
1

Paper 070-2011

Storage Space and Processing Time Comparisons between

Horizontal and Vertical Longitudinal Data

John Hennessey, Social Security Administration, Woodlawn, MD

ABSTRACT
A longitudinal, horizontal person-record flat file, with 7,152 variables, is converted to a SAS library of 15 datasets.
One of the datasets contains the static variables. The other fourteen datasets are vertical longitudinal event history
datasets for each of the longitudinal variables. The size of the resulting SAS library is 18% of the size of the original
flat file. Further, the processing times to answer standard longitudinal questions are significantly shorter than the
time to generate the same results from the horizontal file, even starting as a SAS dataset. Enterprise Guide and
custom code are used to convert the horizontal file to vertical event history files and back to horizontal files.

INTRODUCTION
Many longitudinal data files in the Office of Research, Evaluation, and Statistics (ORES) of the Social Security
Administration (SSA) are stored in the classical way, as horizontal person-record flat files with one record per
person. One such file contains 14 longitudinal variables that are stored horizontally, with values var1 through var504
for each variable. They represent the values of the given variable, month by month, starting in 1/1974 – the
beginning of the SSI Program – to the current month. The remaining variables are blank, leaving room for future
months.

The file also contains a number of static variables, such as Social Security Number (SSN), sex, race, etc. Including
the static variables, each individual record contains over 7,100 variables. Many variables are discrete and repeated
for each month with a small number of value changes over the 504 positions. Because the data are stored in a
horizontal, fixed record length flat file, the 504 values of the 14 longitudinal variables reflects the longest possible
string of values for all of the variables. Thus, many of the values in any record are missing and many values are the
same for a long string of months.

 As one might suspect, datasets maintained by SSA to administer the programs range from large to extra-large. It
would not be unusual for ORES to request an extract from the dataset described above, to be used for research or
calculations of descriptive statistics, to contain 20 to 40 million records. Sometimes datasets with 80 to 100 million
records are required. Therefore, storage space and processing time is critical to productivity.

Having spent much of my 36 year career dealing with longitudinal data, and having read Cody‟s book, “Longitudinal
Data and SAS”, I am familiar with the structure of a vertical event history file. I also became aware that vertical event
records allow for SAS Procs to replace arrays and do loops and more primitive coding within a Data Step.

Finally, I have become an Enterprise Guide convert. In earlier days, I cut my teeth on FORTRAN and then moved
on to become a SAS code expert, typing thousands of lines of SAS code. Now that Enterprise Guide will do it for me
with a few clicks of the mouse, why would I type it myself? And, when I need to insert a few lines of my own code to
customize the Enterprise Guide code, I can do it.

I mention Enterprise Guide because it, just like most point & click systems, does not like wide files, i.e. files with a
large number of variables. When I click on the icon for the SAS dataset version of the horizontal file described
above, it takes about 3 minutes for Enterprise Guide to open the dataset or to open a point & click PROC FREQ
session. It takes that long for Enterprise Guide to set up the 7,100 variables for use in the point & click session. The
vertical event history SAS dataset for each of the longitudinal variables has only three columns – the Social Security
Number, the new value of the variable, and the date of the change to the new value. When I click on the icon for this
vertical event history dataset, it opens immediately.

The factors listed above motivated me to compare the storage space and the processing time for typical calculations
on both the horizontal person-record file and the library of vertical datasets. My findings and lessons learned follow.

DISCLAIMER

For security and privacy reasons, I have chosen a dataset that represents no particular population. I have changed

Coders' CornerSAS Global Forum 2011

2

the variable names. So, the results are not meaningful in any way. The results are displayed for illustrative purposes
only.

DATA DESCRIPTION
I happened to have an extract of the horizontal flat file described above from an earlier project. It consisted of
16,542 person-records with 7,152 variables. Part of one person-record is shown below in Table 1. It displays the
values for STATUS261 through STATUS279 and FEDMONEY261 through FEDMONEY271. Note that it records
many repetitive values of each of the variables, STATUS and FEDMONEY, month after month.

Table 1: Partial Person-Record from Horizontal File
Obs STATUS261 STATUS262 STATUS263 STATUS264 STATUS265 STATUS266 STATUS267 STATUS268 STATUS269 STATUS270 STATUS271

1 C01 N44 N44 N44 N44 N44 N44 N44 N44 N44

Obs STATUS272 STATUS273 STATUS274 STATUS275 STATUS276 STATUS277 STATUS278 STATUS279 FEDMONEY261 FEDMONEY262

1 N44 N44 N44 T31 T31 T31 T31 T31 0 145

Obs FEDMONEY263 FEDMONEY264 FEDMONEY265 FEDMONEY266 FEDMONEY267 FEDMONEY268 FEDMONEY269 FEDMONEY270 FEDMONEY271

1 0 0 0 0 0 0 0 0 0

We first create one vertical SAS dataset for all of the variables the entire original horizontal dataset. Next, the
repetitive values are removed. A record is kept when there is a CHANGE to the value of the variable. Also, the
missing values are not recorded – only the CHANGE to a missing value. The code below does this task. It is a
straightforward application of PROC TRANSPOSE followed by the use of the lag function in a DATA STEP to
eliminate the repetitions. The int, mod, and mdy functions are used to convert the subscript of the longitudinal
variables, var1 through var504 to dates.

Proc Transpose data=NTIDSCRM.SSILNGT(obs=max) out=work.SSI_Vertical;

 by SSN;

 var _all_;

run;

data work.SSI_Vertical2;

 retain SSN date variable col1;

 set SSI_Vertical;

 k=substr(_name_,anydigit(_name_),3);

 year=int((k-1)/12) + 1974;

 month=mod((k-1),12) +1;

 date=mdy(month,1,year);

 Variable=substr(_name_,1,anydigit(_name_)-1);

 if lag(SSN)=SSN and

lag(substr(_name_,1,anydigit(_name_)-1)) =

substr(_name_,1,anydigit(_name_)-1) and

lag(col1)=col1

then delete;

 format date mmyys7.;

 drop year month k _name_;

run;

Table 2 contains a sample of the resulting vertical table. The full table contains the changes to ALL of the
longitudinal variables for ALL people. Below, the variables FEDMONEY and STATUS are listed for one individual as
an example. (The dataset also contains a variable for the person‟s SSN. It is left out for privacy reasons.) It is clear
that the number of records needed to record vertically the changes to these two

Table 2: Partial List of Records for One Person in the Vertical Dataset

date variable col1

Coders' CornerSAS Global Forum 2011

3

date variable col1

01/1974 FEDMONY 0

10/1995 FEDMONY 145

12/1995 FEDMONY 0

02/2002 FEDMONY 1081

03/2002 FEDMONY 363

05/2002 FEDMONY 0

01/1974 STATUS

10/1995 STATUS C01

12/1995 STATUS N44

12/1996 STATUS T31

04/1997 STATUS C01

10/2001 STATUS N01

11/2001 STATUS E02

12/2001 STATUS C01

05/2002 STATUS N01

05/2003 STATUS T31

longitudinal variables is greatly reduced from the original 504 variables stored horizontally. However, the date now
becomes a variable instead of a suffix for the variable name. Also, at this point, all of the variables in the entire
horizontal record have been transposed to a vertical structure. And so, the middle column, variable, is created by
PROC TRANSPOSE to identify the variable that is displayed in each record. We have removed the suffix. Finally,
the SSN is repeated for each record (but not displayed here).

WHY BREAK UP THIS DATASET?
Since we have added variables, date and variable name, to the dataset and dropped some of the records, it is not
clear whether the vertical dataset is smaller than the horizontal one. In addition, PROC TRANSPOSE converts all of
the variable values to character with a length equal to the largest possible character string of the entire dataset and
the entire list of variables. By breaking up the dataset into a dataset for each of the longitudinal variables, we can
eliminate the “variable” column, convert the numeric variables back to numeric, and squeeze each variable down to
its minimal length.

 Table 1: Separated and Minimized Datasets

date col1

01/1974

10/1995 C01

12/1995 N44

12/1996 T31

04/1997 C01

10/2001 N01

11/2001 E02

12/2001 C01

05/2002 N01

05/2003 T31

date Fedmoney

01/1974 $0

10/1995 $145

12/1995 $0

02/2002 $1,081

03/2002 $363

05/2002 $0

Coders' CornerSAS Global Forum 2011

4

The length of the date variable in both datasets above has been changed from 8 to 4. FEDMONEY has been
changed from character of length 12 back to numeric with a length of 4. Col1 has been changed from a length of 12
to 3.

SIZE COMPARISON
The size of the original flat file is 346 MB. The size of the horizontal SAS Dataset is 538 MB. The size of the
compressed SAS horizontal file is 51 MB. The dramatic drop in size is due to the large number of blank and
repeated values in the longitudinal variables. The total size of the entire SAS library of separate vertical data tables
and the one horizontal dataset of static variables is 64 MB. This library is only 18% of the size of the flat file and is
only slightly larger than the compressed horizontal file. The vertical files only have 3 variables, SSN, DATE, and
VALUE. Therefore, compression actually increases the size of some of them. So, the question remains: Why break
up the dataset?

COMPUTATIONAL EFFICIENCY

The answer is: For a large decrease in storage space as compared to the flat file and for computational efficiency.
Many of the calculations that are needed to answer classical longitudinal questions are easier to program in SAS for
a vertical event history file than for a horizontal file. The main reason is that the records are now event-records, as
opposed to person-records. Since the events are the units of analysis, not people, the power of various SAS
PROCS can now be employed.

DATA MANAGEMENT EXAMPLE
One example of this efficiency relates to data management. In a number of our situations, the events of interest are
contained in several administrative files. If one extracts these events into a person-record horizontal file, one then
has to write complicated code containing arrays and do-loop logic to intertwine the events into chronological order.
On the other hand, if one generates vertical event history files from each data source, one only needs to stack all of
the events together and then use PROC SORT to sort by SSN and date.

This data management example was the main reason to shift the horizontal data to vertical, after actually coding the
arrays and do-loops for many years. But, after I did so, I then read the book by Cody, “Longitudinal Data and SAS”,
and realized that there are many more reasons to leave the data in vertical form. I will admit that there is a learning
curve as you change the way you think about using the vertical datasets, but, after some time, one begins to profit
from the advantages.

To prepare for this presentation, I asked one of my “horizontally-oriented” research colleagues to list a few questions
that he recalls addressing in his last paper which used the horizontal dataset above. I present here a few of his
questions as examples of the difference between the horizontal approach and the vertical approach.

QUESTION 1: HOW MANY PEOPLE IN THE DATA FILE WERE IN THE SSI PROGRAM ON DEC.

2001?
In this case, the question is very easy to answer with the horizontal file. One first computes the number of months
from 1/1974 to 12/2001 = 336. One can simply run a PROC FREQ on the variable, STATUS336, and look at the
count for the value C01.

It is also quite easy to compute with the vertical file. The event records for each individual tell us when the value of
the variable changes. So, if we select the last record for each individual on or before Dec. 2001, that will be the
value on that date. The following code would work.

data work.try1/view=work.try1;

 set VERT_SSI.STATUS_SQZ(where=(date <= '15dec2001'd));

 by SSN date;

 if last.SSN;

run;

We then run a PROC FREQ on that data view and obtain the result. So, it is easy enough in both cases.

Coders' CornerSAS Global Forum 2011

5

Results: Processing time for the horizontal dataset: 58 seconds

 Processing time for the vertical dataset: 57 seconds

Vertical wins by a hair! Essentially, it is a tie.

QUESTION 2: WHAT WAS THE FIRST AND LAST MONTH OF SSI BENEFITS FOR EACH PERSON?
The computation for this question is complicated by the fact that the SSI benefit is a combination of a state benefit
and a federal benefit. For the horizontal file, I need to set up arrays and a do loop to compute totmoney(k) =
statemoney(k) + fedmoney(k); locate the first nonzero value and the last nonzero value; convert the suffix on the
variable name in each case to the corresponding dates.

For the two vertical files, one for statemoney and one for fedmoney, since I am using Enterprise Guide, I use point &
click in SAS Enterprise Guide to generate the following two PROC SQL codes:

PROC SQL;

 CREATE TABLE WORK.First_Fedmoney AS SELECT DISTINCT QUERY_FOR_FEDMONEY_SQZ2.SSN

FORMAT=$9.,

 (MIN(QUERY_FOR_FEDMONEY_SQZ2.date)) FORMAT=MMYYS7. AS 'First Fedmoney'n

 FROM VERT_SSI.FEDMONEY_SQZ2 AS QUERY_FOR_FEDMONEY_SQZ2

 WHERE QUERY_FOR_FEDMONEY_SQZ2.Fedmoney > 0

 GROUP BY QUERY_FOR_FEDMONEY_SQZ2.SSN

 ORDER BY QUERY_FOR_FEDMONEY_SQZ2.SSN;

QUIT;

PROC SQL;

 CREATE TABLE WORK.LAST_FEDMONEY AS SELECT QUERY_FOR_FEDMONEY_SQZ2.SSN FORMAT=$9.,

 (MAX(QUERY_FOR_FEDMONEY_SQZ2.date)) FORMAT=MMYYS7. AS MAX_OF_date,

 (intnx('month', calculated max_of_date,-1)) FORMAT=MMYYS7.0 AS 'Last Fedmoney'n

 FROM VERT_SSI.FEDMONEY_SQZ2 AS QUERY_FOR_FEDMONEY_SQZ2

 WHERE QUERY_FOR_FEDMONEY_SQZ2.Fedmoney = 0

 GROUP BY QUERY_FOR_FEDMONEY_SQZ2.SSN

 ORDER BY QUERY_FOR_FEDMONEY_SQZ2.SSN;

QUIT;

The first PROC SQL selects, for each person, the records where Fedmoney >0. It then computes the min date. The
second PROC SQL selects only those records where the Fedmoney = 0. It then computes the max date and
subtracts 1 month – the last month that the Fedmoney is NOT 0. This is then done for the Statemoney vertical table.
We then take the lowest and highest for each person, using another PROC SQL task.

As mentioned above, it is a different way of thinking, but, there a several advantages:

1. The code is relatively straightforward, once one becomes familiar with manipulating vertical event history
data, which only records CHANGES in variables. It avoids some complicated array and do-loop logic.

2. The computational time is significantly smaller for the vertical version. This is largely due to the fact that
we go directly to the tables which only contain fedmoney and statemoney. All other variables have been
separated out to other data tables. Also, SAS only has to read records of CHANGES, not month-to-month
values and look for changes. This saves a lot of I/O time.

Results: Processing time for the horizontal dataset: 58 seconds

 Processing time for the vertical dataset: 9.7 seconds ---a Clear Winner!

QUESTION 3: HOW MANY PAYMENT MONTHS OCCURED BETWEEN JULY 1985 AND JULY 2001?
For the horizontal file, I once again, need to set up arrays and a do loop to check through the variables, STATUS1 –
STATUS504, for the code, C01, which indicates that the person is in “Current Pay Status” for that month. We would
limit the search to start at STATUS(k), where k represents the month for 7/1985 and ends with the value of k which
represents 7/2001. This is not hard to do. However, as above, it requires moving across the entire data set and,
even though we do not have to read every unnecessary variable, it still takes time to read the values for ALL months.

Coders' CornerSAS Global Forum 2011

6

For the vertical file, we need only access the vertical file that contains the STATUS event history. Since the
consecutive records contain the dates for when a CHANGE in STATUS occurs, we basically need only subtract the
dates for the record where STATUS = „C01‟ from the date of the next change – the record right below. The lag
function works nicely in this case. The code below essentially accomplishes this task:

data work.duration_STATUS;

 set WORK.PAN_7_85_7_01_ONLY;

 by SSN;

 lag_date=lag(date);

 format lag_date mmyys7.;

 if not first.SSN then dur=intck('month',lag_date, date);

 if lag(col1) ='C01';

 if dur=. then dur=0;

run;

There is one complicating factor, however, which is presented in the diagram below:

Since we are counting payment status between 7/1985 and 7/2001, we could have a situation where an episode of
months in pay status straddles the start or end of the endpoints of the window of time. Thus, the actual time in pay
status for that episode is truncated by the beginning or end of the episode. This issue is resolved by inserting two
new records for each person - a beginning event with a date of 7/1985 and an end event with a date of 7/2001. For
each of these two new events, set STATUS to the value in the data record immediately above (to the left in the
diagram) – the actual value at each endpoint. Once again, this can be done with the lag function. The following
Process Flow Diagram from Enterprise Guide accomplishes the task:

Below is the code generated by Enterprise Guide with the “extra” code deleted.

PROC SQL;

 CREATE TABLE WORK.pan_only AS SELECT DISTINCT PSTAT_SQZ.scrampan FORMAT=$9.,

C01 C01
C01

N11 N11 N11

7/1985 7/2001

Truncated Complete Truncated

Coders' CornerSAS Global Forum 2011

7

 ('XB?') AS col1,

 ('1jul1985'd) FORMAT=MMYYS7.0 AS date

 FROM VERT_SSI.PSTAT_SQZ AS PSTAT_SQZ

 ORDER BY PSTAT_SQZ.scrampan;

QUIT;

PROC SQL;

 CREATE TABLE WORK.pan_only_end AS SELECT DISTINCT PSTAT_SQZ.scrampan FORMAT=$9.,

 ('XE?') AS col1,

 ('1jul2001'd) FORMAT=MMYYS7.0 AS date

 FROM VERT_SSI.PSTAT_SQZ AS PSTAT_SQZ

 ORDER BY PSTAT_SQZ.scrampan;

QUIT;

PROC SQL;

CREATE TABLE WORK.PAN_Beg_End AS

SELECT * FROM WORK.PAN_ONLY

 OUTER UNION CORR

SELECT * FROM WORK.PAN_ONLY_END

 OUTER UNION CORR

SELECT * FROM VERT_SSI.PSTAT_SQZ

;

Quit;

PROC SORT DATA=WORK.PAN_BEG_END

 OUT=WORK.PAN_BEG_END_Sort(LABEL="Sorted WORK.PAN_BEG_END")

 ;

 BY scrampan date col1;

RUN;

data work.pan_7_85_7_01;

 set WORK.PAN_BEG_END_SORT;

 lag = substr(lag(col1),1,1);

 if col1='XB?' then col1='XB'||lag;

 else if col1='XE?' then col1='XE'||lag;

 drop lag;

run;

PROC SQL;

 CREATE TABLE WORK.PAN_7_85_7_01_Only AS SELECT PAN_7_85_7_01.scrampan FORMAT=$9.,

 PAN_7_85_7_01.col1,

 PAN_7_85_7_01.date FORMAT=MMYYS7.

 FROM WORK.PAN_7_85_7_01 AS PAN_7_85_7_01

 WHERE PAN_7_85_7_01.date BETWEEN '1jul1985'd AND '15jul2001'd

 ORDER BY PAN_7_85_7_01.scrampan, PAN_7_85_7_01.date;

QUIT;

data work.duration_PSTAT;

 set WORK.PAN_7_85_7_01_ONLY;

 by scrampan;

 lag_date=lag(date);

 format lag_date mmyys7.;

 if not first.scrampan then dur=intck('month',lag_date, date);

 if lag(col1) in ('C01','XBC', 'XEC');

 if dur=. then dur=0;

run;

PROC SORT

 DATA=WORK.DURATION_PSTAT(KEEP=dur scrampan)

 OUT=WORK.SORTTempTableSorted

 ;

Coders' CornerSAS Global Forum 2011

8

 BY scrampan;

RUN;

PROC MEANS DATA=WORK.SORTTempTableSorted

 NOPRINT

 CHARTYPE

 VARDEF=DF

 SUM

 N ;

 VAR dur;

 BY scrampan;

OUTPUT OUT=WORK.DURATION_Total(LABEL="Summary Statistics for

WORK.DURATION_PSTAT")

 SUM()=

 N()=

 / AUTONAME AUTOLABEL INHERIT

 ;

RUN;

PROC SQL;

 CREATE TABLE WORK.BetweenDates AS SELECT PSTAT_SQZ.scrampan FORMAT=$9.,

 PSTAT_SQZ.date FORMAT=MMYYS7.,

 PSTAT_SQZ.col1 FORMAT=$3.

 FROM VERT_SSI.PSTAT_SQZ AS PSTAT_SQZ

 WHERE PSTAT_SQZ.date BETWEEN '15jul1985'd AND '15jul2001'd

 ORDER BY PSTAT_SQZ.scrampan, PSTAT_SQZ.date;

QUIT;

data work.duration2;

 set WORK.BETWEENDATES;

 by scrampan;

 lag_date=lag(date);

 format lag_date mmyys7.;

 if not first.scrampan then dur=intck('month',lag_date, date);

 if lag(col1) = 'C01';

 if dur=. then dur=0;

run;

PROC SORT

 DATA=WORK.DURATION2(KEEP=dur scrampan)

 OUT=WORK.SORTTempTableSorted

 ;

 BY scrampan;

RUN;

PROC MEANS DATA=WORK.SORTTempTableSorted

 NOPRINT

 CHARTYPE

 VARDEF=DF

 SUM NONOBS ;

 VAR dur;

 BY scrampan;

OUTPUT OUT=WORK.MEANSummaryStatsDURATION2(LABEL="Summary Statistics for

WORK.DURATION2"

 drop=_type_

)

Coders' CornerSAS Global Forum 2011

9

 SUM()=

 / AUTONAME AUTOLABEL INHERIT

 ;

RUN;

RUN; QUIT;

PROC SQL;

 CREATE TABLE WORK.Query_for_Summary_Statistics_for AS SELECT

MEANSUMMARYSTATSDURATION2.scrampan FORMAT=$9.,

 MEANSUMMARYSTATSDURATION2._FREQ_,

 MEANSUMMARYSTATSDURATION2.dur_Sum,

 ((CASE WHEN 1 <= MEANSUMMARYSTATSDURATION2.dur_Sum THEN 1 ELSE

MEANSUMMARYSTATSDURATION2.dur_Sum END)) AS Recode_dur_Sum

 FROM WORK.MEANSUMMARYSTATSDURATION2 AS MEANSUMMARYSTATSDURATION2;

QUIT;

Since we are only accessing records which represent the CHANGE in status, as opposed to the value for each
month, the computation time using the vertical file is significantly shorter than the time for the horizontal file.

Results: Processing time for the horizontal dataset: 59 seconds

 Processing time for the vertical dataset: 6.6 seconds ---another clear winner!

USING PROC EXPAND TO RE-GENERATE THE HORIZONTAL FILE
If there is a reason to regenerate the horizontal file for STATUS, or any other variable, one can create the month-tp-
month horizontal time series record using PROC EXPAND. One can ask proc expand to read the vertical file and,
for each person, generate the time series of the value for STATUS for each month. Since PROC EXPAND only
allows the variable to be numeric, one can create an integer variable which takes on specific integer values for each
possible code value of STATUS. Then, choose the step function option so that PROC EXPAND does not interpolate
between months. Format the resulting dataset with the correct STATUS codes for each integer value and you will
have the horizontal, month-to-month values regenerated.

I tested to see if, for question 3, re-generating the horizontal file and counting the months in current pay status
horizontally, as described earlier was as efficient as the calculations with the vertical file. It was not.

Results: Processing time for the horizontal dataset: 59 seconds

 Processing time for the vertical dataset: 6.6 seconds

 Processing time for the PROC EXPAND Approach: 16 seconds -- Not bad either!

CONCLUSION
The results presented above provide evidence that one should consider storing longitudinal data vertically as an
event history, not horizontally as a time series. The result will be a savings in time AND space. If, for some reason,
one needs the time series, one can use PROC EXPAND to generate it. There is a learning curve to the conversion.
One must learn how to think differently about the algorithms that answer standard longitudinal questions. But, these
new algorithms are more efficient and run in significantly less time than the code that answers the same question
and runs against the horizontal time series file. In particular, the ability to easily interweave event histories about
different events of interest by simply appending and sorting by person and date is well worth the effort. Further,
since the vertical event history dataset is based on the key focus of analysis – events – the standard SAS PROCS
can be used to process the data, instead of a data step with arrays and do-loops. Thus, the power of SAS can be
better utilized to obtain the desired results.

RECOMMENDED READING

Coders' CornerSAS Global Forum 2011

10

Cody, Longitudinal Data and SAS

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

 John Hennessey

 Office of Research, Evaluation, and Statistics

 The Social Security Administration

 6401 Security Blvd.

 4-C-15 Operations Bldg.

 Woodlawn, MD 21235

 Work Phone: (410) 965-0102

 E-Mail: John.C.Hennessey@ssa.gov

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2011

	2011 Table of Contents

