

Run Your SAS® Job Faster:
Parallel Processing with Desktops on LAN

Sijian Zhang, Robert Brown, Yu Zhang
University of Alabama at Birmingham, Birmingham, AL

ABSTRACT

We all want to run SAS jobs faster, especially the large ones. The common solution is to use more powerful
machines, which are not cheap. However, in some circumstances, the similar effect can be achieved without adding
any hardware. If a SAS job is dividable, and each section can be run independently; and on the local area network
(LAN), other computers with SAS installed can be accessed with right user permission, then this parallel method can
be applied to speed up the processing. This paper discusses some features of command psexec.exe, SAS job
division, and load balancing. Through the experimental tests and a real case application, the key programming skills
are explained, and the significant speed increase effect is illustrated.

KEYWORDS

Parallel processing, psexec.exe, SAS job division, LAN.

INTRODUCTION

The essence of parallel processing is “divide and conquer”. Generally speaking, more people will finish a job sooner
than less people do. However, there are two assumptions for this statement to be true: 1) the job can be divided and
done independently; and 2) the work is well organized. The same assumptions apply to the approach in this paper.

A popular setting in many institutes and companies is that the desktops or notebooks with SAS installed are
connected to a LAN. This paper will show you a way that uses the command psexec.exe to communicate among the
network computers, and to facilitate processing SAS jobs in parallel. After reading through this paper, you will find
that the approach applied here is simple, effective and low cost. Given the computers with SAS installed and
connected to a LAN, no new hardware and software need to be purchased. What ‘low cost’ means is that you need to
download a free program (psexec.exe) from Microsoft website, setup right user permissions on the computers
involved, and write the code.

Requirements:
Hardware:
The hardware requirement is simple: computers are connected to a LAN. It is a common setting in most of
workplaces. In this paper, three desktops (PC1, PC2 and PC3) are used. Sijian Zhang’s desktop PC1 is the master
that initiates the execution and sends the requests to PC2 and PC3, which are located in different offices. The three
desktops can access to the same network drive on our server.

LAN

PC1 PC2 PC3

Model: Dell OPTIPLEX 755
CPU: Core™2 Duo, 3.0 GHz
RAM: 3.25 GB
OS: Win XP Pro

Dell OPTIPLEX GX620
Pentium® 4, 3.4 GHz
3.0 GB
Win XP Pro

Dell OPTIPLEX GX280
Pentium® 4, 3.2 GHz
2.5 GB
Win XP Pro

− 1 −

Paper 059-2011

Coders' CornerSAS Global Forum 2011

Software:
1. SAS for Windows installed on each desktop.
2. psexec.exe program copied to the master computer only, which is PC1 in this paper.

 Source: technet.microsoft.com/en-us/sysinternals/bb897553.aspx
 Steps: download free PsTools; unzip it; and copy psexec.exe to a folder of a local drive. In this paper, it is

copied to C:\PsTools on PC1.

Permission:
The programmer’s user name needs to be listed on all desktops involved as the administrator. In this paper, Sijian
Zhang is an administrator on PC1, PC2 and PC3.

PROGRAMMING AND TESTING

All coding work is done on PC1. Nothing needs done on PC2 and PC3 except setting up the administrator permission
at the beginning. The wonderful thing of this programming is that during most of our testing runs, the users of PC2
and PC3 can still work on their daily tasks as usual. They do not know if a SAS process is running on the
background, unless they are informed.

psexec.exe
This command plays a key role in our programming. Basically, it allows you to execute a program on a remote
computer. It is one of the tools in PsTools that you can download from the Microsoft website. These tools, like other
DOS commands, are run in DOS window, and usually used by network administrators or IT people. With the tools,
they can operate at their workstations and do a lot of services to any other computers connected to the network on
the background. As a terminal user, you have no idea what is going on, even you are using the computer, unless they
tell you.

You can find the syntaxes and some brief application examples of psexec.exe in its download webpage. You will be
amazed by its powerful functionalities. Here are the three ways how we use it during our programming and testing.

First way: Inexplicit logon
Syntax: psexec \\[target computer name or IP address] [command to execute on target computer]

On PC1, when I click on “Start” on the lower left corner of the system window, select “Run” from the pop-up list, then
type “cmd” in Run window and click “OK”, a DOS window will be open as Fig 1 (A). If I want to do some work on PC2
via its DOS window, I can use PC2’s name or IP address (888.888.888.888, a fake one for demonstration in this
paper) as the target machine and “cmd” as the program to run on PC2, see the last command in Fig 1 (A). After
hitting Enter, the DOS window will become Fig 1 (B). Now, I can operate from PC1 on PC2 as if I manually log on
PC2 in front of it and then enter its DOS window. You can see in Fig 1 (B) that the window title has been changed to
the target machine’s IP address, and the version of psexec.exe is v1.98. In this process, PC2 user does not need to
log off; actually, PC2 user is still doing some work on PC2 and not aware of it.

In the first and second way, the program to run should already exist on the remote machine. In the above case,
cmd.exe is in the system path of PC2. Otherwise, the copy option (-c) should be used, like in the third way on next
page.

(A)

(B)
Fig 1

− 2 −

Coders' CornerSAS Global Forum 2011

Second way: Explicit logon
Syntax: psexec \\[target computer name or IP address] –u [username] –p [password] [command to execute on target
 computer]

The only difference from the first way is that the second way uses explicitly the user name and password to logon to
PC2. The advantage of the second way is that it allows you to access to network resources from PC2, such as
network drives.

Third way: Explicit logon, copy a program from PC1 to PC2, and run it on PC2.
Syntax: psexec \\[target computer name or IP address] –u [username] –p [password] –c [command to execute on
 target computer]

In this way, PC1 user can copy a program, a batch file try.bat here for example, from PC1 c:\temp to the system path
of PC2, run it on PC2, and remove it after execution. In other words, before and after the execution on PC2, the batch
file try.bat does not exist on PC2. If some operations in try.bat need to access to a network drive, it can be done by
using NET command in try.bat to do the mapping.

SAS Testing Code
1. Testing Core Unit

In order to make the testing simple and easy to control, we set the following code as the core computation unit,
and let the machines run it repeatedly by a macro loop. We can use the number of the macro loops to adjust the
total computation load.

data Test;
 do i=1 to 300000;
 x=log(i);
 end;
run;

This unit takes 0.01 seconds CPU time to run on PC1. We can control the length of time of this unit by changing
the value of index variable “i” in the do-loop.

(A)

(B)

Fig 2

Fig 3

− 3 −

Coders' CornerSAS Global Forum 2011

2. Load Balancing
Since the three desktops are not the same, the computation load needs to be balanced among them to achieve
the effect that they start and end at the same time. We did some tests and found out that it was close enough to
get the ideal effect when the load ratio was PC1 : PC2 : PC3 = 49.6 : 24.6 : 25.8, which was then used to
allocate the job load among the three desktops in all afterward tests. For example, if the total number of the
loops is 100,000, by this ration, PC1, PC2 and PC3 will take 49,600, 24,600 and 25,800 loops to run
respectively.

3. Working Code

After load balancing, three working SAS programs are generated and saved on a network drive as
Test_PC1.sas, Test_PC2.sas, and Test_PC3.sas, which will be run on PC1, PC2 and PC3 respectively. They
look the same except the numbers of the loops that control the computation load.

For example, if the total number of loops is 100,000, the working code for the three desktops:

Table 1

Desktop Program to Run Working Code
PC1 Test_PC1.sas %inc "M:\ ···\ParaTest.sas"; %paraTest(1,49600);
PC2 Test_PC2.sas %inc "M:\ ···\ParaTest.sas"; %paraTest(49601,74200);
PC3 Test_PC3.sas %inc "M:\ ···\ParaTest.sas"; %paraTest(74201,100000);

In “ParaTest.sas” (see Appendix 1), there is a macro %paraTest(m,n), which loops the testing core unit as many
times as the parameters m (start number) and n (end number) indicate.

Dispatcher
Once the desktops and working code are ready, the next step is to signal the machines to run together. Since
psexec.exe can execute only one program on the remote computer each time, the following two short programs are
used for this purpose.

For example, we want to run the allocated job on PC2. The first one (Connect and Run PC2.bat) is to logon the
remote desktop PC2 and start the second one (Run SAS from PC2.bat), which maps a server drive and starts
running SAS program. There is only one statement in the first one:

c:\pstools\psexec \\888.888.888.888 -u username -p password -c "M:\··· \Run SAS
from PC2.bat"

You can convert “Connect and Run PC2.bat” to an .exe file using Windows Iexpress or other programs if there is a
security concern about the username and password. As explained in the psexec.exe section, this code let PC1 logon
to PC2, copy “Run SAS from PC2.bat” from the server drive M to PC2 and run it PC2.

The second program is to map to a network drive and start the SAS job. Two statements are in “Run SAS from
PC2.bat”:

net use M: \\ ServerName\DirName
"C:\Program Files\SAS\SASFoundation\9.2\sas" -sysin "M:\ ··· \Test_PC2.sas" -log
"M:\ ··· \"

On PC2, the first statement maps M: to a network drive, then the second one starts SAS program to run
“Test_PC2.sas” located on M: drive and assign a location to save the log file.

Testing
Now, it is the show time. The following code is launched on PC1.

options noxsync noxwait;
x call "C:\Program Files\SAS\SASFoundation\9.2\sas"
 -sysin "&path\Test_PC1.sas" -log "&path";
x call "&path\Connect and Run PC2.bat";
x call "&path\Connect and Run PC3.bat";

Option NOXSYNC tells SAS to process as soon as the command is issued. With NOXSYNC in effect, SAS executes
an X statement and returns to current session to execute the next statement without waiting. This allows the three
desktops to start the parallel processing in batch mode at the “same” time. Well, it feels about the same time while
the time for SAS to issue the three X statements one and the time for network drive mapping are not noticeable.

− 4 −

Coders' CornerSAS Global Forum 2011

Option NOXWAIT tells SAS that DOS window goes off automatically as soon as the process is finished.

In the testing phase, we started the total number of the macro loops from 10 to 600,000, 42 different testing loads
were run on single desktop and on three ones in parallel. After each testing run, we checked the log files and
recorded the start and end times. For each testing load, we have one pair of times (start and end, see the macro in
Appendix 1) for PC1 (regular processing), and three pairs of times from the three desktops (parallel processing).
Since all the three desktops’ system times are synchronized with the server, we can use the difference between the
latest end time and earliest start time as the parallel processing time.

Testing Results
Here are the results when we ran the tests from 10 to 600,000 total loops.

The result showed in Fig 4 is what we expected: the speed is about doubled by using parallel processing. Since the
load ratio is PC1 : PC2 : PC3 = 49.6 : 24.6 : 25.8, the run time of three desktops should be about half time of PC1
running alone. If we launch the tests from either PC2 or PC3, we will see about four times speed increase by using
parallel processing. This result is pretty stable as the number of loops is large. However, when the computation load
is small, the overhead (computer status, network status, communication between computers, SAS program initiation,
etc.) takes a significant portion of the total time. In our tests, when the total number of loops is less than 200, and the
run time less than 4 seconds, one machine (PC1) runs the same or faster than three together, and the run time is not
stable, see the lower left corner of Fig 5. In reality, if a program runs less than several minutes, no one will bother to
use parallel processing.

A REAL CASE
We applied the above approach to the data preparation part of our routine medical event review report generation for
INTERMACS® (Interagency Registry for Mechanically Assisted Circulatory Support). At the end of this part, the large
datasets are subset into small datasets by Event ID, which will make the next report generation part more efficient,
and data verification easier. In parallel processing, the same three desktops work together to slice two large datasets
(patient_overview_para.sas7bdat and ae_all_para.sas7bdat) to many small data set.

To help visualize how this application is run, you can imagine that there is a super long hotdog (a dataset with a large
number of observations) marked by the six-inch unit (Event ID), and three chefs (PC1, PC2, and PC3) are going to
work together and cut it into six inch long pieces (small datasets by Event ID). First, the chefs’ cutting speeds are
tested, then they are given the workloads according to their cutting speeds. If the start and end units (Event IDs) are
assigned properly, they can do their jobs independently, in the way that starting and finishing are at the same times.
This is how this application is implemented.

To make the testing results comparable, we run the same code (see Appendix 2) in batch mode first by a single
machine (PC1), and then by the three (PC1, PC2 and PC3) in parallel. After several tests, the load balancing ratio are

Fig 4 Fig 5

− 5 −

Coders' CornerSAS Global Forum 2011

set as PC1 : PC2 : PC3 = 35.2 : 32.5 : 32.3. There are 2,014 Event IDs in the current data. In Table 2 is how the job
divided. The execution process is the same as the process in the testing section above.

Table 2
Desktop Program to Run Working Code

PC1 PC1.sas %inc "M:\ ···\ data_slicer_para.sas";
%data_slicer(1,708);

PC2 PC2.sas %inc "M:\ ···\ data_slicer_para.sas";
%data_slicer(709,1363);

PC3 PC3.sas %inc "M:\ ···\ data_slicer_para.sas";
%data_slicer(1364,2014);

The run time by PC1 only is 31 minutes and 40 seconds; by the three desktops in parallel 15 minutes 33 seconds.
The parallel processing is more than double the speed in this application. As the number in the registry accumulated,
the advantage of the parallel approach will be more obvious in the future.

DISCUSSION
What is the situation that can motivate us to try parallel processing? In my previous job, on one side, there was a
large SAS job that automatically ran overnight to merge data and generate many reports; on the other side, about
sixty desktops with SAS installed in the labs could be used when right user permissions were assigned. Sometimes,
there were mistakes in the resulting datasets and reports due to the machine or network failure, or wrong parameters.
The rerun may take at least half of a working day. If a parallel processing could be used, it would save a lot of waiting
time for the new datasets and reports. Occasionally, I saw a note on a faculty member’s computer screen for several
days - “Don’t disturb! Simulation is running.”, or something like that. If you have the similar experiences, you may
want to have a try.

Our LAN consists of a server (SunOS) and some desktops with Windows, which is a pretty popular setting. We did
not test this approach in other settings. If your setting likes ours, and you want to try this approach, you should be
prepared for the following issues.

a) Permission. To set a computer user as the administrator on all the computers involved sounds easy, but it took us
many days to get it right. If you are not familiar with this, the help from your IT people will save you a lot of time.

b) Job Division. This is the primary condition for parallel processing. The largest undividable unit of the job
determines the parallel processing run time. The real SAS jobs could be much more complex than the testing case in
this paper. The programming of process control and coordination could be a challenge. How you make the division
depends on both your understanding of the job and your computation resources available.

c) Computation Load Balancing. If all the computers in parallel processing are the same, the load balancing will be
easy. But in reality, they are often not. First, you should make sure that all the machines are capable to handle their
assigned workloads. Second, since the longest run time of the slowest machine plus overhead is the total parallel
processing time, the load balancing is very important. Before the real run, you should test a small workload, and take
some time to adjust its allocation among computers so that all the computers can start and finish processing
approximately at the same time. Different kinds of jobs need to set different balance ratios even in the same system
setting. In this paper, you can see that the ratio for testing is quite different from the ratio for the real case. The ratio
of computation intensive job can be quite different from I/O intensive one. Our tests show that CPU speed is the
determining factor on the computation intensive job, while BUS speed, RAM size and speed could have a significant
impact on the job that has a lot of I/O operations.

d) Scalability. Running three desktops, we can easily check their running status and results by monitoring the
individual machines and viewing the log files. However, if you are going to run three hundred, or three thousand
computers in the same time, you will need an automated method to first detect the availability of the computers and
check the status of each machine before starting the parallel job; then to balance the work load among the ones
ready to run; and last to check if all the machines have done what they are assigned to do, and fix the problems if one
or two machines fail to finish their assigned loads.

− 6 −

Coders' CornerSAS Global Forum 2011

CONCLUSION

The hardware and software setting for the parallel processing approach described above is commonly available. To
implement the approach, two things need to happen: to identify the right SAS jobs; and to write the code in the similar
way of this paper. The obvious advantages of this approach are good feasibility and low cost. You can make use of
your current system to significantly increase your computation power. Actually, this is a generic programming
approach that can be modified and expanded to other programs rather than SAS. Next time, if someone asks how
fast you can run a huge SAS job, given the assumptions and requirements met, you may say, “It will depend on the
number of computers that I can use.”

REFERENCES
1. http://technet.microsoft.com/en-us/sysinternals/bb897553.aspx (psexec.exe download, syntax instructions, and

examples)

ACKNOWLEDGMENTS
We would like to thank M. Michelle Buchecker, SAS Regional Education Director, for her review of this paper and
educational advices.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

 Sijian Zhang, MS, MBA

 Database Analyst II
 INTERMACS
 Division of Cardiothoracic Research

 Department of Surgery
 University of Alabama at Birmingham
 790 Lyons-Harrison Research Building
 703 19th Street South
 Birmingham, AL 35294

 sijian@uab.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

− 7 −

Coders' CornerSAS Global Forum 2011

Appendix 1

%macro paraTest(m,n);
%let timeStart=%sysfunc(datetime(), datetime21.2);

options nosource nonotes;
%do m=&m %to &n;
data Test_Data_&n;
 do i=1 to 300000;
 x=log(i);
 end;
run;
%end;
options source notes;

%let timeEnd =%sysfunc(datetime(), datetime21.2);
%put Start time: &timeStart;
%put End time: &timeEnd;
%mend paraTest;

− 8 −

Coders' CornerSAS Global Forum 2011

Appendix 2

%macro data_slicer(m,n);
%let timeStart=%sysfunc(datetime(), datetime21.2);

libname ae "..."; libname mem_ae "...";
libname pt "..."; libname mem_pt "...";

data ae_all; set ae.ae_all_para; run;
data patient_overview; set pt.patient_overview_para; run;
data event_id_n; set mem_ae.event_id_n; run;

%macro AE(event_id);
data mem_ae.AE_&event_id;
 set ae_all(where=(event_id=&event_id));
run;
%mend AE;

%macro Pt(event_id);
data mem_pt.Pt_&event_id;
 set patient_overview(where=(event_id=&event_id));
run;
%mend Pt;

%macro run_AE;
data _null_;
 set event_id_n(firstobs=&m obs=&n);
 call execute ("%AE("||event_id||")");
run;
%mend run_AE;

%macro run_Pt;
data _null_;
 set event_id_n(firstobs=&m obs=&n);
 call execute ("%Pt("||event_id||")");
run;
%mend run_Pt;

options nosource nonotes;
%run_Pt;
%run_ae;
options source notes;

%let timeEnd =%sysfunc(datetime(), datetime21.2);
%put Start time: &timeStart;
%put End time: &timeEnd;
%mend data_slicer;

− 9 −

Coders' CornerSAS Global Forum 2011

	2011 Table of Contents

