
1

Paper 050-2011

A SAS® Programmer's Guide to Stored Processes
Joe Flynn, SAS Institute Inc., Cary, NC, USA

ABSTRACT
If you have SAS programming knowledge and experience, then fully leveraging stored processes in your organization
can be a simple task. This paper explains how to develop a stored process by using SAS® Enterprise Guide® 4.3.
Topics include:

• defining and registering metadata—permissions; responsibilities; SAS folders; keywords
• writing the SAS code—Output Delivery System (ODS) output; stored process macros; prompts; reporting

options
• selecting execution options—STP server; workspace server; result types; source code repositories; operating

system access
• defining prompts—the prompt model; output parameters
• determining data sources and targets—input streams; output streams

This paper also includes practical examples that are based on questions submitted to SAS Technical Support.

INTRODUCTION
Stored processes are important in a business intelligence environment. They enable SAS code to be deployed on the
SAS server and easily accessed from a variety of client applications. Deploying your code in a centralized location
allows easy updates and ensures that everyone is executing the latest revision of the code. This paper covers the
basics of creating a stored process from the point of view of a SAS programmer. Some of the frequent problems that
are reported to SAS Technical Support are also discussed.
This paper focuses on using SAS Enterprise Guide to create and update your stored processes. Although it is
possible to use SAS® Management Console to deploy a stored process, SAS Enterprise Guide handles all of the
required steps in one easy-to-follow wizard.

CREATING A STORED PROCESS
As a SAS programmer, you are familiar with the SAS programming language but might not be familiar with the steps
for creating a stored process and the related terminology. This section walks you through the SAS Enterprise Guide
wizard that enables you to create a stored process. Each step of the process is explained so that you have the
knowledge that is required to create a stored process.

STEP 1: NAME AND DESCRIPTION
To invoke the Create New SAS Stored Process wizard in SAS Enterprise Guide select File New Stored Process.
There are two main components to a stored process: a metadata object and a SAS file. The first page of the wizard,
Name and Description (Display 1), mostly addresses the metadata object that you will create. This metadata object is
XML which describes everything about the stored process. This is how the requesting applications determine all of
the applicable information, for example, where the SAS code is located, what prompts to display to the user, and on
which execution server to run the SAS code.

Business Intelligence and AnalyticsSAS Global Forum 2011

2

Display 1. Name and Description Page

In the Name field, type the name of the stored process that will be included in the metadata. When users are
browsing for your stored process, they will be able to identify it by this name.
The Location field identifies the location of the metadata information for your stored process. This location only refers
to the location where the metadata will be stored. You will be prompted on a later page of the wizard for the location
where you wish to store the physical SAS program on the server. You need to ensure that the location that you
choose is one in which you have WriteMetadata permission.
The Description field is self-explanatory and enables you to provide a short description about this stored process.
The Keywords field can be used to describe the functionality of a stored process. These keywords can be searched
on when you are attempting to locate a certain type of stored process.
The Responsibilities field can be used to specify the person who is responsible for this stored process. It also
provides information about this individual from the metadata.

Click Next to go to page 2 of the wizard.

Business Intelligence and AnalyticsSAS Global Forum 2011

3

STEP 2: SAS CODE
As a SAS programmer this is where you should feel most comfortable. Page 2 SAS Code is an enhanced editor
where you can manually enter SAS code (Display 2).

Display 2. SAS Code Page

You can also click the Replace with code button at the bottom of the page to add your SAS code. All of the SAS
code that you enter on this page should run as it would in a SAS windowing environment. However, there are a few
special considerations when building a stored process, most of which involve ODS output. Take a very simple SAS
program which creates a PDF of the SASHELP.CLASS data set:

ods pdf file="c:\temp\sh.pdf" style=sasweb;

title "sashelp.class listing";
proc print data=sashelp.class;
run;

ods pdf close;

If you run this code on the server, you would only create a physical file and would not return the results back to the
client. So, how do you return your results back to the client? There are two ways to accomplish this task. You can use
the _WEBOUT fileref as the FILE= option on your normal ODS statement or use stored process macros. However,
this discussion will focus on using stored process macros. Think of these stored process macros as a direct
replacement for your ODS statements. Therefore, you do not need to put them around your entire program but only
around the areas from which you wish to receive output. When creating a stored process, SAS Enterprise Guide
automatically appends these macros (%STPBEGIN and %STPEND) around your SAS code. These macros will not
show up in your editor window. However, if you click the Code icon () at the bottom left of the wizard, you will see
the full SAS code that SAS Enterprise Guide intends to write to the server (Display 3).

Business Intelligence and AnalyticsSAS Global Forum 2011

4

Display 3. Full Code Preview

By default, the results of a stored process display in HTML. For example, you execute the following code as a stored
process:

*ProcessBody;
%stpbegin;

title "sashelp.class listing";
proc print data=sashelp.class;
run;

%stpend;

The results that are returned are as if the code was wrapped with ODS HTML statements.

ods html file='xxx.html';

title "sashelp.class listing";
proc print data=sashelp.class;
run;

ods html close;

To change the type of results that are returned to the user, you can use a reserved macro variable _ODSDEST. Also
if you intend to use the SASWEB style, you can set this style using the _ODSSTYLE macro variable. These values
must be set before you invoke the %STPBEGIN macro. Remember, however, that SAS Enterprise Guide is wrapping
your user-written code with the %STPBEGIN and %STPEND macros (see Display 3). This leaves you with two
options for setting the macro variables: use a prompt, which is discuss later, or manually code the macros
%STPBEGIN and %STPEND in your editor window and disable them in SAS Enterprise Guide. So for example your
program would now look like this:

Business Intelligence and AnalyticsSAS Global Forum 2011

5

%let _odsdest=pdf;
%let _odsstyle=sasweb;
*processbody;
%stpbegin;

title "sashelp.class listing";
proc print data=sashelp.class;
run;

%stpend;

To ensure that these macros are disabled to prevent duplicates, click the Include code for button and deselect
Stored process macros as shown in Display 4.

Display 4. Disabling the %STPBEGIN and %STPEND Macros

Reserved macro variables exist for any ODS options that you might want to set in your output. A list of these
variables is available in the "Using Reserved Macro Variables" section of the SAS® 9.2 Stored Processes:
Developers Guide (SAS Institute Inc. 2009).
Next you need to account for any prompts that you want to include in the stored process. When thinking about
prompts in a stored process, think of them as a macro variable which is declared at the very top of the program. To
keep this example simple, assume that you intend to prompt the user for a single age value in which to subset the
SASHELP.CLASS data set. Assuming that the value will be set with a %LET AGE= statement at the top of the code,
you simply need to add the WHERE clause to the PROC PRINT statement and specify the &AGE parameter, which
is defined later:

%let _odsdest=pdf;
%let _odsstyle=sasweb;
*processbody;
%stpbegin;

title "sashelp.class listing";
proc print data=sashelp.class;
where age = &age;
run;

%stpend;

Business Intelligence and AnalyticsSAS Global Forum 2011

http://support.sas.com/documentation/cdl/en/stpug/61271/PDF/default/stpug.pdf

6

Make sure you do not have a %LET declaring any of your prompt values directly in the code, or the values will be
overridden. You might have noticed in the code that a *ProcessBody; statement is added. This is only necessary
if you are running on the SAS Workspace Server. This statement only serves as a flag for where to insert your
prompt values into the SAS code.

Click Next to go to page 3 of the wizard.

STEP 3: EXECUTION OPTIONS
The next page of the wizard addresses execution options (Display 5).

Display 5. Execution Options

In the Save SAS Stored Process Code field, there are a few options that you need to specify. First, you must
choose an Execution server from the list. You can decide between executing on the Logical Stored Process Server or
the Logical Workspace Server. There are many advantages to using the Logical Stored Process Server including
reduced execution times and the availability of streaming output. Special considerations need to be taken, however, if
you intend to use the Logical Stored Process Server. All SAS sessions that are executed run under a group account
called SAS General Servers (by default the user ID that is associated with this group is SASSRV). You need to
ensure the SASSRV account has access to all library locations that are accessed in your SAS program.

In the Location on Server field, you must choose a Source filepath in which to store your SAS file on the server file
system. These locations are defined as source code repositories which are basically directories on the file system.
Additional paths can be added using SAS Enterprise Guide or SAS Management Console. If your execution server is
set to the Logical Stored Process Server, you must ensure that the SASSRV account has Write access to the
directory that is specified, as this account will be used to write your SAS program to the file system. Alternatively, if
the Logical Workspace Server is selected, the identity that is logged into SAS Enterprise Guide will be used to write
the source file.

Finally, in the Source filename field, you must enter a name, which will determine the name of the physical SAS file
on the server file system, for example, StoredProcess.sas.

Business Intelligence and AnalyticsSAS Global Forum 2011

7

Next, in the SAS Result Types this Stored Process can Support field, you must choose your output options. You
can choose between Streaming and Package. Streaming output enables you to make use of the _WEBOUT fileref,
which is discussed later. This will enable you to build Web applications and stream results directly back to the client.
Packaged output generates all output on the server first. After completion, the output is compressed and sent back to
the client. If you are using the _WEBOUT fileref then make sure you only select Streaming. If you are using the
stored process macros then you can select both output types simultaneously, which will enable the requesting
application to decide which result type to use.

Click Next to go to page 4 of the wizard.

STEP 4: PROMPTS
The next page of the wizard addresses prompts (Display 6).

Display 6. Prompts

In this step, you set up any prompt values for your stored process. As you recall in the simple example, you are
subsetting your SASHELP.CLASS data set by an age value. To add a prompt, click New, select Prompt from SAS
code for, and select AGE.

Business Intelligence and AnalyticsSAS Global Forum 2011

8

SAS Enterprise Guide determines what prompts you intend to add to the stored process by scanning the code for any
unassigned macro variables. On the General tab of the initial prompt page, the Name and Displayed text fields are
prepopulated with your AGE value (Display 7).

Display 7. The General Tab Showing the Name and Displayed Text Fields

The Name field corresponds to the name of the macro variable in your SAS code. In this example, this must remain
AGE in order for your stored process to function properly.

The Displayed text field however determines the text that is displayed for the prompt. Setting this value to something
like Select an age value would be more fitting.

In the Description field, you can specify additional details about your prompt.

The Parent group field allows prompts to be grouped into different sections. This can enable a more logical way to
present prompts to a user. For this example, the default \General will suffice.

The Options field provides a few self-explanatory options for this prompt, none of which currently apply to our current
example.

Selecting the Prompt Type and Values tab provides additional options for this prompt (Display 8).

Business Intelligence and AnalyticsSAS Global Forum 2011

9

Display 8. The Prompt Type and Values Tab

For this example you intend to prompt a user for an age. Therefore, in the Prompt type field select Numeric.

In the Method for populating prompt field, there are three options: User enters a value, User selects values from
a static list, and User selects values from a dynamic list. To use a dynamic list the SAS table must be registered
in the metadata. For this example, you have not done that, and changes in the age variable in the SASHELP.CLASS
data set are not expected; therefore, selecting User selects from a static list will suffice.

To keep the example simple, you have only coded for a single value. Therefore, chose the default option Single
value in the Number of values field.

You do not want to add any additional constraints so skip to the List of Values field. In this section you can manually
add each value by clicking the Add button, or you can load all of the values directly from your SASHELP.CLASS data
set. To do so click Get Values….

In the Get Values dialog box, click Browse.. and locate and select the SASHELP.CLASS data set.

Under Unformatted Values Column, select Age.

Business Intelligence and AnalyticsSAS Global Forum 2011

10

You are not applying any formats to these values; therefore, you can skip to the Available values field. Here you
must click Get values and the distinct age values will be loaded from the SASHELP.CLASS data set. Click the
double arrow to move all values from the Available values field to the Selected values field.

Click OK to return to the Prompt Type and Values tab. Now the List of values should be populated. Because you
chose a static prompt, dependencies will not be available and, therefore, this concludes the setup of your Age
prompt.

In addition to input prompts, output parameters are also available.

These enable stored processes to return SAS macro variables to the requesting client. Output parameters are
generally used in conjunction with SAS BI Web Services, and are not included in this example.

Click Next to go to page 5 of the wizard.

Business Intelligence and AnalyticsSAS Global Forum 2011

11

STEP 5: DATA SOURCES AND PROMPTS
The next page of the wizard addresses data sources and targets (Display 9).

Display 9. Data Sources and Targets

Data sources are used to stream data between the clients. Currently SAS Enterprise Guide 4.3 does not support the
execution of stored processes with data sources. However, it will enable you to configure them. In the "Additional
Topics" section of this paper, data sources are used to stream data from an Excel spreadsheet into a stored process.
For this example, however, leave the Data Sources and Data Targets fields blank.

Click Next to go to page 6 of the wizard.

Business Intelligence and AnalyticsSAS Global Forum 2011

12

STEP 6: SUMMARY
This section provides a summary of all of the information that you previously provided to the wizard (Display 10).

Display 9. Summary

When you click Finish, SAS Enterprise Guide will complete these tasks:

1. write the metadata object that is associated with this stored process
2. write the physical .SAS file to the source code repository

The following error commonly occurs at this step:

This error is caused by not having the WriteMetadata permission for the SAS folder location that was provided on
Page 1 of the wizard.

Business Intelligence and AnalyticsSAS Global Forum 2011

13

Here is another common error that you might encounter:

This error is caused by not having Write access to the source file directory in the operating system. If the SAS Logical
Stored Process Server is being used, ensure that the SASSRV account can write to the location that is specified. If
the SAS Logical Workspace Server is being used, ensure that the user who is logged on to SAS Enterprise Guide
has sufficient Write access to the location that is specified.

ADDITIONAL TOPICS
This section of the paper addresses common problems that customers report to SAS Technical Support when they
are creating stored processes.

DATE VALUES
Although date values are available in the Add A New Prompt dialog, the values are passed as text strings to macro
variables. For example, imagine that you pass a date variable DATE into a stored process. A common mistake is to
directly use this DATE variable like this:

proc sql;
select * from work.foo
where datefield < &date;
quit;

This will result in an error because the DATE variable is passed to the stored process with syntax that is similar to the
following:

%let date = 01jan2010;

In this situation, you need to tell SAS that this value is in fact a date value, so this is the correct syntax to use:

proc sql;
select * from work.foo
where datefield < "&date"d;
quit;

MULTI-VALUED PROMPTS
Consider the previous example and imagine that the user can select multiple age values. This will require a bit more
coding, because in SAS, each value that is passed to the stored process is contained in a new macro variable. For
example, you select two ages 12 and 13. These values are passed to the stored process like this:

AGE=12
AGE0=2
AGE1=12
AGE2=13

As you can see, Age0 acts as an index for the number of values that are passed in for the AGE parameter. A numeric
suffix is added to the end of AGE and incremented for each value that is chosen by the user. To make this into a
usable format for your WHERE clause, you must do some manipulation. The following example includes a numGen
macro, which takes one parameter parm. This is the name of the prompt value for which you wish to create an IN
clause, which in this case is age. The macro examines the Age0 value to determine the number of values that are

Business Intelligence and AnalyticsSAS Global Forum 2011

14

passed into the stored process. If this value is greater than or equal to two, a list will be generated for use within the
IN clause of the WHERE statement. If only one value is passed into the stored process, it will merely return the single
value. The following code includes comments to help further understand the code.

%macro numGen(parm=);
 %global &parm.0;
 /* Evaluate the Age0 parameter. If it is greater than or equal to 2 a list will be
 generated for your IN clause. */
 %if %eval(&&&parm.0 ge 2) %then %do;
 /* Create a comma separated list of all values that are passed into the stored process. */
 %do i = 1 %to &&&parm.0;
 %if &i = 1 %then %do;
 &&&parm&i
 %end;
 %else %do;
 , &&&parm&i
 %end;
 %end;
 %end;
 /* If Age0 is less than 2, only one parameter was specified, so put the single value out. */
 %else %do;
 &&&parm
 %end;
%mend;

%stpbegin;
proc print data=sashelp.class;
 /* Call the numGen macro and pass in the value of your parameter, which in this case is
 age. */
where age in (%numGen(parm=age));
run;
%stpend;

DRILLABLE REPORTS
"How do I create a drillable report?" This is a common question to SAS Technical Support. This task can be
accomplished with two stored processes and some REPORT procedure code. One feature of a stored process is the
ability to call it directly from a URL. This requires a stored process Web application. You will need to know the
following information before you build your first stored process:

1. The URL to your stored process Web application, for example,
http://your.web.server:8080/SASStoredProcess/do.

2. The location of the SAS folder for your second stored process, for example, /STP/Report2.

Imagine that you have two stored processes in the /STP SAS folder location in metadata called Report1 and
Report2. You want Report 1 to provide a listing of the members of the SASHELP.CLASS data set as well as the
members' age. Your report looks like this:

Business Intelligence and AnalyticsSAS Global Forum 2011

15

You want the members' names to actually be links, which pass the value of Name to Report2, which is a subset of the
SASHELP.CLASS data set by the name. Report 2 looks like this:

The code for Report1 looks like this:

title "SASHELP.CLASS Drillable Report";
proc report nowd data=sashelp.class headline;
 columns Name Age;
 define Name / width = 20;
 define Age / width=6;
 compute Name;
 urlstring =
'http://d72206.na.sas.com:8080/SASStoredProcess/do?&_program=/STP/Report2&name=' ||
strip(name);
call define(_col_, 'URL', urlstring);
 endcomp;
 run;

Notice that the URLSTRING= field provides the URL to the stored process Web application, the SAS folder location
for Report2, and a name parameter that is being passed to Report2. The Report2 code looks like this:

title "Listing for &name";
proc print data=sashelp.class;
where name = "&name";
run;

A RANGE OF EXCEL DATA AS INPUT
The ability to provide a range of Excel data as input to a stored process is made possible through input streams. To
make use of this feature create a stored process with the following code:

 /* The input stream will be the fileref that you designate from the add input datasource
 menu. */
libname instr xml;

data work.report_input;
 /* &_webin_sasname is a reserved macro variable for uploading data. */
 set instr.&_webin_sasname;
run;

proc print;
run;

On page 5 of the Create New SAS Stored Process wizard next to the Data Sources (input streams to a stored
process) field, click New to create a new data source input stream.

Business Intelligence and AnalyticsSAS Global Forum 2011

16

On the Edit an Existing Data Source page on the General tab, select XML based data under Form of Data. This
applies to the format of Excel.

Selecting this box should automatically change the Expected content-type field to text/xml.

Next input the fileref that is used in the SAS code, which in this example is inStr and select Allow rewinding stream.
This will enable the stored process to make multiple passes through the data and will be required for reading in Excel
data.

The information in the Label field specifies what is presented to the user. You can provided additional details about
the data source in the Description field.

When you execute the stored process from Excel, you are prompted to add the input data source, which can be a
range of cells.

Business Intelligence and AnalyticsSAS Global Forum 2011

17

Click OK and the stored process streams the designated cells to the stored process, writes them to the
WORK.REPORT_INPUT data set, and prints this data to a new worksheet called ExcelInput.

CONCLUSION
In conclusion, with solid knowledge of the SAS programming language leveraging stored processes at your site
should be an easy task. SAS Enterprise Guide 4.3 makes this task easier by providing an easy-to-follow wizard which
creates the required metadata and source code. Understanding stored process macros and their role in output is a
key concept which will enable you to convert existing programs directly into stored processes.

RECOMMENDED READING
SAS Institute Inc. 2009. "Using Reserved Macro Variables." SAS® 9.2 Stored Processes: Developer's Guide. Cary,
NC:SAS Institute Inc. Available at support.sas.com/documentation/cdl/en/stpug/61271/PDF/default/stpug.pdf.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Joe Flynn
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
E-mail: support@sas.com
Web: support.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Business Intelligence and AnalyticsSAS Global Forum 2011

http://support.sas.com/documentation/cdl/en/stpug/61271/PDF/default/stpug.pdf
mailto:support@sas.com
http://support.sas.com

	2011 Table of Contents

