
Page 1 of 11

Paper 073-2011
A Better Characterization Routine

Patricia Hettinger, Oakbrook Terrace, IL

ABSTRACT:

One of the great things about SAS® Enterprise Guide is the ability to get usable results without a lot of coding.
Another great thing is the ability to take the code generated by an Enterprise Guide task and improve upon it. The
standard data characterization task in SAS® Enterprise Guide gives some important information about your data
but has several drawbacks. One is that it will run frequencies on all character data regardless of length or number
of distinct values. This can result in some variables being dropped from the output due to too many distinct values.
It also results in frequencies not being run for numeric values at all. Another is that minimum, maximum, number of
missing values and number of non-missing values will be calculated only for numeric variables when this
information would be useful for any variable. A third issue is the likelihood of your system hanging when
attempting to analyze large data sets with many variables. This paper details how you can modify this task to
overcome these obstacles.

INTRODUCTION:

The characterization task in Enterprise Guide is a good way to understand a data set with frequencies on character
data and statistics on numeric data. However it comes up a bit short with both types of data.
There are no minimum and maximum values for character data, which would be particularly helpful for long
variables. Frequencies are only run for character data, while we could benefit from frequencies on numeric
variables too, especially numeric codes and dates. The author decided to address these deficiencies as well as
add the number of distinct values to control the number of frequencies run. The performance improved quite a bit
as well.

To illustrate, let us look at some results from the built-in characterization process for a promotion tracking data set.
Figure 1 below shows three numeric fields:

Dataset Variable Label Format N NMiss

INDATA.PROMOTRACK ACCT_NO ACCT_NO 4012109 0

INDATA.PROMOTRACK REDEEM_DATE REDEEM_DATE MMDDYY10. 2500016 1512093

INDATA.PROMOTRACK REDEEM_CODE REDEEM_CODE 2500016 1512093

Variable Total Min Mean Median Max StdMean

ACCT_NO 3.52E+16 20116789 4062198 33792109 81237890 3000.235

REDEEM_DATE 1.40E+09 17167 18346.75 18635.2 18655 0.72924498

REDEEM_CODE 4583362 1 1.83333307 2 3 3.8777E-07
Figure 1

Some of these statistics don’t make all that much sense. Do we really need a summation or a standard error of the
mean for ACCT_NO or REDEEM_DATE? ACCT_NO might be a key but you certainly can’t tell it from here. The
minimum value is 1 for REDEEM_CODE, the maximum value is 3 and the median is 2. Does that mean we only
have three values? If so, what is their distribution? Where is this data set we’re looking at anyway?

Coders' CornerSAS Global Forum 2011

Page 2 of 11

We did get one frequency for PROMO_CODE. There were actually thirty distinct values reported (the default).
Figure 2 shows the top five plus a general category, ‘All other values’.

Dataset Variable Label Format Value Count Percent

INDATA.PROMOTRACK PROMO_CODE PROMO_CODE ***Missing*** 1512093 37.69

INDATA.PROMOTRACK PROMO_CODE PROMO_CODE AA418 30000 0.75

INDATA.PROMOTRACK PROMO_CODE PROMO_CODE AA612 29500 0.74

INDATA.PROMOTRACK PROMO_CODE PROMO_CODE AA583 28500 0.71

INDATA.PROMOTRACK PROMO_CODE PROMO_CODE A150 28000 0.70

 and so on….

INDATA.PROMOTRACK PROMO_CODE PROMO_CODE ***All other values*** 940000 23.43
Figure 2

There is definitely room for improvement here. Seeing the range of values for any variable, whether character or
numeric would be useful. We can find the number of distinct values and decide a cut-off point for frequencies,
regardless of variable type. Best of all, we can write the code once and reuse any number of times with variable
substitution. The new output may be seen in figures 3 and 4:

New Summary

Dataset Libpath Variable Label Format

INDATA.PROMOTRACK /DATA/MKT/PROMOS ACCT_NO ACCT_NO NUM8

INDATA.PROMOTRACK /DATA/MKT/PROMOS REDEEM_DATE REDEEM_DATE DATE

INDATA.PROMOTRACK /DATA/MKT/PROMOS REDEEM_CODE REDEEM_CODE NUM4

INDATA.PROMOTRACK /DATA/MKT/PROMOS PROMO_CODE PROMO_CODE CHAR8

Variable Minimum Value
Maximum
Value

of
Missing
Values

of
Distinct
Values

of Non-
missing
Values

ACCT_NO 20116789 81237890 0 4012109 4012109

REDEEM_DATE 1/1/2007 1/28/2011 1512093 1102 2500016

REDEEM_CODE 1 3 1512093 3 2500016

PROMO_CODE A150 XX70 1512093 70 2500016
Figure 3

New Frequency:

Dataset Libpath Variable Value
Frequency
Count Frequency Percent

INDATA.PROMOTRACK /DATA/MKT/PROMOS REDEEM_CODE 1512093 37.69

INDATA.PROMOTRACK /DATA/MKT/PROMOS REDEEM_CODE 1 833339 20.77

INDATA.PROMOTRACK /DATA/MKT/PROMOS REDEEM_CODE 2 1250008 31.16

INDATA.PROMOTRACK /DATA/MKT/PROMOS REDEEM_CODE 3 416669 10.39

INDATA.PROMOTRACK /DATA/MKT/PROMOS PROMO_CODE 1512093 37.69

INDATA.PROMOTRACK /DATA/MKT/PROMOS PROMO_CODE A150 28000 0.70

INDATA.PROMOTRACK /DATA/MKT/PROMOS PROMO_CODE AA418 30000 0.75

INDATA.PROMOTRACK /DATA/MKT/PROMOS PROMO_CODE AA583 28500 0.71

INDATA.PROMOTRACK /DATA/MKT/PROMOS PROMO_CODE AA612 29500 0.74

 and so on…

INDATA.PROMOTRACK /DATA/MKT/PROMOS PROMO_CODE XX70 280 0.70
Figure 4

Coders' CornerSAS Global Forum 2011

Page 3 of 11

ARCHITECTURE

The programs in this paper were originally set up in an Enterprise Guide 4.1 project stored on the local server.
They were moved to SAS Enterprise Guide 4.2 with no code changes. Only new prompts had to be set up. They
have profiled SAS data sets and relational database tables on UNIX and local servers. With a few simple
modifications, they have run in batch jobs as well, even on Z/OS mainframes.

Our first point of departure from the standard characterization task is querying the dictionary column table instead
of using PROC CONTENTS to determine the variable types. This gives us more information and flexibility with
variable names containing special characters or embedded spaces. We will query the dictionary column tables for
the number of variables to be profiled, their names and ATTRIButes and then sort by name.

Our second point of departure is to use PROC SQL to find the minimum, maximum, number of missing values and
number of distinct values for each variable. Unlike procs univariate or means, this works for any type of variable.
Once we know the number of distinct values, we can run a frequency on that variable if that number is greater than
one (no point in running a frequency if there is just one) and at or under the maximum we previously specified. We
will put then the numeric and character results together in one table by storing all the values in character columns.
We will create a similar table for the results from PROC FREQ so that those values can be stored together as well.

Perhaps the most important addition is that of limiting or safety macro variables. One is the maximum number of
variables we will profile in one step. If you have one thousand variables in a data set, you might want to profile just
a few hundred at time to avoid a session hang-up. We will call this the &profmax variable. If we do want to profile
in more than one pass, we will want to start the profiling at a different location for each step. We will call this
variable &profstart. The final limiting variable will be on the number of distinct values for which we want to see the
distribution. This variable is called &freqmax.

Therefore if we wanted to profile the first 500 variables and do a frequency on those having 2 to 75 different
values, we would set &profmax to 500, &profstart to 1 and &freqmax to 75. If we wanted to do the rest or another
500, depending on how many variables are left, we would set &profmax to 500 again and ‘start’ to 501.

We will also use some location macro variables. They are the library name (&libname), the member name
(&memname) and the external location where our results will be stored (&path).

In this process, we are storing our results in an XML document with two tabs, one for the summary and one for the
frequency. The frequency tab shows the maximum number of values for which we ran them. In our example, that
would be ‘2 to 75’.

 WORK TABLES SETUP

We will store our results in four work tables, two for the summary and two for the frequencies. The TEMPRANGE
table will be overwritten for each variable’s summary information. The ALL_STATS table will hold the results for all
of the variables. The structure for both is shown in Figure 5:

Column
Name dataset libpath variable label format db_format

Population
Rule &libname..&memname

physical
path of
library

variable
being
analyzed

label, if
present

format in
source if
present.
Otherwise 20.
if numeric,
$100. if
character

Native format.
Either DATE,
NUMw or
CHARw

Column
Name min_value max_value miss_value distinct_values nmiss_value

Population
Rule

Minimum value of
variable

Maximum
value of
variable

number of
missing
values

number of
distinct values

number of
non-missing
variables

Figure 5

Coders' CornerSAS Global Forum 2011

Page 4 of 11

We only need to build ALL_STATS once. We will have TEMPRANGE built as part of a loop in the getvar macro.

DATA ALL_STATS (LABEL="Ranges for All Variables");
 ATTRIB dataset FORMAT=$41. Variable FORMAT=$32. La bel FORMAT=$256. Format
 FORMAT=$31. Min_value FORMAT=$100. Max_value FORMA T=$100.
 Miss_value FORMAT=comma12.
 distinct_values FORMAT=comma12. Nmiss_value FORMAT =comma12. ;
 LABEL Min_value = 'Minimum Value' Max_value = 'Max imum Value'

Miss_value = '# of Missing Values' Distinct_values = '# of Distinct Values'
Nmiss_value = '# of Non-missing Values' ;

STOP;
RUN;

TEMPFREQ and STOREFREQS will have the structure in Figure 6. TEMPFREQ will be overwritten for each
variable and STOREFREQS will contain the results for all the variables:

Column
Name dataset libpath Variable Value count percent

Population
Rule &libname..&memname

physical
path of
library

variable
being
analyzed

Distinct
Value

Count
for
this
value

Percent
of total
values

Figure 6

This code will create STOREFREQS. The TEMPFREQ build will be part of a loop in the dofreq macro.
DATA STOREFREQS(LABEL="Frequency Counts for Selecte d Variables");

ATTRIB dataset FORMAT=$41. Variable FORMAT=$31. Val ue FORMAT=$100. Count
FORMAT=8. Percent FORMAT= 6.2;

 LABEL Count='Frequency Count' Percent='Percent of Total Frequency';
 STOP;
RUN;

The ‘STOP’ statements let us create empty data sets instead of those with just one observation each. The
‘ATTRIB’ sets up the length and format for the variables. Notice our minimum and maximum values in the
summary table as well as the frequency values are formatted as character. This will let us store information for
both numeric and character variables.

SAS’S DICTIONARY LIBRARY

Using SAS’s dictionary library has a few advantages over PROC CONTENTS DATA=_all_; One is the PROC
CONTENTS procedure will stop dead if it hits a member name in the library that has embedded spaces or special
characters, quite likely if libnaming external data like SAP or Excel spreadsheets. The dictionary has no such
restrictions. Here we are retrieving variable names from the COLUMN dictionary by using PROC SQL, getting the
number of variable names returned by examining the automatic SAS variable SQLOBS. We were prompted for the
library name (&libname) and member name (&memname) when we ran the program;

PROC SQL;
CREATE TABLE outlist as
SELECT * FROM
(SELECT * from dictionary.columns
WHERE memtype = 'DATA' and UPCASE(LIBNAME) = UPCASE ("&libname")
and UPCASE(memname) = UPCASE("&memname"))
ORDER BY name; QUIT;

If you have RDBMS databases allocated to your session using the libname option, querying the dictionary tables
will result in a dynamic call to the RDBMS for metadata. This can take some time.

If you aren’t running this for a RDBMS table, clearing the libname will make the dictionary run a lot faster with a
statement like this: Libname clear rdbms_name ;

Coders' CornerSAS Global Forum 2011

Page 5 of 11

POPULATING THE SUMMARY

Once we have our list of variable names, we will call the macro %GETVAR, using the automatic variable SQLOBS
as the actual number of variables, profstart as the variable position at which to start the profiling and profmax as
the maximum number of variables to profile this time around:
%getvar(&sqlobs,&profstart,&profmax);

The %getvar macro does several things. It reads the work data set named ‘outlist’ to get each variable to process.
It will start at the point specified in the &profstart variable and end after processing &profmax number of variables.
It then creates SQL statements and executes them in a PROC SQL. Finally it formats the results and appends
them to the summary ALL_STATS table. Here is the macro in its entirety:

%macro getvar(numobs,startlim,endlim);
%if %eval(&endlim+&startlim- 1) lt %eval(&numobs)
%then %LET endctr = %eval(&startlim+&endlim);
%else %LET endctr = &numobs;
%do i = &startlim %to &endctr;
DATA _null_;
ATTRIB min_var FORMAT=$200. max_var FORMAT=$200. mi ss_var FORMAT=$200.
distinct_var FORMAT=$200. nomiss_var FORMAT=$200. s earch_name FORMAT=$35.
dataset FORMAT=$42. vlength FORMAT=$10. orig_format FORMAT=$10.
path_name FORMAT=$100.;
;

pointer=&i.;
SET outlist point=pointer;
vlength=length;
search_name="'"||TRIM(name)||"'N";
path_name = pathname(libname);
dataset = TRIM(libname)||".'"||TRIM(memname)||"'N";
if FORMAT=:'DATE' or FORMAT=:'JUL' or FORMAT=:'MM' or
FORMAT=:'DD' or FORMAT=:'DAY' or FORMAT=:'MON' or F ORMAT=:'YEAR'
or FORMAT=:'WORDD' or FORMAT=:'EURD' or FORMAT=:'WE EK'
then do;

FORMAT='MMDDYY10.';
orig_FORMAT='DATE';

end;
else if type = 'num' then do;

orig_FORMAT=TRIM(UPCASE(type))||compress(vlength);
FORMAT='20.';

end;
else if type = 'char' then do;

FORMAT='$100.';
orig_FORMAT=TRIM(UPCASE(type))||compress(vlength);

end;
MIN_VAR = 'create table temprange as select MIN('|| TRIM(search_name)||') as
min_value1';
max_var = ',MAX('||TRIM(search_name)||') as max_val ue1';
miss_var = ',NMISS('||TRIM(search_name)||') as miss _value';
distinct_var = ',COUNT(DISTINCT('||TRIM(search_name)||')) as
distinct_values';
nomiss_var = ',COUNT('||TRIM(search_name)||') as nm iss_value from
'||TRIM(dataset)||';';

CALL SYMPUT('SQL1',TRIM(MIN_VAR));
CALL SYMPUT('SQL2',TRIM(MAX_VAR));
CALL SYMPUT('SQL3',TRIM(MISS_VAR));
CALL SYMPUT('SQL4',TRIM(DISTINCT_VAR));
CALL SYMPUT('SQL5',TRIM(NOMISS_VAR));

Coders' CornerSAS Global Forum 2011

Page 6 of 11

CALL SYMPUT('var',TRIM(name));
CALL SYMPUT('dataset',TRIM(dataset));
CALL SYMPUT('var_n', quote(name)||"n");
CALL SYMPUT('type',TRIM(type));
CALL SYMPUT('label',label);
CALL SYMPUT('format',format);
CALL SYMPUT('orig_format',orig_format);
CALL SYMPUT('path_name',path_name);

STOP;
RUN;
/*Note: all above built the PROC SQL statement*/
PROC SQL;
&sql1
&sql2
&sql3
&sql4
&sql5
QUIT;
/*reformat the results*/
DATA temprange;
ATTRIB dataset FORMAT=$41. libpath FORMAT=$100. var iable FORMAT=$32.
label FORMAT=$256. format FORMAT=$31.
db_format FORMAT=$31.
min_value FORMAT=$100. max_value FORMAT=$100.
;
SET temprange;

dataset=TRIM("&libname..&memname");
variable = TRIM("&var");
format=TRIM("&format");
db_format=TRIM("&orig_format");
type = TRIM("&type");
label=TRIM("&label");
libpath=TRIM("&path_name");
if type = 'num' then do;

min_value=compress(put(min_value1,&format));
max_value=compress(put(max_value1,&format));

end;
else do;

min_value=min_value1;
max_value=max_value1;

end;
DROP min_value1 max_value1 type;

RUN;
PROC APPEND base=work.ALL_STATS DATA=work.temprange force;
RUN;
%end;
%mend getvar;

Concepts

%if %eval(&endlim+&startlim- 1) lt %eval(&numobs)
%then %LET endctr = %eval(&startlim+&endlim);
%else %LET endctr = &numobs;
%do i = &startlim %to &endctr;

If the maximum number of variables we want to process plus the starting position minus one is less than the total
number of variables, we will process only the maximum number requested. If it is greater, we will just process all of

Coders' CornerSAS Global Forum 2011

Page 7 of 11

the variables. This loop will be executed until we run out of variables to analyze. One thing that’s nice about using
the %DO … %TO kind of loop is that the counter increments automatically

In the DATA step:
POINTER=&i.;
SET outlist point=pointer; Using point processing lets us read a data set using random access instead
of sequential reads. This can save processing time with even a moderately sized data set. This works by setting a
DATA step variable to the macro counter variable and using the POINT option on the set statement. Perhaps the
most important statement in this DATA step is STOP; If omitted, the step will be trapped in an endless loop.
search_name="'"||TRIM(name)||"'N"; We’re going to prefix the variable name with a single quote and
add a suffix of single quote N. This will allow us to deal with variable names containing special characters or
spaces, very common with Excel or SAP.
FORMAT =: "YYQ" or FORMAT =:"MMYY" etc… The =: operator means ‘begin with’. Here we are looking for
all of the known SAS date formats. Considering the difficulty of reading SAS’s internal date values, we want the
output in a legible date format if the variable is indeed supposed to be a date. If the variable is any other numeric
kind, we’ll put it in a numeric format with a length of twenty. A character variable’s length will be one hundred.
min_var = 'create table temprange as select MIN('||TRIM(searc h_name)||') as
min_value1';
Our min_var assignment will have a create table task as well as finding the minimum value of the variable. The
max_var assignment will find the maximum value, miss_var the number of missing values, distinct_var the number
of non-missing distinct values and nomiss_var the number of non-missing values. The nomiss_var variable
assignment will also have the name of the data set or table we are querying.
CALL SYMPUT('SQL1',TRIM(MIN_VAR)); We use CALL SYMPUT to put the first statement into a macro
variable for later use and continue until we have all five.

SQL constructed
When we ran this for our PROMOTRACK data set, the first SQL statement evaluated to:

CREATE TABLE TEMPRANGE AS SELECT MIN('ACCT_NO'N) as min_value1
,MAX('ACCT_NO'N) as max_value1 ,NMISS('ACCT_NO'N) a s miss_value
,COUNT(DISTINCT('ACCT_NO'N)) as distinct_values ,CO UNT('ACCT_NO'N) as
nmiss_value FROM WORK.'CUSTOMER'N;

DATA TEMPRANGE; ATTRIB dataset….SET TEMPRANGE; We recreate the temporary data set to have the
proper formats and to populate the data set, actual file path, and make sure the min_value and max_value
variables are in character format.

if type = 'num' then do;
min_value="'"||compress(put(min_value1,&format));
max_value="'"||compress(put(max_value1,&format));
Put the minimum and maximum numeric results in either a date format or a numeric 20. Resist the temptation to
put all fields seeming to be dates into date format. They may be dates but unless there is a date format formally
attached with them, they are probably not SAS dates and will not be understandable if interpreted as such.
PROC APPEND BASE=WORK.ALL_STATS DATA=WORK.TEMPRANGE FORCE; PROC APPEND will drop any
variables not defined in the base (ALL_STATS). The FORCE option makes SAS append the data even if the
lengths are different. Truncation will occur if needed. Once this is done, we are ready to summarize the next
variable and so on until we’re done.

THE FREQUENCIES

Now that our summary table has been created, the next step is to run frequencies on all variables having from 2 to
the number of specified distinct values by means of this code:

DATA set_freqs;
SET ALL_STATS;
WHERE distinct_values between 2 and &freqmax;
CALL SYMPUT('numobs',PUT(_n_, 12.));
RUN;
A value for &freqmax may be obtained at run time with either a SAS Enterprise Guide prompt or actually setting it
in the code. We won’t run a frequency on a variable having just one distinct non-missing value because we
already know the distribution.

Coders' CornerSAS Global Forum 2011

Page 8 of 11

Much as we set up the summary table, we’ll set up a table to hold the frequencies. Here it’s limited to the count
and the percent although other values obtained from the PROC FREQ procedure could be added too. The
%dofreq macro is considerably simpler than %getvar because the work table structure is simpler:

%MACRO DOFREQ;
ATTRIB freqname FORMAT=$40.;
%DO i=1 %to &numobs.;
 DATA _NULL_;
 POINTER=&i.;
 SET SET_FREQS point=pointer;
 if format = '' OR FORMAT='$' then FORMAT='$32.';
 else FORMAT=TRIM(format);
 freqname="&libname.. ' &memname.' n";
 CALL SYMPUT('var', variable);
 CALL SYMPUT('var_n', QUOTE(variable) || "n");
 CALL SYMPUT('format', format);
 CALL SYMPUT('datast', dataset);
 STOP;
 RUN;

PROC FREQ DATA=&freqname. NOPRINT;
 TABLES &var_n./MISSING OUT=TEMPFREQ;
 RUN;
 DATA TEMPFREQ ;
 SET TEMPFREQ ;
 ATTRIB value FORMAT=$32.;
 dataset = "&datast";
 Variable = "&var";
 value=TRIM(PUT(& var. ,& format.));
 RUN;

PROC APPEND BASE=WORK.STOREFREQS DATA=WORK.TEMPFREQ FORCE;
RUN;
%END;

%MEND DOFREQ;

Concepts

SET_FREQS point=pointer; Use point processing here too.
PROC FREQ DATA=&datast. NOPRINT; Do not print out the results of PROC FREQ.
TABLES &var_n./MISSING OUT=TEMPFREQ; Our output will be a work data set named TEMPFREQ. The
MISSING option will put in the number of missing values. Here we are running just one at a time. Note that if you
wanted to run several variables in one PROC FREQ and store the results, you would need separate out data sets
for each variable.
ATTRIB value FORMAT=$32.;
You may want to make this larger but thirty-two positions should be ample to hold most codes and dates.

PROC APPEND BASE=WORK.STOREFREQS DATA=WORK.TEMPFREQ FORCE;
PROC APPEND inserts the results to the STOREFREQS temporary data set and we loop through again.

EXCEL XML OUTPUT

Now that we have our tables built, it’s time to move them to a more permanent location. Here we’ll export them in
Excel XML format in order to build separate workbooks for the summary and the frequency.. The frequency tab in
the workbook will be labeled to show the values between 2 and &freqmax:

%LET freqend = %unquote(%str(%'Freqs Value # 2 to & freqmax%'));
%LET file = profile results_&libname..&memname..xls ;
ODS LISTING CLOSE;
ODS TAGSETS.EXCELXP path="&path"
file="&file" style=analysis;
ODS TAGSETS.EXCELXP options(sheet_name='Summary'

Coders' CornerSAS Global Forum 2011

Page 9 of 11

Autofilter = 'yes'
Frozen_Headers='1'
absolute_column_width='15'
Autofit_height = 'YES');
PROC PRINT DATA=ALL_STATS noobs label;
var dataset libpath Variable db_format min_value ma x_value miss_value
distinct_values nmiss_value;
RUN;
ODS TAGSETS.EXCELXP options(sheet_name = &freqend
Autofilter = 'yes'
Frozen_Headers='1'
absolute_column_width='15'
Autofit_height = 'YES');
PROC PRINT DATA=storefreqs noobs label;
var dataset libpath variable value count percent;
RUN;
ODS TAGSETS.EXCELXP close;

Concepts

%LET file = profile results_&libname..&memname..xls ; For this example, the path and file name
will /mktg/group1/u108/profile results_indata-promotrack.xls.

%LET freqend = %unquote(%str(%'Freqs Value # 2 to & freqmax%')); This was the only form that
named the frequency tab correctly. Other forms such as using the %str function by itself or %superq either
resulted in message ERROR 22-322: Expecting a quoted string or having the tab literally named Freqs
Value # 2 to &freqmax (%quote, %unquote by itself, %bquote).

ODS LISTING CLOSE; Close ODS.
ODS TAGSETS.EXCELXP path = "&path" Use the ExcelXP tagset without overrides.
file="&file" style=analysis ; The path was a variable entered in at runtime.
ODS TAGSETS.EXCELXP options(sheet_name='Summary’….A utofit_hight=’YES’); Built-in options in
this tagset let us name separate sheet names, and set some properties of the XML spreadsheet.
PROC PRINT DATA=ALL_STATS noobs label;…. Print out the summary table, ALL_STATS.
RUN;
ODS TAGSETS.EXCELXP options(sheet_name=&freqend Second tab in workbook.
PROC PRINT DATA=storefreqs noobs label;~~. Print out frequencies
ODS TAGSETS.EXCELXP close; Close tagset and finish writing to the XML file.

Coders' CornerSAS Global Forum 2011

Page 10 of 11

SETTING UP THE PROCESS

In Enterprise Guide, these are set as three programs linked together . Prompts were set up to obtain the different
macro variables. Figure 7 shows the default values for &profstart, &profmax and &freqmax.

Enterprise Guide Setup:

Another way is to set the macro variables in a driver program. This may be used in a batch job even on z/os:

%LET profstart=1;
Let profmax=500;
%LET libname = indata;
%LET mename = promotrack;
%LET freqmax=75;
%LET path=/mktg/group1/u108;
%include ‘/mktg/group1/u108/Profile Summary.sas’;
%include ‘/mktg/group1/u108/Profile Frequency.sas’;
%include ‘/mktg/group1/u108/Profile Results.sas’;

Coders' CornerSAS Global Forum 2011

Page 11 of 11

CONCLUSION

This routine should make it much easier to examine your data in a systematic way. In fact , some of you may have
ideas for further improvement. However you use these concepts, it’s recommended that you profile your data
regularly; even those you don’t think change much. You will often be surprised but then that’s what so much fun
about being a data analyst and SAS user!

ACKNOWLEDGEMENTS:

Thanks to Joe and Paul Butkovich for your encouragement and support.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. The author is often on the road but can be contacted
at

Patricia Hettinger
Email: patricia_hettinger@att.net
Phone: 331-462-2142

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2011

	2011 Table of Contents

