
 1

Paper 074-2011

Creating an Excel report: A comparison of the different techniques
Romain Miralles, Clinovo, Sunnyvale, CA

ABSTRACT

Many techniques exist to create an Excel file using SAS®. Each of them offers some unique advantages.

LIBNAME statement is a new and useful option available with SAS 9 but old methods like DDE are still very powerful
and offer some unique capabilities. Knowing and understanding the different techniques is essential for SAS
programmers to quickly and effectively produce a report that will meet the requirement provided by the customer.

This paper will list and describe the different techniques to generate an Excel file from SAS, and provide
recommendations on the appropriate method to use when an Excel output must be created.

INTRODUCTION

Programming an Excel report is a common task for most SAS programmers. Customers often want to be able to
view, sort, and filter their data, and Excel is usually the tool they master best.

SAS offers a wide range of techniques to create an Excel report, each with its own advantages and limitations. Before
starting a new program, the SAS programmer should spend time to determine the most appropriate technique to use,
taking into consideration the customer’s needs, constraints, and time frame.

In this paper, I will first discuss several techniques used to generate an Excel report using SAS, and highlight some of
their advantages and limitations. I will then present a few questions that SAS programmers can ask themselves to
determine the best method to use.

PROC EXPORT

DESCRIPTION

PROC EXPORT is the most common way to export a SAS data set to a Microsoft Excel document. Its simple syntax
makes it easy to understand. Usually, it is the first method that a SAS programmer will learn to use in order to export
data. It is a basic technique that proves useful in many situations.

PROC EXPORT can be used in two different ways:

- First, we can use it to create an Excel file with the data from the data set. With this method, it is not possible
to format the output.

- The second solution is to use an Excel template and to populate the file with data from the data set. An
Excel document is saved on the computer and the columns are formatted as needed. Then the path and
filename of the Excel template are entered in the PROC EXPORT OUTFILE parameter.

SYNTAX

PROC EXPORT DATA = sasglf
 DBMS=excel
 OUTFILE = "c:\sas_globalforum.xls"
 REPLACE;
 sheet= 'page1' ;
RUN;

Coders' CornerSAS Global Forum 2011

 2

ADVANTAGES

PROC EXPORT is a good method for easy data manipulation. The Excel file can have one or multiple spreadsheets.
It is a good technique if the customer expects a simple listing developed quickly and does not require complex
formatting.
The export wizard in SAS is an interface to the EXPORT procedure. We can create the same report with the PROC
EXPORT. The advantage is that we can incorporate the SAS code in the program and we do not need to step
through all the export wizard windows every time we want to create a file.

LIMITATIONS

Customization of a report appearance is limited even when using an Excel template. PROC EXPORT starts in the
default, top, left cell (A1) and fills out the necessary rows and columns. Moreover, PROC EXPORT cannot use the
SAS labels as column names in Excel unless you are using SAS 9.2. This limits the use of PROC EXPORT for report
programming. Typically, users have no knowledge of the SAS data set structure and SAS variable names are not
meaningful to them. In addition, variable names in SAS have restrictions that column labels don’t share.

The order of columns in the exported worksheet is the same as the order of variables in the original data set.
Variables need to be ordered before using the PROC EXPORT. All the existing variables in the data set will be output
using this technique. This method also requires that your SAS installation includes the SAS/ACCESS Interface to PC
Files license.

LIBNAME ENGINE

LIBNAME engine is one of the newest methods to transfer information from SAS into Excel. It is available with SAS
version 9 and lets you use Excel as a SAS library.
LIBNAME engine allows advanced customization of your output. It does not give full control of Excel like DDE, but it
has one major advantage: Excel does not need to be installed on the machine running SAS.

SYNTAX

There are two ways to use LIBNAME for generating an Excel file. It can create a new workbook from scratch or it can
write an Excel template.

A. LIBNAME engine without a template
 The Excel file should not exist on the drive as the LIBNAME engine cannot overwrite.

LIBNAME toexcel EXCEL 'c:\sugi_libname.xls' VER=2002 ;
DATA toexcel.sugi(DBLABEL=YES);
 SET sugi.sugi ;
RUN;
LIBNAME toexcel CLEAR;

A data step is used to export the data. We can choose the name of the tab in the Excel output and we can export the
variable labels with the option DBLABEL=YES.

B. LIBNAME engine with a template

LIBNAME Engine can be used with an Excel template to create a customized report. The data are output in the
named ranges which are a subset of cells defined using Excel option insert->name->define. Multiple named ranges
can be defined and used to control the display of data in the spreadsheet.

/* The first step is to delete the data from the ra nge to be populated. Without prior
deletion, SAS will not populate the range*/
PROC DATASETS LIB =toexcel;
 DELETE sugi; /* Sugi is the named range defined in excel*/
 RUN;
QUIT;

PROC DATASETS LIB =toexcel;
 DELETE param; /* 2 nd named range defined in excel*/
 RUN;
QUIT;

 Ver=2002: To specify the
most current version. The
default is Excel 97
DBLABEL=YES: Write the
variable labels

Coders' CornerSAS Global Forum 2011

 3

DATA toexcel.sugi; /* 2 nd output the data in the ‘sugi’ range defined in Exc el*/
 SET sugi ;
RUN;

DATA toexcel.param ;
 SET param ;
RUN;
LIBNAME toexcel CLEAR; /* Disconnect from workbook*/

ADVANTAGES

LIBNAME engine offers the advantages of exporting data to Excel in a quick and easy manner, as well as developing
elaborate reports. It does not need Excel to be present or activated, and a simple data step can be used to populate
the output. The Excel spreadsheet can be manipulated much like a SAS data set and unlike PROC EXPORT (before
SAS 9.2), LIBNAME engine can export the variable labels.

LIBNAME engine is a possible solution to program a fancy report. Pre-defined and customized Excel worksheets can
be easily used after understanding named ranges in Excel.

LIMITATIONS

Using LIBNAME can at first be confusing. Each data set appears twice when you open the Excel file with LIBNAME:
- One with the expected name. This data set is the named range.

 - One with a trailing “$”. This data set is the spreadsheet.
It requires some time to understand Excel structure and the use of named ranges. Without a correctly named range in
Excel, LIBNAME cannot execute and display an error message in the log.

By default, LIBNAME engine writes the variable names in the first row of a range. When defining the named ranges,
users need to remember that the first row will be populated with the variable names. The only solution not to display
the headers is to hide the first row of the range in the Excel template. This method also requires that your SAS
installation includes the SAS/ACCESS Interface to PC Files license.

EXCELXP TAGSET

DESCRIPTION

ExcelXP tagset is an ODS destination available in SAS version 9.1 that utilizes the Extensible Markup Language
(XML). It can be downloaded from the SAS website. Using the ExcelXP Tagset is a powerful method to control
formatting of a spreadsheet. Common ODS options can be used as well as many other helpful options specific to the
tagset.

ExcelXP tagset can be used to export the results of PROC REPORT, PROC TABULATE, or PROC PRINT. It can
display multiple tables per worksheet as well as multiple worksheets.
As any other ODS destination, the option ‘style’ can be used with the ExcelXP tagset. Many styles are available in
SAS and styles can also be customized or created using PROC TEMPLATE.

SYNTAX

ODS listing ;
ODS results;
ODS listing close ; /*Turn off the standard line printer destination*/
ODS noresults; /*Prevents results from appearing within SAS viewer */

ODS tagset.ExcelXP
 FILE ="c:\sas_globalforum.xls"
 STYLE=sasgl /*Style to control appearance of output*/

 options (Embedded_titles = 'yes' /*ExcelXP options*/
 Embedded_Footnotes = 'yes'
 sheet_name= 'Sasgl'
 autofilter= 'yes'
 frozen_headers= '3'
 autofit_height= 'yes'
 absolute_column_width= '15,10,10,13');

Coders' CornerSAS Global Forum 2011

 4

TITLE1 "List of SAS conferences" ;

FOOTNOTE1 "April 4th 2011" ;

PROC REPORT DATA=sglf NOWD;

COLUMN conference city state attendees;
DEFINE conference / CENTER style(column)=[font_weight=bold] style(header) =
[background = CX4D7EBF];
DEFINE city / CENTER style(header) = [background = CX4D7EBF];
DEFINE state / CENTER style(header) = [background = CX4D7EBF];
DEFINE attendes / CENTER style(header) = [background = CX4D7EBF];

RUN;

ODS tagset.ExcelXP CLOSE; /* Close and release the xml file so it can be open ed with
Excel*/

ODS listing ;
ODS results;

In this example, we used only a few options but many more are available and documented online.

ADVANTAGES

ExcelXP tagset has an amazing number of options and high flexibility, allowing it to accomplish almost any report. It
reduces or eliminates the need for manual formatting, as all formatting and layouts are performed by SAS. There is
no need to create a template or edit the Excel workbook. ExcelXP includes a lot of options that control the
appearance of the report, and many papers are available online to get a better understanding of all them.

ExcelXP tagset is one of the best ways to create a file with multiple sheets. Unlike other techniques, there is no need
to prepare a template or to use a SAS macro. All formatting is performed by SAS, so it becomes very easy to define a
style and apply it to all the worksheets.

LIMITATIONS

In order to take advantage of the latest ExcelXP features, the tagset must be downloaded and installed. Computers
without the latest version of ExcelXP might not be able to run SAS programs to create reports. Additionally, ExcelXP
is still evolving, thus functionalities may change in the future.

Excel does not handle date variables like SAS. Date variables exported from SAS with ExcelXP tagset are interpreted
like a text variable. Excel will understand SAS dates only if they are converted to a specific format before using
ExcelXP (the paper “The Devil Is in the Details: Styles, Tips, and Tricks That Make Your Microsoft Excel Output Look
Great!” gives a great explanation about date format with ExcelXP).

ExcelXP tagset produces an XML file designed for Excel. XML is a great way to store data; however, it is not
readable on every computer. Some customers with an older version of Excel might not be able to open the file
created by ExcelXP tagset. One of the solutions to avoid this issue is to open the XML file and save it in XLS format.
This can be automated using a SAS macro and a VBS script.

ODS CSV

ODS CSV is an option that can be used to create an Excel file. It was experimental in SAS 8 and moved to
production in SAS 9. ODS CSV creates a comma-separated value (CSV) text file that can be read and displayed in
Excel. The values are enclosed in double quotation marks in the CSV file. Thanks to these quotation marks, commas
are allowed as part of the values.

SYNTAX

ODS CSV FILE ='C:\sasglobal.csv' ;
 PROC PRINT DATA=sasglobalforum;
 RUN;

Coders' CornerSAS Global Forum 2011

 5

ODS CSV CLOSE;

ADVANTAGES

ODS CSV does not actually produce an Excel file. The output is a CSV document that can be imported in Excel. The
main advantage of this format comes from its age and its widespread compatibility. CSV files can be opened in any
Excel version and almost any spreadsheet and database management system. Additionally, the CSV file size is quite
small since the CSV destination does not have any formatting.
These two advantages make ODS CSV a good technique when we need to create a small file that will be read on
different versions of Excel.

LIMITATIONS

ODS CSV does not offer control over output appearance, and it creates a simple Excel-readable text file with no
formatting. It generates output beginning on row 3 by default. To remove the first two rows, we need to modify the
tagset and override the defaults. It offers less control over the titles, footnotes and other styles compared to the other
techniques discussed in this paper.

ODS HTML

The ODS HTML BODY is used to create HTML documents. However, it can also be used to create an Excel report by
assigning an XLS extension instead of HTML.

SYNTAX

ODS HTML BODY = 'C:\sugi.xls' ;
 PROC FREQ DATA=sugi;
 TABLES var1 var2;
 RUN;
ODS HTML CLOSE;

ADVANTAGES

ODS HTML is a destination commonly used for exporting output to Microsoft Excel. It provides an easy way to create
a report that can be customized using the predefined styles in SAS.
Not only can we use predefined SAS styles, but we can also define our own style using PROC TEMPLATE or
applying cascading style sheets (CSS) to format ODS output. The appearance of the output, color, fonts, borders,
sizes as well as many others parameters can thus be defined.

LIMITATIONS

ODS HTML creates a file that Excel opens as a spreadsheet. Although the file extension is XLS, it still remains an
HTML document with many tags controlling the formatting. The document created by the markup can become large if
the data exported includes many variables and records. It is possible to reduce the size of the file by using the style
MINIMAL provided by default with SAS. Other techniques also exist to reduce the size of Excel files.

ODS HTML is still widely used but it has been replaced by the tagset MSoffice2K in SAS 9 which is a more powerful
tagset for HTML output that can be read with Excel. Outputs created with ODS HTML are more suitable for the
browser rather than Excel.

ODS MSOFFICE2K

The ODS MSOffice2K is an improved version of the ODS HTML available with SAS version 9. It is used in the same
way as ODS HTML and produces an HTML file that can be opened by Excel. The main difference is that this tagset
was developed especially for creating HTML output compatible with the Office applications.

SYNTAX

ODS tagsets.msoffice2k FILE = 'C:\sugi.xls' ;
 PROC PRINT DATA=sugi;
 RUN;
ODS tagsets.msoffice2k CLOSE;

Coders' CornerSAS Global Forum 2011

 6

ADVANTAGES

ODS MsOffice2K is a quick and easy method that offers the same benefits as ODS HTML and a better support of
embedded images and graphics. It can be used to generate presentation-quality output or simple reports with limited
formatting.

ODS MsOffice2K is geared to work specifically with the Office applications that can read HTML. It is recommended to
use this tagset rather than the often-used HTML destinations for generating Excel output.

LIMITATIONS

The output created by the tagset is an HTML document, and as ODS HTML, the file can become quite large if many
data are exported to Excel.

This ODS destination does not provide the many options available with the ExcelXP destination and it cannot create
multi-sheet reports. However, there is a modified version of this tagset available online (MSOffice2K_x) that adds
options to perform many of the common tasks in Excel, including one that generates multi-sheet files.

DDE

 DESCRIPTION

Dynamic Data Exchange (DDE) is an old protocol, but it is one of the most powerful methods to integrate SAS and
Excel.
DDE is the direct communication between SAS and Excel using a server/client model. Excel acts as a server and
SAS as a client. It is the only technique that can use visual basic language, the most powerful feature of Excel, and
provides total control over the output.

This technique might seem obscure to people who have no experience with it. There are two ways to use DDE:

- The first approach, and probably the most difficult one, is to execute all the code directly in SAS using X4ML
functions to provide instructions to the Excel application. DDE can enable much of the functionality of Excel
within SAS.

- The second solution is to create a pre-formatted Excel template and populate it using DDE. With just two
macros to open and close the Excel file, it becomes very easy to program a fancy report. This solution is
easier and faster. Anyone can prepare a nice spreadsheet using the power of Excel, and populate it with the
SAS data.

SYNTAX

%LET stufile=C:\sugi;
/** *******************************/
/* TO OPEN XLS FILE */
/** *******************************/

%MACRO OPENXLS(FOLDER=,IN=);
%LET FIL=;
 DATA _null_;
 LENGTH FILE $300. ;
 FILE= "'&STUFILE\&folder.&in.'" ;
 FILE= "'" !!TRIM(LEFT(TRANWRD(FILE, "'" , '"')))!! "'" ;
 CALL SYMPUT ("FIL" ,TRIM(LEFT(FILE)));
 RUN;
options noxwait noxsync;
x & fil. ;
filename commands dde "Excel|system" ;
%MEND OPENXLS;
/** *******************************/
/* TO SAVE ACTIVE XLS FILE UNDER SPECIFIC FOLDERS A ND QUIT EXCEL */
/** *******************************/
%MACRO CLOSEXLS(out=,quit= 0);

%LET FIL=;

Coders' CornerSAS Global Forum 2011

 7

 DATA _null_;
 LENGTH FILE $300. ;
 FILE= "[save.as('&STUFILE.\&out.')]" ;
 FILE= "'" !!TRIM(LEFT(TRANWRD(FILE, "'" , '"')))!! "'" ;
 CALL SYMPUT ("FIL" ,TRIM(LEFT(FILE)));
 RUN;
 %PUT &FIL=;

 DATA _null_;
 file commands;
 put & fil. ;
 put '[CLOSE()]' ;
 %IF &quit= 0 %THEN %DO;
 put '[QUIT()]' ;
 stop;
 RUN;
 filename commands clear;
 %END;

 %IF &quit= 1 %THEN %DO;
 RUN;
 %END;

%MEND CLOSEXLS;
%OPENXLS(FOLDER=template\,IN=sugi_2011_dde.xls); /* Open the Excel template*/

/* We use the triplet ‘template file name/tab name/ range’ to define where to output
the data. The template file name is between bracket followed by the tab name and the
range in the format RxCx:RxCx (R for row and C for column). Note that the range need
to be in the language of the excel on your computer */ FILENAME TAB DDE
"EXCEL|[sugi_2011_dde.xls]sugi!R5C3:R30C10" ;
FILENAME xlcmds DDE "EXCEL|SYSTEM";

DATA _null_ ; /* Data step to output the data in the Excel file */
 SET sugi;
 FILE TAB NOTAB LRECL=7000;

 PUT conference '09'x
 city '09'x
 state '09'x
 attendees '09'x ;
RUN;

/* We can output as many data set as we want. In th is example we output a second data
set to another location*/
FILENAME TAB DDE "EXCEL|[sugi_2011_dde.xls]sugi!R16C1:R18C2" ;
FILENAME xlcmds DDE "EXCEL|SYSTEM";

DATA _null_ ;
 SET param;
 FILE TAB NOTAB LRECL=7000;
 PUT var1 '09'x
 var2 '09'x ;
RUN;

DATA _null_ ; /* Invoke a VB macro ‘lastline’ embedded in the Excel template */

FILE xlcmds;
 PUT '[RUN("lastline")]';
RUN;
%CLOSEXLS(OUT=sugi_DDE_& today. .xls); Specify the name of the output and close the
file*/

Coders' CornerSAS Global Forum 2011

 8

ADVANTAGES

DDE is a great technique to create sophisticated reports. It provides full control of Excel and allows you to leverage
the powerful capabilities of this reporting tool. Anyone who knows Excel can prepare an Excel template with pre-
formatted cells and columns.

Using DDE, you can call VBA macros embedded in your Excel template. VBA macros are very powerful and enable
you to extend Excel in any way you choose. If you need to use an Excel macro for your report, DDE is the best
solution.

LIMITATIONS

Both Excel and SAS need to be installed and active for DDE to work. This makes DDE impossible to use in an
environment where SAS is installed on a server and Excel on a desktop.
In addition, knowledge of Excel programming is required. DDE uses Excel version 4 macro language, which has been
superseded by Visual Basic for Applications (VBA). Finding documentation for this macro language is not always
easy.

INTEGRATED OBJECT MODEL

DESCRIPTION

Excel can communicate with SAS using the Integrated Object Model (IOM). SAS integration technologies were
introduced in SAS v8, and improved in SAS v9. Excel establishes a connection with a SAS session that can be used
to run SAS code. It provides access to SAS data and procedures from Excel and is designed to work in a client-
server environment.

SYNTAX

Before using IOM, Excel needs to be configured properly. The following references need to be selected in the visual
basic editor using the menu tools->references.

- SASObjectManager 1.1 Type Library
- SAS: Integrated Object Model (IOM)
- Microsoft ActiveX Data Objects 2.8 Library

Below is the code for an Excel VB macro that will run the SAS program sasglforum.sas located in C:\mysaspg. The
program creates the data set ‘sasgldata’ in C:\temp. Then the VB macro exports the data set into Excel.

Sub iomtest ()
Dim swsSAS As SAS. Workspace
Dim rsSAS As New ADODB. Recordset
Dim obObjectFactory As New SASObjectManager . ObjectFactory
Dim obServer As New SASObjectManager . ServerDef
Dim cnnIOM As New ADODB. Connection
Dim xmlInfo As String
Dim fld As Field
Dim row As Long
Dim col As Long

'For this example we use localhost server

obServer . MachineDNSName = "localhost"

'We Create a local SAS workspace
Set swsSAS = obObjectFactory . CreateObjectByServer ("Workspace" , True ,
obServer , "myUserName" , "myPassword")

'Run the SAS program at c:\mysaspg\sasglforum.sas
Dim obStoredProcessService As SAS. StoredProcessService

Coders' CornerSAS Global Forum 2011

 9

Set obStoredProcessService = swsSAS . LanguageService . StoredProcessService
obStoredProcessService . Repository = "file:C:\mysaspg"
obStoredProcessService . Execute "sasglforum" , Parameters

‘Export the SAS data set to Excel
cnnIOM. Provider = "sas.LocalProvider.1"
cnnIOM. Properties ("Data Source") = "c:\temp"
cnnIOM. Open
rsSAS . Open "sasgldata" , cnnIOM , adOpenDynamic , adLockPessimistic ,
ADODB. adCmdTableDirect
'Select the sheet sasglf and freeze the panes on th e 2ndline
 Worksheets ("sasglf"). Activate
 Range ("A2"). Select
 ActiveWindow . FreezePanes = True
 If Not (rsSAS . BOF And rsSAS . EOF) Then
 Worksheets ("sasglf"). Activate
 Range ("A1"). Select
 rsSAS . MoveFirst
 row = 2
 Do While Not rsSAS . EOF
 ActiveSheet . Cells (row , 1). Select
 For Each fld In rsSAS . Fields
 ActiveCell . Value = fld . Value
 ActiveCell . Next. Select
 Next
 row = row + 1
 rsSAS . MoveNext
 Loop
 Range ("A2"). Select
 End If
 rsSAS . Close
 Set rsSAS = Nothing
 cnnIOM . Close
 Set cnnIOM = Nothing
 swsSAS . Close
 Set swsSAS = Nothing
 Set swmWM = Nothing
End Sub

ADVANTAGES

Integration technologies allow SAS programmers to separate the interface from the engine. The front end can be
developed using Excel with all its benefits (VBA, pivot table, etc.), while the back end is developed in SAS. The
advantage is that SAS does not need to be installed on the computer on which the application runs.
Additionally, the SAS code is executed directly from the Excel environment. It means that users can refresh the report
by running an Excel macro. This macro will execute a SAS program and update the front end.

LIMITATIONS

In order to use this method, SAS programmers need to understand SAS integrated object model and to have a good
knowledge of VBA as most of the code is written directly in Excel. Unfortunately, not everyone has the skills to use
this method. It requires a lot of time to understand integration technologies before being able to use IOM.

HOW TO CHOOSE THE BEST METHOD

Each method presented in this paper has some advantages and limitations when it comes to creating an Excel report.
Choosing the best method to create a specific document is one of the responsibilities of a SAS programmer. As a
programmer, we need to take the time to identify the solution that will best fit our needs. There are a few questions
that we can ask ourselves in order to determine which technique to use.

Coders' CornerSAS Global Forum 2011

 10

WHAT IS THE REPORT FOR?

The first step is to review and understand the requirements. The goal of the project can be to simply export a SAS
data set to Excel or to develop a very advanced report like a dashboard using SAS data. For exporting a data set to
Excel, a PROC EXPORT, ODS CSV or LIBNAME engine would be enough in most cases. However, if the objective
of the project is to develop a very advanced Excel report, the best technique to use would probably be DDE, IOM,
LIBNAME engine, ExcelXP or ODS MSOffice2K.

WHO IS MY CUSTOMER? HOW MANY PEOPLE WILL USE THE REPORT?

This is an important question. Depending on the customer, we will spend more or less time creating the Excel report.
For example if the customer is a client, I will spend more time developing a nice report to try to impress him. DDE,
ExcelXP, ODS MSOffice2K, or LIBNAME engine would be the first choice.

On the other hand, if I need to create a report for myself or colleague who is also a SAS programmer, I will spend
less time on customizing the report and choose the fastest method to generate the file: a simple PROC EXPORT,
ODS MSOffice2K, or ODS CSV.

IS IT A ONE-TIME REPORT?

If the report is intended to be used only once, I will spend less time on it than a report that will be run multiple times
and used by many people.
For a one-time report, the method used would also depend on the customer. A PROC EXPORT, LIBNAME engine, or
ODS MSOffice2K will be good for most cases. If I still need to format the output, I would probably choose ExcelXP or
MSOffice2K tagset, and use a pre-defined style and some simple options to improve the output.

HOW IS THE REPORT SENT TO THE CUSTOMERS? HOW BIG WILL MY FILE BE?

The size of the data set exported to Excel, as well as the SAS installation, are two factors that will help in choosing
the best method. If SAS is executed on a server without Excel installed, we will not be able to use DDE for a
customized report. LIBNAME engine will be a better solution.

Sometimes we need to export a very large data set to Excel and then send the file to the customersby email. In that
case, ODS CSV can be a good solution even if customization is limited. Using ODS MSOffice2K or ExcelXP tagset
would generate a large file that we might not be able to send by email.

In the table below, we used the different techniques described in this paper with a data set of 60000 rows and 27
columns. As expected, ODS CSV produces the smallest file.

DO I NEED A MULTI-SHEET REPORT?

If I need a multi-sheet report I can use different techniques. For multi-tabs without formatting, PROC EXPORT or
LIBNAME engine are sufficient. If the output needs to be formatted, different techniques can be used. A template can
be prepared in different tabs and populated with LIBNAME or DDE. However, using a template is not a good idea if
the report has many tabs as it would take too much time to prepare each sheet.

We can also use a SAS macro to create multi-sheet reports. We create multiple Excel files with SAS and then use the
SAS macro to combine these individual Excel files into one worksheet. This kind of macro has been described
previously in several other papers.
We can also download and use the modified tagset MSOffice2K_x. This tagset adds options to the original
MSOffice2K tagset. One of the new options allows users to add multiple worksheets per Excel file.

SAS techniques Output size

ODS CSV 12 mb

Proc Export 18 mb

LIBNAME engine 18 mb
DDE 22 mb

ODS HTML 57 mb

ODS MSoffice2k 97 mb

ExcelXp 143 mb

Coders' CornerSAS Global Forum 2011

 11

However, the ideal solution to export SAS data to Excel workbooks that contain multiple worksheets is ExcelXP
tagset. By using styles and the numerous options available with the tagset, we can create a custom template that will
be applied to all the tabs. The tagset will create the Excel file with the tabs and style defined in the SAS code.

WILL I USE AN EXCEL TEMPLATE FOR MY REPORT?

We sometimes need to use an Excel template designed by an Excel expert or by ourselves. In that case, the two best
methods are LIBNAME engine and DDE. PROC EXPORT can be used with an Excel template but formatting options
are too limited.
The syntax is quite different between LIBNAME and DDE. With the LIBNAME engine, we need to use named ranges
in Excel and make sure the data will fit in the template. For DDE, only the column names need to be set up in the
Excel template. It doesn’t require named ranges, and data will be output in the rows and columns defined in the SAS
code.
The biggest advantage of DDE over LIBNAME engine is the possibility to call and execute VBA macros.

WHICH EXCEL VERSION WILL BE USED TO READ THE REPORT?

Multiple versions of Excel exist on the market. The latest version is able to read an XML file. Unfortunately, some
companies/customers are still using an old version of Excel like Excel 97 or 2000 that cannot read an XML document.
It is one of the parameters that needs to be taken into consideration before sending a report to a customer. The
techniques described above generate different types of output which are not necessarily compatible with all versions
of Excel.

SAS techniques Output format Compatibility

ExcelXP XML 2002+

MsOffice2k HTML 2000+

ODS HTML HTML 97+

ODS CSV CSV 97+

LIBNAME engine XLS 97+

DDE XLS 97+
PROC EXPORT XLS 97+

CONCLUSION

SAS is a powerful tool that provides programmers with a wide range of solutions and options for exporting data to
Excel. Although several methods exist to accomplish the same result, they might not necessarily be appropriate for
the task at hand. While some techniques offer better customization of reports, others provide simpler, more efficient
syntax. By having a limited knowledge of these methods, programmers may not be taking advantage of the full
capabilities of SAS. SAS programmers may thus find it beneficial to be familiar with multiple techniques in order to
choose the most effective approach for their project.

Coders' CornerSAS Global Forum 2011

 12

REFERENCES

Ying Feng, SUGI 2005, Generating Custom Report Tables: Using SAS with DDE and VBA
http://www2.sas.com/proceedings/sugi30/161-30.pdf

Paul A. Choate, Carol A. Martell, SUGI 2006, De-Mystifying the SAS® LIBNAME Engine in Microsoft Excel: A
Practical Guide http://www2.sas.com/proceedings/sugi31/024-31.pdf

Andrews, NESUG2008, Printable Spreadsheets Made Easy: Utilizing the SAS® Excel XP Tagset, Rick
http://www.nesug.org/proceedings/nesug08/ap/ap06.pdf

Vincent DelGobbo, pharmasug 2007, Creating Multi-Sheet Excel Workbooks the Easy Way with SAS
 http://www.lexjansen.com/pharmasug/2005/posters/po33.pdf

 Ralph Winters, NESUG2004, Excellent Ways of Exporting SAS
�

Data to Excel
http://www.nesug.org/proceedings/nesug04/io/io09.pdf

 Steven First, Jennifer First, SUGI2010, Choosing the Right Tool from Your SAS® and Microsoft Excel® Tool Belt
http://support.sas.com/resources/papers/proceedings10/144-2010.pdf

Vincent DelGobbo, SGF 2009, More Tips and Tricks for Creating Multi-Sheet Microsoft Excel Workbooks the Easy
Way with SAS http://support.sas.com/resources/papers/proceedings09/152-2009.pdf

The Devil Is in the Details: Styles, Tips, and Tricks That Make Your Microsoft
Excel Output Look Great!, Eric Gebhart, SUGI2008
http://www2.sas.com/proceedings/forum2008/036-2008.pdf

SAS® Proc Report and ODS ExcelXP Tagsets to Produce Customized Excel
Output Without DDE, Mira Shapiro,SESUG2010
http://analytics.ncsu.edu/sesug/2010/RIV04.Shapiro.pdf

Make Bill Gates and Dr. Goodnight Run Your SAS Code: Using VBA, ADO and IOM to Make Excel and SAS Play
Nice, Ted Conway,SUGI2005
http://www2.sas.com/proceedings/sugi30/157-30.pdf

Chevell Parker,SAS 9.1 MS OFFICE integration
http://support.sas.com/rnd/base/ods/templateFAQ/office91.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Romain Miralles
Clinovo.
1208 E. Arques Avenue, suite 114
Sunnyvale, CA 94085
E-mail : mrom34@gmail.com
Web : http://www.clinovo.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies

Coders' CornerSAS Global Forum 2011

	2011 Table of Contents

