomes the
model of choice. The best fitted model is determined by highest adjusted R2, lowest Mallows' C(p) and AIC. This
approach is used to determine the individual effects only.

Automated model selection with interaction terms is not possible using PROC REG. A procedure, PROC
GLMSELECT, is available in SAS/STAT® software that performs model selection in the framework of general linear
models. When it comes to perform model selection with interaction terms within the model, this procedure is of
choice as it can accommodate interaction terms in the model.

To build the model using PROC GLMSELECT, all the covariates are included in the model to determine the individual
effects of these covariates on the CPU and real time. This approach is also supported by the previous findings when
only covariates (PROC, DATA_SIZE, COMPRESS, INDEX, PC) with individual effects are used in the GLM model.
Also, all the possible pair-wise combinations of covariates are included in the model to determined the best possible
regression model fit using the individual and interaction terms. The stepwise selection procedure is used with best
regression fit selection using significance level (SL) as selection procedure and with SLENTRY = 0.15 and SLSTAY =
0.25. To include the PROC, DATA_SIZE, COMPRESS, INDEX, and PC in the model INCLUDE=5 is used. The
selected covariates (individuals and interactions) are determined for CPU and real time as dependent variables and
the selected covariates are used for creation for the final model using PROC GLM. The output of PROC
GLMSELECT showed the selected covariates are different depending on the CPU and real time as dependent
variables. The difference in the selected predictors for CPU and real time are reflected in the following final model.

THE FINAL MODEL

The final model is built depending on the findings from the GLMSELECT. PROC GLM is used to determine the
covariate effects. The findings of the final MLR model are –

Independent Variables Parameter
Estimate

(Log
Transformed)

p-value

Final MLR model with interaction terms: Real time as dependent variable
PROC GLM DATA=ALL;
 class proc data_size compress index pc;
 model realtime_minlog = proc data_size compress index pc
 proc*index data_size*compress data_size*index
 data_size*pc compress*index compress*pc index*pc
 / solution;
QUIT;
 R2=0.89 / Intercept=-4.869
Individual Effects:
PROC (SQL) 1.702 <0.0001
DATA_SIZE (5GB) 0.927 0.0017
DATA_SIZE (4GB) 0.693 0.0190
DATA_SIZE (3GB) 0.464 0.1153
DATA_SIZE (2GB) 0.075 0.7984

7

Coders' CornerSAS Global Forum 2011

COMPRESS (Not Compressed) -0.248 0.3137
INDEX (Not Indexed) 0.818 0.0020
PC (Remote) 0.087 0.7249
Interaction Effects:
PROC(SQL)*INDEX(Not Indexed) -1.310 <0.0001
DATA_SIZE(5GB)*COMPRESS(Not Compressed) 0.011 0.9714
DATA_SIZE(4GB)*COMPRESS(Not Compressed) 0.315 0.2851
DATA_SIZE(3GB)*COMPRESS(Not Compressed) 0.101 0.7311
DATA_SIZE(2GB)*COMPRESS(Not Compressed) 0.783 0.0081
DATA_SIZE(5GB)*INDEX(Not Indexed) 0.618 0.0362
DATA_SIZE(4GB)*INDEX(Not Indexed) 0.572 0.0525
DATA_SIZE(3GB)*INDEX(Not Indexed) 0.676 0.0220
DATA_SIZE(2GB)*INDEX(Not Indexed) 0.033 0.9107
DATA_SIZE(5GB)*PC(Remote) 0.519 0.0786
DATA_SIZE(4GB)*PC(Remote) -0.075 0.7994
DATA_SIZE(3GB)*PC(Remote) 0.047 0.8721
DATA_SIZE(2GB)*PC(Remote) -0.548 0.0634
COMPRESS(Not Compressed)*INDEX(Not Indexed) 2.868 <0.0001
COMPRESS(Not Compressed)*PC(Remote) 0.858 <0.0001
INDEX(Not Indexed)*PC(Remote) 3.071 <0.0001
Final MLR model with interaction terms: CPU time as dependent variable
PROC GLM DATA=ALL;
 class proc data_size compress index pc;
 model cputime_seclog = proc data_size compress index pc
 proc*index data_size*index compress*index compress*pc
 index*pc / solution;
QUIT;
 R2=0.88 / Intercept=-1.1057
Individual Effects:
PROC (SQL) 0.937 <0.0001
DATA_SIZE (5GB) 0.900 <0.0001
DATA_SIZE (4GB) 0.647 <0.0001
DATA_SIZE (3GB) 0.493 <0.0001
DATA_SIZE (2GB) 0.310 0.0109
COMPRESS (Not Compressed) -0.652 <0.0001
INDEX (Not Indexed) 0.911 <0.0001
PC (Remote) -0.788 <0.0001
Interaction Effects:
PROC(SQL)*INDEX(Not Indexed) -0.703 <0.0001
DATA_SIZE(5GB)*INDEX(Not Indexed) 0.313 0.0681
DATA_SIZE(4GB)*INDEX(Not Indexed) 0.340 0.0478
DATA_SIZE(3GB)*INDEX(Not Indexed) 0.293 0.0881
DATA_SIZE(2GB)*INDEX(Not Indexed) -0.035 0.8367
COMPRESS(Not Compressed)*INDEX(Not Indexed) 0.828 <0.0001
COMPRESS(Not Compressed)*PC(Remote) 1.666 <0.0001
INDEX(Not Indexed)*PC(Remote) 1.895 <0.0001

 Table 4: Parameter estimates and p-values for final MLR model with interactions.

The findings of the final MLR model with interactions is similar to the MLR model with interactions described
previously with some minor differences. The final MLR model has slightly higher R2. In the final model
PROC*INDEX is included which was not present in the previous model. Some of the interaction terms are omitted in
the final model depending on the outcome of automated model selection using PROC GLMSELECT. Findings are
comparable between the final model and the previous GLM model. In final model, primary effect of PROC is
significant as the previous model. In both models individual effect of DATA_SIZE (larger data set size) and INDEX
are significant. In the final model the interaction between PROC*INDEX becomes significant. Other interaction terms
– COMPRESS*INDEX, COMPRESS*PC, and INDEX*PC are significant in both the final and previous models.

THE INTERPRETATION OF THE PRIMARY EFFECT IN THE FINAL MODEL

The primary effect of PROC(SQL/hash) can be summarized in the following tables –

8

Coders' CornerSAS Global Forum 2011

Dependent Variable: Real Time
Effect of PROC(SQL/hash) on real time (minutes) when data set size is 5GB, not compressed, and remote
PC is used

Independent Variables &
Intercept

Model
Estimates

Xi
(SQL)†

Estimate*Xi (SQL) Xi
(Hash)†

Estimate*Xi (Hash)

Intercept -4.869 1 -4.869 1 -4.869
PROC (SQL) 1.702 1 1.702 0 0
DATA_SIZE (5GB) 0.927 1 0.927 1 0.927
DATA_SIZE (4GB) 0.693 0 0 0 0
DATA_SIZE (3GB) 0.464 0 0 0 0
DATA_SIZE (2GB) 0.075 0 0 0 0
COMPRESS (Not Compressed) -0.248 1 -0.248 1 -0.248
INDEX (Not Indexed) 0.818 1 0.818 1 0.818
PC (Remote) 0.087 1 0.087 1 0.087
PROC(SQL)*INDEX(Not Indexed) -1.310 1 -1.310 0 0
DATA_SIZE(5GB)*COMPRESS(Not
Compressed)

0.011 1 0.011 1 0.011

DATA_SIZE(4GB)*COMPRESS(Not
Compressed)

0.315 0 0 0 0

DATA_SIZE(3GB)*COMPRESS(Not
Compressed)

0.101 0 0 0 0

DATA_SIZE(2GB)*COMPRESS(Not
Compressed)

0.783 0 0 0 0

DATA_SIZE(5GB)*INDEX(Not Indexed) 0.618 1 0.618 1 0.618
DATA_SIZE(4GB)*INDEX(Not Indexed) 0.572 0 0 0 0
DATA_SIZE(3GB)*INDEX(Not Indexed) 0.676 0 0 0 0
DATA_SIZE(2GB)*INDEX(Not Indexed) 0.033 0 0 0 0
DATA_SIZE(5GB)*PC(Remote) 0.519 1 0.519 1 0.519
DATA_SIZE(4GB)*PC(Remote) -0.075 0 0 0 0
DATA_SIZE(3GB)*PC(Remote) 0.047 0 0 0 0
DATA_SIZE(2GB)*PC(Remote) -0.548 0 0 0 0
COMPRESS(Not
Compressed)*INDEX(Not Indexed)

2.868 1 2.868 1 2.868

COMPRESS(Not
Compressed)*PC(Remote)

0.858 1 0.858 1 0.858

INDEX(Not Indexed)*PC(Remote) 3.071 1 3.071 1 3.071
 ∑(Estimate*Xi) for SQL

= 5.052
 ∑(Estimate*Xi) for

Hash = 4.660

∑(Estimate* Xi) for SQL - ∑(Estimate* Xi) for Hash = 5.052 – 4.660 = 0.392
Inv(ln) of 0.392 = 1.48 (Value obtained from inverse of natural log)

Interpretationπ:
For Not Indexed data set:
To perform SQL procedure compared to hash procedure will take 1.48‡ minutes more when adjusted for
data set size, compression status, and independent of procedure run on remote PC or local laptop.
For Indexed data set:
To perform SQL procedure compared to hash procedure will take [Inv(ln) of 1.702] or 5.48§ minutes more
when adjusted for data set size, compression status, and independent of procedure run on remote PC or
local laptop.
† Xi = Dummy coding indicator.
π Interaction between PROC(SQL) and INDEX(Not Indexed) become significant and thus effect of data set indexing
 on real time varies depending on indexed or not-indexed status of the data sets.
‡ Calculated from this table using dummy coding and coding is showed in table.
§ Calculated from parameter estimate for PROC (SQL) and dummy coding is not showed in tabular form.
Table 5: Interpretation of effect of PROC(SQL/hash) on real time adjusted for other covariates in the final MLR model.

Dependent Variable: CPU Time
Effect of PROC(SQL/hash) on CPU time (second) when data set size is 5GB, not compressed, and remote
PC is used

Independent Variables and
Intercept

Model
Estimates

Xi
(SQL)†

Estimate*Xi (SQL) Xi
(Hash)†

Estimate*Xi (Hash)

Intercept -1.105 1 -1.105 1 -1.105
PROC (SQL) 0.937 1 0.937 0 0
DATA_SIZE (5GB) 0.900 1 0.900 1 0.900
DATA_SIZE (4GB) 0.647 0 0 0 0
DATA_SIZE (3GB) 0.493 0 0 0 0
DATA_SIZE (2GB) 0.310 0 0 0 0

9

Coders' CornerSAS Global Forum 2011

COMPRESS (Not Compressed) -0.652 1 -0.652 1 -0.652
INDEX (Not Indexed) 0.911 1 0.911 1 0.911
PC (Remote) -0.788 1 -0.788 1 -0.788
PROC(SQL)*INDEX(Not Indexed) -0.703 1 -0.703 0 0
DATA_SIZE(5GB)*INDEX(Not Indexed) 0.313 1 0.313 1 0.313
DATA_SIZE(4GB)*INDEX(Not Indexed) 0.340 0 0 0 0
DATA_SIZE(3GB)*INDEX(Not Indexed) 0.293 0 0 0 0
DATA_SIZE(2GB)*INDEX(Not Indexed) -0.035 0 0 0 0
COMPRESS(Not
Compressed)*INDEX(Not Indexed)

0.828 1 0.828 1 0.828

COMPRESS(Not
Compressed)*PC(Remote)

1.666 1 1.666 1 1.666

INDEX(Not Indexed)*PC(Remote) 1.895 1 1.895 1 1.895

∑(Estimate*Xi) for SQL
= 4.202

 ∑(Estimate*Xi) for
Hash = 3.968

∑(Estimate* Xi) for SQL - ∑(Estimate* Xi) for Hash = 4.202 – 3.968 = 0.234

Inv(ln) of 0.234 = 1.26 (Value obtained from inverse of natural log)
Interpretationπ:
For Not Indexed data set:
To perform SQL procedure compared to hash procedure will take 1.26‡ seconds more when adjusted for
data set size, compression status, and independent of procedure run on remote PC or local laptop.
For Indexed data set:
To perform SQL procedure compared to hash procedure will take [Inv(ln) of 0.937] or 2.55§ seconds more
when adjusted for data set size, compression status, and independent of procedure run on remote PC or
local laptop.
† Xi = Dummy coding indicator.
π Interaction between PROC(SQL) and INDEX(Not Indexed) become significant and thus effect of data set indexing
 on CPU time varies depending on indexed or not-indexed status of the data sets.
‡ Calculated from this table using dummy coding and coding is showed in table.
§ Calculated from parameter estimate for PROC (SQL) and dummy coding is not showed in tabular form.
Table 6: Interpretation of effect of PROC(SQL/hash) on CPU time adjusted for other covariates in the final MLR
model.

DISCUSSION

Previously, programming efficiency comparisons were conducted among all the available table lookup approaches
such as MERGE, ARRAY, FORMAT, SQL, hash, and SET with KEY= procedure. In this paper, only the efficiency
comparison between the hash object and PROC SQL procedures is performed. The rationale for comparing these
two procedures is that these procedures are very alike in terms of CPU and real time taken for program execution.
The approach for statistical analysis in this experimental set up is chosen to differentiate any minor efficiency
differences between these two procedures. In the approach mentioned in this paper, the program code and the
experimental setup only compared the programming efficiency i.e. CPU or real time and does not account for the time
needed to develop these procedure codes (human factor) or any other resource needed for code maintenance.

For model building, log (natural log) transformation of CPU and real time is performed to have better fitted model. R2,
adjusted R2, significance level and other statistical criteria are used for automated model building. Pair-wise
covariate interactions are included in the model for fitting the MLR models. More than two covariate interaction is not
included in the model for possible over-fitting of the MLR models. The remote PC and the local laptop are chosen so
that they are comparable in terms of processor speeds, RAMs, and disk storage spaces.

CONCLUSION

Although there are statistical significances for differences in effects of SQL and hash procedures on CPU and real
time, in respect to real life execution time these differences are very minimal (Table 5 and 6). Thus the efficiency
gain using SQL versus hash procedure is not very meaningful in daily life. Even both the procedures are comparable
in efficiency, it is the end users who decide which procedure (the hash object or PROC SQL) is to be used to
appropriately meet their needs considering the resource (time, personnel, computer configurations, etc.). The actual
gain in programming efficiency can be achieved only by perceived experience from repeated use of related
procedures over time. The result presented in this paper is to lay out guidance and provide a recommendation only.
It is the end-user who will finally judge and choose the right procedure to achieve programming efficiency.

10

Coders' CornerSAS Global Forum 2011

11

REFERENCES

1. Qi, Eric and Fikret Karahoda (2010). "TIPS AND TRICKS OF EFFICIENT SAS® PROGRAMMING FOR

SDTM DATA". SESUG 2010 Annual Conference, Savannah, GA, September 26 - 28, 2010.
2. Muriel, Elena (2007). "Hashing Performance Time with Hash Tables". SAS® Global Forum 2007 Annual

Conference, Orlando, Florida, April 16 - 19, 2007.
3. Secosky, Jason and Janice Bloom (2007). "Getting Started with the DATA Step Hash Object". SAS® Global

Forum 2007 Annual Conference, Orlando, Florida, April 16 - 19, 2007.
4. Loren, Judy (2006). "How Do I Love Hash Tables? Let Me Count The Ways!". NorthEast SAS® Users

Group Inc. (NESUG) Annual Conference, Philadelphia, Pennsylvania, September 17 - 20, 2006.
5. Cohen, Robert A (2006). "Introducing the GLMSELECT PROCEDURE for Model Selection". SAS® Global

Forum 2006 Annual Conference, San Francisco, California, March 26 – 29, 2006.
6. Rohrbough, Rob (2005). "Table Lookups…You Want Performance?". Nebraska SAS® Users Group,

November 12, 2005.
7. Dorfman, Paul M. and Gregg Snell (2003). "HASHING: GENERATIONS". SUGI 2003 Annual Conference,

Seattle, Washington, March 30 - April 2, 2003.
8. Lafler, Kirk P. (2000). "Efficient SAS® Programming Techniques". SUGI 2000 Annual Conference,

Indianapolis, Indiana, April 9 - 12, 2000.

ACKNOWLEDGEMENT

I would like to thank Robert Hoffman and Maryann Williams for all their assistance in reviewing this paper and
providing the valuable suggestions.

CONTACT INFORMATION

Your comments and questions are encouraged and appreciated. The author can be contacted at:

Mustaq Ahmad
Merck Sharp & Dohme Corp.
351 N. Sumneytown Pike
P.O. Box 1000, UG1CD-14
North Wales
PA 19454
mustaq_ahmad@merck.com

Coders' CornerSAS Global Forum 2011

Appendix 1: Structure of Analysis-Ready Data Set.

Row #

Procedure

(2)
Data Set
Size (5)

Compress
(2)

Index
(2)

Remote PC
vs. Local

Laptop (2)
Iteration

(5)
Procedure and Data Set

Attribute Combined Indicator*
CPU Time

(Sec)
Real Time

(Min)
1 SQL Dt5 NotComp NotIndx Lap 1 S_Dt5_NotComp_NotIndx_Lap_1 nn.n nn.n
2 SQL Dt5 NotComp NotIndx Lap 2 S_Dt5_NotComp_NotIndx_Lap_2 nn.n nn.n
3 SQL Dt5 NotComp NotIndx Lap 3 S_Dt5_NotComp_NotIndx_Lap_3 nn.n nn.n
4 SQL Dt5 NotComp NotIndx Lap 4 S_Dt5_NotComp_NotIndx_Lap_4 nn.n nn.n
5 SQL Dt5 NotComp NotIndx Lap 5 S_Dt5_NotComp_NotIndx_Lap_5 nn.n nn.n

26 Hash Dt3 Comp NotIndx Rem 1 H_Dt3_Comp_NotIndx_Rem_1 nn.n nn.n
27 Hash Dt3 Comp NotIndx Rem 2 H_Dt3_Comp_NotIndx_Rem_2 nn.n nn.n
28 Hash Dt3 Comp NotIndx Rem 3 H_Dt3_Comp_NotIndx_Rem_3 nn.n nn.n
29 Hash Dt3 Comp NotIndx Rem 4 H_Dt3_Comp_NotIndx_Rem_4 nn.n nn.n
30 Hash Dt3 Comp NotIndx Rem 5 H_Dt3_Comp_NotIndx_Rem_5 nn.n nn.n

56 Hash Dt1 Comp Indx Rem 1 H_Dt1_Comp_Indx_Rem_1 nn.n nn.n
57 Hash Dt1 Comp Indx Rem 2 H_Dt1_Comp_Indx_Rem_2 nn.n nn.n
58 Hash Dt1 Comp Indx Rem 3 H_Dt1_Comp_Indx_Rem_3 nn.n nn.n
59 Hash Dt1 Comp Indx Rem 4 H_Dt1_Comp_Indx_Rem_4 nn.n nn.n
60 Hash Dt1 Comp Indx Rem 5 H_Dt1_Comp_Indx_Rem_5 nn.n nn.n

400 Hash Dt1 Comp Indx Lap 5 H_Dt1_Comp_Indx_Lap_5 nn.n nn.n

 *Legend for Procedure and Data Set Attribute Combined Indicator:

 S_Dt5_NotComp_NotIndx_Lap_1
 (1) (2) (3) (4) (5) (6)

 (1) (2) (3) (4) (5) (6)

Procedure
S=SQL, H=Hash

Date set Size
Dt5=5GB, Dt4=4GB,
Dt3=3GB, Dt2=2GB,
Dt1=1GB

Compression
NotComp=Not compressed,
Comp=Compressed

Index
NotIndx=Not indexed,
Indx=Indexed

Remote PC vs. Local Laptop
Rem=Remote PC,
Lap=Local Laptop

Iteration
1=First, 2=Second,
3=Third, 4=Fourth,
5=Fifth

COPYRIGHTS

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ®
indicates USA registration. Other brand and product names are trademarks of their respective companies.

12

Coders' CornerSAS Global Forum 2011

	2011 Table of Contents

