
1

Paper 103-2011

Five Ways to Speed Up Your Data Loading Using SAS/ACCESS® for
Relational Databases

Douglas B. Liming, SAS Institute Inc., Cary, NC, USA

ABSTRACT

When moving large amounts of data into a database, the mantra is: Quicker is better. SAS/ACCESS has always
leveraged the native database load utilities using the BULKLOAD=YES option. Most users are familiar with
BULKLOAD, but here are five additional ways to turbocharge BULKLOAD to make loading data even faster. Even
advanced users might not know about some of these undocumented options.

INTRODUCTION

When moving large amounts of data into a database, the mantra is: Quicker is better. SAS/ACCESS has always
leveraged the native database loader utilities using the BULKLOAD=YES option. Most users are familiar with
BULKLOAD, but can anything be done to make it even faster? The answer is yes and it depends. It depends on the
database’s load utilities, on how you have your database’s client configured, on what version of the client you are
using, and on how SAS

®
 leverages them. We are going to look at five examples of some leading database utilities

and at what BULKLOAD options you can use to further leverage the relational database load utilities.

THE TEST DATA

For this paper, in all the examples below, I am using a very narrow table of S&P 500 stock data with a SAS data set
of a little over ten million rows (10,116,050). I ran SAS

®
 9.3 on a 64-bit Linux (x86_64) Red Hat 5 box, with 64-bit

database clients.

A describe of the table looks like the output in Output 1.

Name Type

 --- ----------------------------

 STOCK VARCHAR2(5)

 CLOSING_DATE DATE

 OPEN NUMBER(10,3)

 HIGH NUMBER(10,3)

 LOW NUMBER(10,3)

 CLOSE NUMBER(10,3)

 VOLUME NUMBER(21,3)

 ADJ_CLOSE NUMBER(10,3)

Output 1. Describe of the Data Used during the Test Scenarios

Now, on to five ways to load data faster!

NUMBER 1: DB2 AND CLILOAD (BL_OPTION=CLILOAD)

To start off with, let us look at DB2. By default, when using BULKLOAD=YES and the SAS/ACCESS Interface to
DB2, you will use the DB2 load utility named IMPORT. However, you have three choices when bulk loading with
SAS/ACCESS to DB2: LOAD, IMPORT, and CLI LOAD. All of these are installed with the DB2 Administrator Client.
If you install only the Runtime Client, you will not get any of the load utilities and therefore cannot use BULKLOAD.
For loading tasks, there is a performance lift using CLI LOAD. When CLI LOAD is used, SAS simplifies the
invocation of LOAD, so you do not have to know all the details of the options and configuration required to invoke
LOAD. You can use CLI LOAD only if your DB2 client is version 7 fix pack 4 and above. Now that DB2 is currently at
version 9.7, that should not really be a limitation, yet it needs to be noted.

First, Output 2 is from a standard DATA / SET assignment. The SAS/ACCESS Interface to DB2 will assist by auto
calculating a READBUFF and an INSERTBUFF, as discussed in Number 2, calculating a more optimal insert buffer

Coders' CornerSAS Global Forum 2011

Five Ways to Speed Up Your Data Loading Using SAS/ACCESS for Relational Databases, continued

2

based on the 32K internal DB2 I/O buffer and the row size that is being loaded, allowing for efficient DATA / SET
loads, though not as effective as the LOAD utility.

5 data mydb2.sasSP;

6 set sasdata.sasSP;

7 run;

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

NOTE: There were 10116050 observations read from the data set SASDATA.SASSP.

NOTE: The data set MYDB2.SASSP has 10116050 observations and 8 variables.

NOTE: DATA statement used (Total process time):

 real time 10:38.68

 cpu time 17.10 seconds

Output 2. Output from SAS/ACCESS Interface to DB2 Using a Standard DATA / SET Assignment

Second, Output 3 represents using a SAS/ACCESS Interface to DB2 load with BULKLOAD=YES. In this case, only
the IMPORT load utility is called, and it is basically doing a simple DB2 insert under the covers. These inserts with
IMPORT are not optimized as with DATA / SET or CLI LOAD. Thus, they will more than likely incur performance
degradation as with our example.

20 data mydb2.sasSP_BULKLOAD (BULKLOAD=yes);

21 set sasdata.sasSP;

22 run;

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

NOTE: There were 10116050 observations read from the data set SASDATA.SASSP.

NOTE: The data set MYDB2.SASSP_BULKLOAD has 10116050 observations and 8 variables.

NOTE:

 Using data file: BL_SASSP_BULKLOAD_0.ixf

 Using log file: BL_SASSP_BULKLOAD_0.log

 Results for bulk load operation:

 10116050 rows loaded.

 0 rows skipped.

 0 rows rejected.

 0 rows deleted as duplicates.

 10116050 rows committed.

NOTE: DATA statement used (Total process time):

 real time 1:12:47.10

 cpu time 52.88 seconds

Output 3. Output from SAS/ACCESS Interface to DB2 Using Only BULKLOAD=YES with DB2

Finally, Output 4 shows the CLI LOAD method as a 66% performance gain over DATA / SET. Using CLI LOAD is

always the recommended path. The only reason for using IMPORT is that you only need the insert privilege to use it
as a loader, and some could argue that that is less restrictive. On the contrary, the LOAD privilege is not pervasive,
and I would argue that it is a relatively safe privilege to grant to users.

24 data mydb2.sasSP (BULKLOAD=yes BL_METHOD=CLILOAD);

25 set sasdata.sasSP;

26 run;

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

NOTE: There were 10116050 observations read from the data set SASDATA.SASSP.

NOTE: The data set MYDB2.SASSP has 10116050 observations and 8 variables.

NOTE:

Coders' CornerSAS Global Forum 2011

Five Ways to Speed Up Your Data Loading Using SAS/ACCESS for Relational Databases, continued

3

 Results for CLI LOAD operation:

 10116050 rows loaded.

 0 rows skipped.

 0 rows rejected.

 0 rows deleted as duplicates.

 10116050 rows committed.

NOTE: DATA statement used (Total process time):

 real time 3:37.76

 cpu time 8.42 seconds

Output 4. Output from SAS/ACCESS Interface to DB2 Using BULKLOAD with CLILOAD

NUMBER 2: READBUFF AND INSERTBUFF

What if you do not have access to these load utilities? Or what if (oops!) you installed only the Runtime Client!
Diverting slightly from BULKLOAD, but still well within the SAS/ACCESS world, you can use READBUFF and
INSERTBUFF to give standard DATA / SET operations a little more zip. The default values are limiting, with the
default for READBUFF being 250 and the default for INSERTBUFF being 1. By changing those values, you are
effectively changing the size of the “data packets” that you are moving around. Note that READBUFF is not used
when reading from SAS data sets; I just included it in case you switch to a database source for reading in data. Let
us look at an example using an Oracle libref, starting with a standard DATA / SET in Output 5.

2 libname mysas '/users/sasdbl/';

NOTE: Libref MYSAS was successfully assigned as follows:

 Engine: V9

 Physical Name: /users/sasdbl

3 libname myora oracle user=stock password=XXXXXX path=tktsora;

NOTE: Libref MYORA was successfully assigned as follows:

 Engine: ORACLE

 Physical Name: tktsora

4 data myora.sasSP; set sasdata.sasSp;

5 run;

 real time 17:23.27

 cpu time 11.00 seconds

Output 5. Output from a Standard DATA/SET with an Oracle Libref

For comparison sake, let us also capture a timing for SAS/ACCESS Interface to Oracle using BULKLOAD=YES in
Output 6.

9 data myora.sasSP_BULKLOAD (BULKLOAD=yes);

10 set sasdata.sasSP;

11 run;

 real time 3:12.01

 cpu time 16.80 seconds

Output 6. Output from a BULKLOAD=YES with an Oracle Libref

Now, how does it look if you increase READBUFF and INSERTBUFF significantly from the default? Output 7 shows
an 80% gain over the standard DATA / SET and is just 2% shy of the BULKLOAD command.

17 libname myora oracle user=stock password=XXXXXX

18 path=tktsora

19 INSERTBUFF=100000 ReadbufF=100000;

20 data myora.sassp_ir;

21 set mysas.sasSP500;

22 run;

Coders' CornerSAS Global Forum 2011

Five Ways to Speed Up Your Data Loading Using SAS/ACCESS for Relational Databases, continued

4

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

NOTE: There were 10116050 observations read from the data set MYSAS.SASSP500.

NOTE: The data set MYORA.SASSP_IR has 10116050 observations and 8 variables.

NOTE: DATA statement used (Total process time):

 real time 3:33.19

 cpu time 8.03 seconds

Output 7. Output from READBUFF and INSERTBUFF Showing an Increase from the Default with an Oracle
Libref

NUMBER 3: BL_RECOVERABLE

Continuing to build from the SAS/ACCESS Interface to Oracle example from above, it is also important to understand
the default options of the load utility you are using. To illustrate, the load utility for Oracle is SQLLDR, which defaults
to a mode that turns on database-level logging so that a failed load can be recovered and rolled back. Depending on
how the database is set up, this can have a varying degree of impact. Turning off logging will speed up the load, as it
did for the test in Output 8, increasing the BULKLOAD percentage to 85%, and with large loads that 3% difference

will continue to grow.

26 data myora.sasSP_BL (bulkload=yes BL_RECOVERABLE=NO);

27 set sasdata.sasSP500;

28 run;

NOTE: DATA statement used (Total process time):

 real time 2:51.34

 cpu time 13.54 seconds

Output 8. Output from SAS/ACCESS Interface to Oracle with BULKLOAD=YES and BL_RECOVERABLE=NO

NUMBER 4: TERADATA AND TERADATA PARALLEL TRANSPORT (TPT)

With SAS/ACCESS Interface to Teradata version 9.2 and up, the default BULKLOAD in SAS changed to use TPT
first. TPT is the Teradata Parallel Transport utility, which is highly customizable and handles large loads well. It is
worth mentioning, because if you do not have TPT installed, BULKLOAD will fall back to the older (read as slower)
MULTILOAD, and this is not completely apparent unless you are looking at a sastrace. Thus, make sure you have it
installed! Also, using TPT as your bulk loader within SAS enables you to restart a load from a checkpoint. SAS has
also included several TPT options using BL_OPTIONS, some of which are listed below, to further customize loading
data with TPT and to make it easier.

TPT BL_OPTIONS

 SLEEP=

 TENACITY=

 TPT=

 TPT_CHECKPOINT_DATA=

 TPT_DATA_ENCRYPTION=

 TPT_LOG_TABLE=

 TPT_MAX_SESSIONS=

 TPT_MIN_SESSIONS=

 TPT_RESTART=

 TPT_TRACE_LEVEL=

 TPT_TRACE_LEVEL_INF=

Coders' CornerSAS Global Forum 2011

Five Ways to Speed Up Your Data Loading Using SAS/ACCESS for Relational Databases, continued

5

 TPT_TRACE_OUTPUT=

Since the Teradata loaders do not allow duplicate rows, I did tests with only a million rows. Output 9 shows a
standard DATA / SET. However, Output 10 shows a vast performance improvement using TPT of 99%.

42 data mytera.littlesasSP;

43 set sasdata.teradataSP;

44 run;

 real time 18:01.48

 cpu time 9.83 seconds

Output 9. Output from SAS/ACCESS Interface to Teradata Using DATA / SET

45 data mytera.littlesasSP_BL (bulkload=yes);

46 set sasdata.teradataSP;

47 run;

 real time 7.04 seconds

 cpu time 2.65 seconds

Output 10. Output from SAS/ACCESS Interface to Teradata Using BULKLOAD=YES and TPT

NUMBER 5: PIPES

Using PIPES enables you to save the step and time of having to first land a file, and then load it, which is the basic
procedure of most of the SAS/ACCESS products when it comes to BULKLOAD=YES. Thus, PIPES can save you a
lot of disk space that gets used only momentarily, and it can save you a lot of time. Currently, the documented
databases that do this are Neoview, Netezza, Oracle, and Sybase IQ. All of these use the option
BL_USE_PIPES=YES. In SAS 9.3, SAS/ACCESS for Aster nCluster will also use PIPES. This is handy when
dealing with the large (as in huge) data volumes that most of the appliance databases like nCluster handle.
Specifically with nCluster, the database replicates data based on how the nCluster server is set up. When loading
data with DATA / SET, the database has to do all the replication on the node workers similar to logging with other
databases, and it is basically putting multiple copies of the same data for recoverability. SAS will wait for a response
from the replication during a standard DATA / SET operation. Thus, the load times using the DATA / SET method can
become intolerable. For that reason, I skipped the DATA / SET test and went straight to BULKLOAD=YES.

Loading via PIPES (see Output 12) is 36% faster than BULKLOAD (see Output 11). That percentage of time will

continue to grow over larger volumes, and you do not have to worry about the hardware resources as much.

14 data myaster.sassp500 (bulkload=yes);

15 set sasdata.sassp500;

16 run;

 real time 1:22.82

 cpu time 31.94 seconds

Output 11. Output from a Load Using SAS/ACCESS Interface to Aster nCluster and BULKLOAD=YES

17 data myaster.sassp555 (bulkload=yes BL_USE_PIPE=YES);

18 set sasdata.sassp500;

19 run;

 real time 53.72 seconds

 cpu time 39.49 seconds

Output 12. Output from a Load Using SAS/ACCESS Interface to Aster nCluster and BL_USE_PIPE=YES

Coders' CornerSAS Global Forum 2011

Five Ways to Speed Up Your Data Loading Using SAS/ACCESS for Relational Databases, continued

6

CONCLUSION

I would like to close with a summary table, Table 1 below, of all five methods discussed in this paper. Echoing the
subtext from above, knowledge of the settings and defaults of the database’s load utilities can only help in eking out a
few more valuable seconds, which turn into minutes, which turn into ….

Method DATA / SET BULKLOAD=YES Test Scenario

#1 CLI LOAD 10:38.68 1:12:47.10 (n/a) 3:37.76 (66%)

#2 READBUFF/INSERTBUFF 17:32.27 3:12.01 (82%) 3:33.19 (80%)

#3 BL_RECOVERABLE 17:32.27 3:12.01 (82%) 2:49.34 (85%)

#4 TPT (only 1 million rows) 18:01.48 7.08 (99%) n/a

#5 PIPES n/a 1:22.83 53.72 (36%)

Table 1. Summary of Timings with Percent Improvement from DATA / SET Load

ACKNOWLEDGMENTS

 I would like to thank my wife, Brennan, for her continual support.

 David Shamlin.

 SAS/ACCESS development team members: Keith Handlon, Pravin Boniface, and Chris Dehart.

RECOMMENDED READING

 SAS/ACCESS 9.2 for Relational Databases: Reference, Fourth Edition.

 The vendor documentation.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Douglas B. Liming
SAS Institute Inc.
100 SAS Campus Dr.
Cary, NC 27513
Douglas.Liming@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2011

	2011 Table of Contents

