
 1

Network Channel

Mainframe

Business
Intelligence

Figure 1: Enterprise Architecture Example

Paper 19-2011

Teradata® for the SAS® Programmer:

Ordered Analytical Functions, Hash Objects, ANSI SQL: 2003
Rick Andrews, Centers for Medicare and Medicaid Services

Jignesh Miyani, Teradata Corporation

ABSTRACT

The manner and speed in which information is hashed and indexed makes
Teradata a valuable tool for satisfying time sensitive Congressional requests at the
Centers for Medicare and Medicaid Services (CMS). Ordered Analytical Functions
enable On-Line Analytical Processing (OLAP) requests containing ANSI SQL: 2003
window functions, which greatly enhance the functionality of the Structured Query
Language (SQL). This paper will discuss how SAS 9.1 programming techniques
can be imitated within the Teradata 12 environment using SAS\ACCESS® pass-
though queries and the simulation of By-Group processing with dot notation. The
methods discussed will help users make an easier transition from traditional SAS
programming to a Massively Parallel Processing (MPP) Teradata platform running
shared nothing architecture.

INTRODUCTION

Using the right tool for the
right job is the main reason
for learning more about the
Teradata environment. By
using MPP, the system can
utilize the latest advances in
data processing technologies.
In computer architecture, the
designation MPP refers to a
computing system with many
independent units or entire
microprocessors that run in
parallel. Within this class of
computing, all units of
processing elements are
connected to become one
very large computer. This is
in contrast to the distributed
computing system whereby
a massive number of separate computers are used to solve a single problem. In shared nothing architecture, a
symmetric multiprocessing node is independent and self-sufficient, and no single point of contention exists across the
entire system, creating one of the fastest means of data processing.

ANSI STANDARDS

Learning Teradata also means learning SQL. The SQL language was first created by IBM®

 in the early 1970’s and
was called SEQUEL for "Structured English Query Language". SQL was adopted as a standard by the American
National Standards Institute (ANSI) in 1986 and into the SAS System's SQL procedure in 1990. The standard used
in SAS 9.1 is SQL: 1999, also known as SQL3, the fourth revision of the SQL database query language. Teradata 12
uses SQL: 2003, which contains the Ordered Analytical Functions that are also known as window functions and do
not currently exist in PROC SQL. The latest revision of the standard is SQL: 2008, which is not discussed.

NOMENCLATURE

The tables to the right display some typical
nomenclature for SAS and SQL terminology.
These values will be used interchangeably
throughout this paper. SAS and SQL code will
be presented in uppercase letters while user-
supplied variable names and hard-coded
values will be presented in mixed case.

Table 2: Coding
SAS SQL

DATA CREATE
SET FROM
MERGE JOIN
IF CASE

Table 1: Concepts
SAS SQL

Data Set Table
Observation Row
Variable Column
Program Query

TOPICS

 Ordered Analytical Functions
 Structured Query Language
 ANSI SQL:1999 vs. 2003
 By-Group Processing
 Binary Search Trees
 SAS Hash Objects
 Teradata Hash Buckets
 In-database Processing
 Massively Parallel Processing

Applications DevelopmentSAS Global Forum 2011

 2

1

2

3

1

2

3

Figure 2: Simple AVL Tree

SAS HASH OBJECT

In SAS, the hash object is used to create an Adelson-Velskii and
Landis (AVL) tree, a self-balancing binary search tree. In an AVL
tree, the heights of the two child sub-trees of any node differ by at
most one; therefore, it is said to be height-balanced (Sedgewick,
1983). The simple AVL tree shown in Figure 2 identifies how a
search of the tree on the left would require a traverse of two limbs
to obtain data located in node number 3. After the tree is height-
balanced, it takes only one traverse.

Figure 3 depicts an even
greater increase in the
efficiency of a search of a
tree. The tree on the left
would require a traverse of
three limbs to obtain the
data located in node
number 7. After the tree is
height-balanced, it takes
only two traverses.

The SAS hash object is an
illustration of how data can
be balanced into Random
Access Memory (RAM) in order to read only the information required to meet a specific request. Using this method
has been shown to greatly increase the speed of match-merges and lookup operations, though it is limited to the
amount of available memory.

TERADATA HASH BUCKET

In Teradata, information is processed through a sophisticated hashing algorithm and automatically distributed across
Access Module Processes (AMPs), which control database processing. Each AMP is assigned an equal portion of
the data and will execute all necessary database functions for the information allocated to it - each with independent
file systems maintaining separate data structures, space management, cache management, and concurrency control
functions. The file system interface allows for accessing and manipulating rows one at a time, and manipulating
single data blocks, and entire tables or sub-tables (Clark 2000).

The ability to attach additional nodes makes
Teradata extremely scalable. Parallelism is
built deep into the Teradata solution, with each
parallel unit acting as a self-contained mini-
database management system. This local
autonomy eliminates extra CPUs often required
by other parallel systems, where database-
specific functions are consciously coordinated,
split up, or collected (Ballinger, 2001).

Scalable Performance Data Server® is the
SAS implementation of this type of parallel
processing architechure, which focuses on
partitioning, parallel processing, unique
indexing technology, query optimization,
the SAS SQL Pass-Through facility, data
management and security.

Hashing is a major reason for the speed of
Teradata, which is a key motive for using
the platform. Another rationale is the use
of Ordered Analytical Functions contained within ANSI SQL: 2003, which eases the burden of additional code
generation. These functions can be used for a variety of operations and can make programming much easier. A final
incentive is the SAS in-database initiative in concert with the Teradata partnership, to be discussed later.

NODE 2

Parsing Engine

NODE 1

Hash Bucket directed to one AMP

AMP 1 AMP 2 AMP 3 AMP 4

VDISK 1 VDISK 2 VDISK 3 VDISK 4

Hashing algorithm produces:
1. A Hash Bucket
2. A Hash-ID

Figure 4: Teradata Database Architecture

 4

5

61

2

3

Figure 3: Complex AVL Tree

7

4

1

2

3 5

6

7

Applications DevelopmentSAS Global Forum 2011

 3

SELECT – statement for selecting desired variables
FROM – identifies the data sets to be merged together
WHERE – criteria for limiting the data being read
GROUP BY – classifies a collection or “group” of data
HAVING – filters records resulting from the GROUP BY clause
ORDER BY – ascertains the sort order for the final output

• AVG • RANK • REGR_SXY
• CORR • REGR_AVGX • REGR_SYY
• COUNT • REGR_AVGY • ROW_NUMBER
• COVAR_POP • REGR_COUNT • STDDEV_POP
• COVAR_SAMP • REGR_INTERCEPT • STDDEV_SAMP
• MAX • REGR_R2 • SUM
• MIN • REGR_SLOPE • VAR_POP
• PERCENT_RANK • REGR_SXX • VAR_SAMP

STRUCTURED QUERY LANGUAGE

Most analytical users of SQL utilize these six
basic clauses, though many others exist for
use by database administrators and data
modelers. A rudimentary knowledge of these
clauses is assumed and will not be discussed.

ORDERED ANALYTICAL FUNCTIONS

Ordered Analytical Functions include
ANSI SQL-2003-compliant window
functions. A window function is
similar to an aggregate function,
though it is applied to a partition of a
result set in lieu of the entire table. A
window is specified by the OVER
phrase, which can include the
following phrases: PARTITION BY,
ORDER BY, and ROWS {BETWEEN}.

Figure 5: Window Function Diagram

AVG(value_expression) OVER (

PARTITION BY

 ,

column_reference

ASC
ORDER BY

 ,

value_expression

)

DESC

ROWS UNBOUNDED PRECEDING

value PRECEDING
CURRENT ROW

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

CURRENT ROW
value PRECEDING

value FOLLOWING

PRECEDING AND UNBOUNDED FOLLOWING

CURRENT ROW
value PRECEDING

value FOLLOWING
value

CURRENT ROW AND UNBOUNDED FOLLOWING

CURRENT ROW

value FOLLOWING

UNBOUNDED FOLLOWING

value FOLLOWING

value CURRENT ROW

A

B C

C

A B

Applications DevelopmentSAS Global Forum 2011

 4

Figure 9: Window Function with Partition-By

Table 3: OVER Clause without Phrases
Bene

Id
Thru
Date

Clm
Type

Paid
Amt

Total
Paid

1 01-Jan-11 IP $500 $2300
1 05-Jan-11 SNF $300 $2300
1 30-Jan-11 PHY $175 $2300
2 02-Feb-11 IP $750 $2300
2 14-Feb-11 SNF $300 $2300
2 21-Feb-11 PHY $125 $2300
2 17-Mar-11 HHA $150 $2300

Figure 6: Window Function without Clauses

Table 4: Partition by Claim Type
Bene

Id
Thru
Date

Clm
Type

Paid
Amt

Total
Paid

2 17-Mar-11 HHA $150 $150

1 01-Jan-11 IP $500 $1,250
2 02-Feb-11 IP $750 $1,250

1 30-Jan-11 PHY $175 $300
2 21-Feb-11 PHY $125 $300

1 05-Jan-11 SNF $300 $600
2 14-Feb-11 SNF $300 $600

SELECT
 Bene_Id, Thru_Dt, Clm_Type, Paid_Amt,
 SUM(Paid_Amt)
 OVER (PARTITION BY Clm_Type)
 AS Total_Paid
FROM Mdcr_Clm

DATA Derived_Table;
 SET Mdcr_Clm END=EndOfFile;
 Total_Paid + Paid_Amt;
 IF EndOfFile THEN OUTPUT;
RUN;

DATA Mdcr_Final;
 SET Mdcr_Clm;
 IF _N_=1 THEN SET Derived_Table;
RUN;

Figure 7: OVER () Simulation using SAS 9.1 Figure 8: Simulation using ANSI SQL: 1999

PROC SORT DATA=Mdcr_Clm;
 BY Clm_Type;

DATA Derived_Table;
 SET Mdcr_Clm;
 BY Clm_Type;
 KEEP Clm_Type Total_Paid;
 IF FIRST.Clm_Type THEN Total_Paid=0;
 Total_Paid + Paid_Amt;
 IF LAST.Clm_Type THEN OUTPUT;

DATA Final_Table;
 MERGE Mdcr_Clm Derived_Table;
 BY Clm_Type;
RUN;

SUMMARY EXAMPLES

The following SELECT statement contains a window function, which does not include a PARTITION BY phrase. The
OVER clause, containing no phrases, computes a summary of all records, whereby the total paid amount of all rows
is created and placed on each observation.

For comparison, Figure 7 is used to show one method of
performing this function using a typical SAS 9.1 data step.
The END option of the SET statement is used to identify the
end of the file. The paid amount is accumulated into the total
paid variable and is output when the end of the file is found.
The second data step retains the total paid value on each
record. The example in Figure 8 also produces the same result using the ANSI SQL: 1999 standard. The derived

table contains total paid and places it on each record
by way of the inner join, implied by the comma within
the FROM clause.

PARTITION BY PHRASE

The PARTITION BY clause determines the group, or
groups, over which the ordered analytical function
executes. If there is no PARTITION BY phrase, then the
entire result set, delivered by the FROM clause, is output
as a single group, or partition, over which the ordered
analytical function executes (Teradata, 2010a).

The example in Figure 9 is a partition of the variable claim
type, which corresponds to the groups created in Table 4.
Notice the Inpatient (IP) records are now summarized with
a total paid of $1,250 with no regard to the beneficiary.

Figure 10 is a simulation of the output in Table 4 using “By-
Group” processing in SAS 9.1. When the first record of a
By-Group is found, the accumulator variable is set to zero,
then incremented by the paid amount until the last record of
the By-Group is found and then output into a derived table.
The records are then merged back into the original table.

SELECT
 Bene_Id, Thru_Dt, Clm_Type, Paid_Amt,
 SUM(Paid_Amt) OVER () AS Total_Paid
FROM Mdcr_Clm

PROC SQL;
 CREATE TABLE Mdcr_Final AS
 SELECT
 Bene_Id, Thru_Dt, Clm_Type, Paid_Amt,
 FROM Mdcr_Clm,
 (SELECT SUM(Paid_Amt) AS Total_Paid
 FROM Mdcr_Clm) AS Derived_Table;
QUIT;

Figure 10: Partition-By Simulation using SAS 9.1

Applications DevelopmentSAS Global Forum 2011

 5

Figure 13: Default Action of Window Function

Table 5: Partition by Beneficiary
Bene

Id
Thru
Date

Clm
Type

Paid
Amt

Total
Paid

1 30-Jan-11 PHY $175 $975
1 05-Jan-11 SNF $300 $975
1 01-Jan-11 IP $500 $975

2 21-Feb-11 PHY $125 $1325
2 17-Mar-11 HHA $150 $1325
2 14-Feb-11 SNF $300 $1325
2 02-Feb-11 IP $750 $1325

SELECT
 Bene_Id, Thru_Dt, Clm_Type, Paid_Amt,
 SUM(Paid_Amt)
 OVER (PARTITION BY Bene_Id)
 AS Total_Paid
FROM Mdcr_Clm

Figure 11: Partition without an Order-By

Table 6: Order by Claim Type
Bene

Id
Thru
Date

Clm
Type

Paid
Amt

Total
Paid

1 01-Jan-11 IP $500 $975
1 05-Jan-11 SNF $300 $975
1 30-Jan-11 PHY $175 $975

2 02-Feb-11 IP $750 $1325
2 14-Feb-11 SNF $300 $1325
2 21-Feb-11 PHY $125 $1325
2 17-Mar-11 HHA $150 $1325

Figure 12: Partition with an Order-By

SELECT
 Bene_Id, Thru_Dt, Clm_Type, Paid_Amt,
 SUM(Paid_Amt)
 OVER (
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
 AS Total_Paid
FROM Mdcr_Clm

ORDER BY PHRASE

The ORDER BY phrase specifies how the rows are ordered in a partition, which determines the sort order of the rows
over which the function is applied (Teradata, 2010a). Figure 11 depicts an example of a window function containing a
PARTITION BY phrase without an ORDER BY. The results
in Table 5 are partitioned by beneficiary, though arbitrarily
ordered by the paid amount within each partition.

There are times when the order might be important. The
next example introduces the ORDER BY phrase to the
window function to arrange the output in sequence by the
thru date for each beneficiary. The total paid amounts are
the same in Tables 5 and 6, only the order has changed.

ROWS & ROWS BETWEEN PHRASES

The ROWS phrase defines the rows over which the aggregate function is computed for each observation in the
partition. If ROWS is specified, the computation of the aggregate function for each record in the partition includes
only the subset of rows in the ROWS phrase. If there is no ROWS phrase, the computation includes everything in the
partition (Teradata, 2010a).

 ROWS – The starting point for the partition is the first record in the group. The aggregation
group end is always the current row.

 ROWS BETWEEN – The aggregation group-start and end, which defines a set of rows relative to
the current row in the ordering of the rows within the partition. The row specified by the group
start must precede the row specified by the group end.

o UNBOUNDED PRECEDING – The entire partition preceding the current row.
o UNBOUNDED FOLLOWING – The entire partition following the current row.
o CURRENT ROW – The start or end of the aggregation group as the current row.
o value PRECEDING – The number of rows preceding the current row.
o value FOLLOWING – The number of rows following the current row.

The default action of a window function with no other phrases is to evaluate all rows PRECEDING and FOLLOWING
the current row as shown in Figure 13. This is the same as having the OVER () clause with no other phrases as
depicted in Figure 6 with the same results as Table 3.

SELECT
 Bene_Id, Thru_Dt, Clm_Type, Paid_Amt,
 SUM(Paid_Amt)
 OVER (
 PARTITION BY Bene_Id
 ORDER BY Thru_Dt)
 AS Total_Paid
FROM Mdcr_Clm

Applications DevelopmentSAS Global Forum 2011

 6

Figure 16: First Dot Notation using SAS 9.1

SELECT
 Bene_Id, Thru_Dt, Clm_Type, Paid_Amt,
 SUM(Paid_Amt)
 OVER (
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW)
 AS Total_Paid
FROM Mdcr_Clm

Figure 14: Accumulating Total Dollar Amounts

PROC SORT DATA=Mdcr_Clm;
 BY Bene_Id Thru_Date;
RUN;

DATA Derived_Table;
 SET Mdcr_Clm;
 BY Bene_Id;
 IF FIRST.Bene_Id THEN Total_Paid = 0;
 Total_Paid + Paid_Amt;
 OUTPUT;
 RETURN;
RUN;

UNBOUNDED PRECEDING & CURRENT ROW

Figure 14 illustrates the accumulation of the paid amount from all preceding rows thru the current row
shown in Table 7. Note the partitions by beneficiary appear to be arbitrarily sorted by the paid amount.

ROWS, PARTITION, & ORDER BY USAGE

The next example describes the use of PARTITION BY and
ORDER BY in conjunction with the ROWS phrase. The result will be a partition, or grouping, of the beneficiary sorted
by the thru date. The ROWS phrase causes the accumulation of the paid amount until the next beneficiary is
encountered, whereby the value is reset to zero.

Figure 16 uses By-Group processing in SAS 9.1 to create
the total paid amount using FIRST dot notation. The data must first be sorted by beneficiary and thru date to put the
data in the correct order. The BY statement in the DATA step creates two temporary variables called FIRST.Bene_Id
and LAST.Bene_Id. They are boolean expressions identifying the first and last records within the group, which can
be used to conditionally control output.

HAVING CLAUSE

The HAVING clause was added to SQL because the WHERE keyword cannot be used with aggregate functions. It
was not added as part of ANSI SQL: 2003, but is used below to create an example of the new QUALIFY phrase
discussed later. It includes a predicate used to filter rows resulting from the GROUP BY clause. Because it acts on
the results of the GROUP BY clause, aggregation functions can be used in the HAVING clause predicate.

Table 7: Accumulation Example
Bene

Id
Thru
Date

Clm
Type

Paid
Amt

Total
Paid

1 30-Jan-11 PHY $175 $175
1 05-Jan-11 SNF $300 $475
1 01-Jan-11 IP $500 $975
2 21-Feb-11 PHY $125 $1,100
2 17-Mar-11 HHA $150 $1,250
2 14-Feb-11 SNF $300 $1,550
2 02-Feb-11 IP $750 $2,300

SELECT
 Bene_Id, Thru_Dt, Clm_Type, Paid_Amt,
 SUM(Paid_Amt)
 OVER (
 PARTITION BY Bene_Id
 ORDER BY Thru_Dt
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW)
 AS Total_Paid
FROM Mdcr_Clm

Figure 15: Accumulation using Order By

Table 8: Output of Figures 15 & 16
Bene

Id
Thru
Date

Clm
Type

Paid
Amt

Total
Paid

1 01-Jan-11 IP $500 $ 500
1 05-Jan-11 SNF $300 $ 800
1 30-Jan-11 PHY $175 $ 975

2 02-Feb-11 IP $750 $ 750
2 14-Feb-11 SNF $300 $1050
2 21-Feb-11 PHY $125 $1175
2 17-Mar-11 HHA $150 $1325

Table 9: First Dot Variables

Bene
Id

Thru
Date

Clm
Type

FIRST.
Bene

Id

LAST.
Bene

Id
1 01-Jan-11 IP 1 0

1 05-Jan-11 SNF 0 0

1 30-Jan-11 PHY 0 1

2 02-Feb-11 IP 1 0

2 14-Feb-11 SNF 0 0
2 21-Feb-11 PHY 0 0

2 17-Mar-11 HHA 0 1

Applications DevelopmentSAS Global Forum 2011

 7

Figure 17: HAVING Clause ANSI SQL: 1999

Table 10: Bene Count by Month

Bene Id Elig Mth Mth Cnt

1 Jan-08 1
1 Feb-08 2
1 Mar-08 3
1 Apr-08 4
1 May-08 5
1 Jun-08 6
1 Jul-08 7
1 Aug-08 8
1 Sep-08 9
1 Oct-08 10
1 Nov-08 11
1 Dec-08 12

2 Jan-08 1
2 Feb-08 2

Table 12: Output of Figure 19

Bene
Id

Elig
Mth

State
Cd

Mth
Cnt

State
Cnt

1 Jan-08 FL 12 4
1 Feb-08 FL 12 4

1 Mar-08 NY 12 8
1 Apr-08 NY 12 8
1 May-08 NY 12 8
1 Jun-08 NY 12 8
1 Jul-08 NY 12 8
1 Aug-08 NY 12 8
1 Sep-08 NY 12 8
1 Oct-08 NY 12 8

1 Nov-08 FL 12 4
1 Dec-08 FL 12 4

2 Jan-08 CA 2 2
2 Feb-08 CA 2 2

Table 11: Output of Figures 17 & 18

Bene Id Mth Cnt
 1 12

Figure 18: Basic Window Function

Figure 19: Window using Partition By

The HAVING clause is often desired in the healthcare industry
to keep only those beneficiaries having a full twelve months of
coverage. The months of coverage must first be counted and
only those records having a count of twelve are kept.

Figure 18 depicts FIRST dot, LAST dot programming used in By-
Group processing within SAS. When the first record of a By-Group
is found, the counter is set to zero, then incremented by one until
the last record is found. The observation is output only if the count
equals twelve.

The HAVING clause and By-Group methods have
been shown to illustrate the use of grouping records
for aggregation. With Ordered Analytical Functions in
SQL: 2003, the term window is in many ways related
to the function of By-Group processing in SAS.

The results of the Ordered Analytical Function shown in
Table 12 have the cumulative total on every record,
unlike the incremental accumulation in Table 10 with the
addition of the count for the months within each state.

Table 12 shows the first beneficiary, known as a
snowbird, resided in Florida during the winter months
and in New York for the remainder of the year. There
are times when a researcher is interested in recoding the primary state of residence for an individual, while
maintaining the total number of eligible months. The following will demonstrate new functionality for this task.

PROC SQL;
 CREATE TABLE Twelve_Months AS
 SELECT
 Bene_Id,
 COUNT(*) AS Mth_Cnt
 FROM Bene_Fact
 GROUP BY
 Bene_Id
 HAVING COUNT(*) = 12
 ORDER BY
 Bene_Id;
QUIT;

PROC SORT DATA= Bene_Fact;
 BY Bene_Id;
RUN;

DATA Twelve_Months;
 SET Bene_Fact;
 BY Bene_Id;
 IF FIRST.Bene_Id THEN Mth_Cnt = 0;
 Mth_Cnt + 1;
 IF LAST.Bene_Id AND Mth_Cnt = 12;
RUN;

SELECT
 Bene_Id, State, Elig_Mth,
 COUNT(*)
 OVER (PARTITION BY Bene_Id)
 AS Mth_Cnt,
 COUNT(*)
 OVER (PARTITION BY Bene_Id, State)
 AS State_Cnt
FROM Bene_Fact
GROUP BY
 Bene_Id, State, Elig_Mth
ORDER BY
 Bene_Id, Elig_Mth

Applications DevelopmentSAS Global Forum 2011

 8

SELECT
 Bene_Id, State_Cd, Mth_Cnt, State_Cnt,
 RANK()
 OVER (
 PARTITION BY Bene_Id
 ORDER BY
 Bene_Id,
 MAX(State_Cnt) DESC)
 AS Rank_Value
FROM
(
 SELECT
 Bene_Id, State_Cd, Elig_Mth,
 COUNT(*)
 OVER (PARTITION BY Bene_Id)
 AS Mth_Cnt,
 COUNT(*)
 OVER (PARTITION BY Bene_Id, State_Cd)
 AS State_Cnt
 FROM Bene_Fact
 GROUP BY
 Bene_Id, State_Cd, Elig_Mth
 QUALIFY
 COUNT(*)
 OVER (PARTITION BY Bene_Id) = 12
)
 AS Derived_Table

 GROUP BY
 Bene_Id, State_Cd, State_Cnt

Figure 20: Qualify Example

Table 14: Output of Figure 21

Bene
Id

State
Cd

Mth
Cnt

State
Cnt

Rank
Value

1 NY 12 8 1

1 FL 12 4 2

SELECT
 Bene_Id, State_Cd, Elig_Mth,
 COUNT(*)
 OVER(PARTITION BY Bene_Id)
 AS Mth_Cnt,
 COUNT(*)
 OVER (PARTITION BY Bene_Id, State_Cd)
 AS State_Cnt
FROM Bene_Fact
GROUP BY
 Bene_Id, State_Cd, Elig_Mth
QUALIFY
 COUNT(*)
 OVER (PARTITION BY Bene_Id) = 12

Figure 21: RANK Window Function

1

1

1

2

2

In this case the state of New York is the primary state and the number of eligible months is twelve. The challenge is
how to keep only one record per beneficiary, while maintaining the proper count of months and keeping only those
members with twelve months of enrollment as shown in Table 13. Because
Ordered Analytical Functions are not allowed in the HAVING clause, the
QUALIFY phrase has been created in ANSI SQL: 2003 to allow control of
output for window functions.

QUALIFY CLAUSE

The QUALIFY clause is analogous to the HAVING clause in ordinary SQL to eliminate unqualified rows. QUALIFY
eliminates records based on the function value, returning a new quantity for each of the participating rows. An SQL
query containing both Ordered Analytical Functions and Aggregate Functions can have both a HAVING clause and
a QUALIFY phrase (Teradata 2010).

Notice the Ordered Analytical Function that
created the “Mth_Cnt” variable depicted in
Figure 19 above has been copied into the
QUALIFY clause in Figure 20 and
requires a value equal to twelve. This
will eliminate any rows that do not
have a count of twelve eligible months,
and essentially keep beneficiary one
as shown in Table 13 dropping the
others. To distinguish the primary
state of residence, the RANK function
is added to the derived table.

RANK FUNCTION

The RANK function returns an ordered
ranking of rows based on the value_
expression shown in the ORDER
BY clause (Teradata 2010) as in
Figure 5. If multiple records have
the same value, they are assigned
the same rank. The next distinct
value receives rank+1.

The query displayed within
Figure 20 is then nested into
a derived table, similar to a
WORK data set in SAS.

The RANK window
function can be used to

evaluate the maximum state
count. The ORDER BY clause is used to
sort records in descending order. This will
result in the value with the largest count
having a rank of one as shown in Table 14.

The progression of these queries attempts to demonstrate the values
obtained by exploiting window functions. The desired results shown in Table 13 have yet to be achieved. By moving
the RANK function into a QUALIFY clause, after the derived table, a condition can be added to keep the record with a
rank value of one. The record will finally contain the number of twelve required eligible months and include the
primary state of residence.

Table 13: Desired Results
Bene

Id
State
Cd

Mth
Cnt

1 NY 12

Applications DevelopmentSAS Global Forum 2011

 9

PROC SORT DATA=Bene_Fact;
 BY Bene_Id State_Cd;
RUN;

DATA Twelve_Months (
 KEEP= Bene_Id State_Cd Mth_Cnt)
 State_Counts (
 KEEP= Bene_Id State_Cd State_Cnt);
 SET Bene_Fact;
 BY Bene_Id State_Cd;
 IF FIRST.Bene_Id THEN Mth_Cnt = 0;
 Mth_Cnt + 1;
 IF FIRST.State_Cd THEN State_Cnt = 0;
 State_Cnt + 1;
 IF LAST.Bene_Id AND Mth_Cnt = 12
 THEN OUTPUT Twelve_Months;
 IF LAST.State_Cd
 THEN OUTPUT State_Counts;
RUN;

PROC SORT DATA=State_Counts;
 BY Bene_Id State_Cnt;
RUN;

DATA Max_State;
 SET State_Counts;
 BY Bene_Id State_Cnt;
 IF LAST.Bene_Id;
RUN;

DATA Prim_State_of_Residence;
 MERGE
 Twelve_Months (IN=Keep_It)
 Max_State;
 BY Bene_Id;
 IF Keep_It THEN OUTPUT;
RUN;

SELECT
 Bene_Id, State_Cd, Mth_Cnt
FROM
(
 SELECT
 Bene_Id, State_Cd, Elig_Mth,
 COUNT(*)
 OVER (PARTITION BY Bene_Id)
 AS Mth_Cnt,
 COUNT(*)
 OVER (PARTITION BY Bene_Id, State_Cd)
 AS State_Cnt
 FROM Bene_Fact
 GROUP BY
 Bene_Id, State_Cd, Elig_Mth
 QUALIFY
 COUNT(*)
 OVER (PARTITION BY Bene_Id) = 12
)
 AS Derived_Table

 GROUP BY
 Bene_Id, State_Cd, Mth_Cnt

 QUALIFY
 RANK()
 OVER (
 PARTITION BY Bene_Id
 ORDER BY
 Bene_Id,
 MAX(State_Cnt) DESC) = 1

PRIMARY STATE OF RESIDENCE

The RANK window function shown in Figure 21
has been moved into the QUALIFY clause in
Figure 22 and qualified with a value of one.
Along with the qualification of twelve continuous
months of enrollment, beneficiary number one
has been kept with a primary state of New York
as shown in Table 15.

As with any program or query, there is usually
more than one mechanism to obtain the same
results. A more straight-forward or efficient
process may exist.

In comparison, a SAS version of this process is
shown in Figure 23, though many other SAS
techniques exist. The program shown below is
meant to provide an example of a method using
traditional SAS programming.

1. The initial FIRST dot in Figure 23 sets a
monthly counter to zero whenever a new
beneficiary is encountered and then
increments the variable by one. The second
FIRST dot sets a state counter to zero
whenever a new beneficiary is found and
increments that variable by one.

2. The initial LAST dot will output to a data set
when the monthly counter is equal to twelve for
each beneficiary. The second LAST dot will
output to a data set containing the state
counter for each beneficiary by state.

3. The state counts data set is then sorted by
beneficiary and state count. This will place the
state with the largest count on the last record.
The final LAST dot will keep the last record for
each beneficiary.

4. The next step merges the two data sets
and keeps only those matching the twelve
month criteria.

Neither the SAS nor SQL process takes into
account when a tie exists for state counts.
Additional code is needed to evaluate
the data.

Figure 23: Primary State SAS 9.1 By-Group

Table 15: Output of Figures 22 & 23

BENE ID STATE CD MTH CNT

1 NY 12

Figure 22: Primary State ANSI SQL: 2003

1

2

3

4

Applications DevelopmentSAS Global Forum 2011

 10

 CORR* FREQ SORT
 CANCORR* PRINCOMP* SUMMARY/MEANS
 DMDB* RANK TIMESERIES*
 DMINE* REG* TABULATE
 DMREG* REPORT VARCLUS*
 FACTOR* SCORE*

IN-DATABASE PROCESSING

Thus far, the methods described in this paper have been related to the latest version of SAS 9.1. In October 2007,
SAS and Teradata Corporation announced a strategic partnership that enables exploitation of both companies’ core
strengths. As part of the in-database initiative, the foundation of the SAS and Teradata partnership enables end-
users to run and optimize key aspects of SAS analytic processes within the Teradata database (Webb 2008).

Selective Base SAS and statistical procedures were made available for in-database processing in the first
maintenance release of SAS 9.2. In the second and third maintenance releases, the following Base SAS, SAS
Enterprise Miner™, SAS/ETS®, and SAS/STAT®
procedures are enhanced for in-database
processing. Additional procedures are planned
for incremental delivery in subsequent releases
(Webb 2008). The procedures marked with an
asterisk (*) require SAS Analytics Accelerator to
run inside the database (SAS 2011a).

Predictive and descriptive model training typically requires many passes over the prepared, de-normalized data. SAS
analytic and statistical functions, as well as SAS procedures, that execute repeatedly in model training can be moved
inside the database. SAS Enterprise Miner procedures that are candidates for inclusion are DMDB (Data Mining Data
Base), DMREG (Regression), NEURAL (Neural Network), DMVQ (Clustering), and others. Possible SAS/STAT
software procedures include LOGISTIC, CATMOD, GENMOD, GLM, and many more (SAS 2007).

ANALYTICS ACCELERATOR

When performing in-database modeling, the SAS Analytics Accelerator for Teradata dynamically generates SQL,
which is based on the procedure options and statements. It then submits the SQL code directly to the database. The
code can be standard SQL that can be interpreted by any database, or it can be tuned specifically for Teradata. The
choice for the type of SQL code is determined by the complexity of the required analysis (SAS 2011b).

FORMAT PUBLISHING AGENT

The process for exporting custom format definitions is called SAS Format Publishing. The SAS FORMAT procedure
enables the creation of custom formats that replace raw data values with formatted character values. PROC
FORMAT accomplishes this by creating a simple lookup table. SAS In-Database technology contains a tool for
exporting these lookup tables from the SAS System to the Teradata system. This tool is delivered as part of the
SAS/ACCESS Interface to Teradata and is known as the SAS Format Publishing Agent for Teradata (Webb 2008).

TABLE SERVER PROGRAMMING LANGUAGE

A further goal of SAS In-Database processing is to encapsulate the logic inside the DATA step implicit loop in a
context that can be executed inside Teradata. Relative to the DATA step, Table Server Programming Language
(TSPL) is a lightweight implementation that can be executed outside a SAS process. The SAS 9.2 releases of SAS
In-Database technology include the tools needed to translate a user’s existing DATA step program into TSPL-based
functions (Webb 2008).

SCORING ACCELERATOR

The SAS Scoring Accelerator for Teradata embeds the robustness of SAS Enterprise Miner scoring models directly in
the highly scalable Teradata database. By using the SAS In-Database technology and the SAS Scoring Accelerator
for Teradata, the scoring process is done inside the data warehouse, and therefore does not require the transfer of
data (SAS 2011a).

CONCLUSION

The addition of Ordered Analytical Functions and the speed of MPP database platforms, like Teradata, have greatly
improved the ability for analysts to obtain information quickly and efficiently. Using the right tool for the right job is at
the heart of these improved capabilities and all manner of research can benefit from using this new technology. In
addition to the new SQL functions, SAS has begun a robust in-database project in partnership with Teradata
Corporation that will undoubtedly prove to be a huge enhancement to the processes that exist today.

Applications DevelopmentSAS Global Forum 2011

 11

REFERENCES

Ballinger, C. (2007): “Born To Be Parallel”, Why Parallel Origins Give Teradata an Enduring Performance Edge.

Clark, S. (2000): “Butler Group Research Paper”, Research Paper Teradata, Butler 100101, October 2000.

Dorfman, P. (2009): “The SAS® Hash Object in Action”, Proceedings of the SAS Global Forum, 2009, 153-2009.

Heaton (2008): “Many-to-Many Merges in the DATA Step”, Proceedings of the SAS Global Forum, 2008, 81-2008.

Mann, R. (2009): “What’s a DBA to do?”, Teradata Magazine Online, Retrieved February 15, 2011,
http://www.teradatamagazine.com/tech2techtemplate.aspx?id=11188

SAS (2007): SAS Institute, “SAS/ACCESS® 9.2 for Relational Databases”, Reference, Fourth Edition

SAS (2011a): SAS Institute, “SAS® In-Database Processing”, A Roadmap for Deeper Technical Integration with
Database Management Systems.

SAS (2011b): SAS Institute, ”SAS Analytics Accelerator for Teradata”, Chapter 1

Secosky, J. (2007): “The DATA step in Version 9: What's New?”, Proceedings of the Twenty-seventh Annual SAS
Users Group International Conference, 27, dsv9.

Sedgewick R., Algorithms, Addison-Wesley, 1983, ISBN 0-201-06672-6, page 199, chapter 15: Balanced Trees.
Adelson-Velskii, G.; E. M. Landis (1962).

Siemers, V. (2000): “Removing Duplicates: Proc Sql Can Help You “See””, Proceedings of the Twenty-fifth Annual
SAS Users Group International Conference, 25, 106-25.

Teradata (2010a): Teradata Corporation, “SQL Reference: Functions and Operators”, Release 12, B035-1145-067A.

Teradata (2010b): Teradata Corporation, “SQL Fundamentals: Teradata Database”, Release 13, B035-1141-098A.

Webb, B. (2008): “SAS® In-Database Processing with Teradata”, An Overview of Foundation Technology.

Weiming H., (2004): “Top Ten Reasons to Use PROC SQL”, Proceedings of the Twenty-ninth Annual SAS Users
Group International Conference, 29, 042-29.

Wikimedia Foundation Inc. 2005: Wikimedia Foundation, “Structured Query Language”, Retrieved February 15, 2011,
http://en.wikipedia.org/wiki/SQL.

Wikimedia Foundation Inc. 2005: Wikimedia Foundation, “Hash Table”, Retrieved February 15, 2011,
http://en.wikipedia.org/wiki/Hash_table.

ACKNOWLEDGMENTS

The authors would like to thank the following for their assistance: Kim Andrews, Rich Coyle, Yadira Sanchez,
Greg Savord, and Julie Slater from CMS; the SAS Help Desk; and James Bourgeois, Kishore Elagandhala,
Robert Jacob, Suren Kalathil, Mohit Kulkarni, and Thomas Warren from Teradata Corporation.

CONTACT INFORMATION

Rick Andrews
Office of the Actuary
Centers for Medicare and Medicaid Services
7500 Security Boulevard
Baltimore, MD 21244
Phone: (410) 786-4088
E-mail: Richard.Andrews2@cms.hhs.gov

Jignesh Miyani
Senior Architect
Teradata Corporation
7175 Security Boulevard
Baltimore, MD 21244
Phone: (301) 820-4521
E-mail: Jignesh.Miyani@Teradata.com

Teradata, IBM, and SAS and all other product or service names are registered trademarks or trademarks of their
respective companies in the USA and other countries. ® indicates USA registration.

Applications DevelopmentSAS Global Forum 2011

	2011 Table of Contents

